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ABSTRACT
Approaches for antibody discovery have seen substantial improvement and success in recent years. Yet, 
advancing antibodies into the clinic remains difficult because therapeutic developability concerns are 
challenging to predict. We developed a computational model to simplify antibody developability assess-
ment and enable accelerated early-stage screening. To this end, we quantified the ability of hundreds of 
sequence- and structure-based descriptors to differentiate clinical antibodies that have undergone 
rigorous screening and characterization for drug-like properties from antibodies in the human repertoire 
that are not natively paired. This analysis identified 144 descriptors capable of distinguishing clinical from 
repertoire antibodies. Five descriptors were selected and combined based on performance and ortho-
gonality into a single model referred to as the Therapeutic Antibody Developability Analysis (TA-DA). On 
a hold-out test set, this tool separated clinical antibodies from repertoire antibodies with an AUC = 0.8, 
demonstrating the ability to identify developability attributes unique to clinical antibodies. Based on our 
results, the TA-DA score may serve as an approach for selecting lead antibodies for further development.
Abbreviations: Affinity-Capture Self-Interaction Nanoparticle Spectroscopy (AC-SINS), Area Under the 
Curve (AUC), Complementary-Determining Region (CDR), Clinical-Stage Therapeutics (CST), Framework 
(FR), Monoclonal Antibodies (mAbs), Observed Antibody Space (OAS), Receiver Operating Characteristic 
(ROC), Size-Exclusion Chromatography (SEC), Structural Aggregation Propensity (SAP), Therapeutic 
Antibody Developability Analysis (TA-DA), Therapeutic Antibody Profiler (TAP), Therapeutic Structural 
Antibody Database (Thera-SAbDab), Variable Heavy (VH), Variable Light (VL).
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Introduction

The continued clinical success of monoclonal antibodies 
(mAbs) over the past few decades has confirmed their utility 
as therapeutic molecules.1,2 As a result, several experimental 
techniques have been developed, refined, and widely imple-
mented to facilitate antibody lead identification.3–5 These cam-
paigns often result in numerous primary hits. However, lead 
antibodies can suffer from polyspecificity, aggregation, viscos-
ity, immunogenicity, or chemical instability.6–8 The compre-
hensive collection of properties required for development is 
known as antibody developability.9 The evaluation of antibody 
developability early in drug discovery is preferable, as it may 
mitigate financial investment in a molecule unable to pass the 
rigors of the therapeutic approval process.

Several experimental assays exist to assess antibody 
developability.10 To measure polyspecificity, i.e., the propensity 
of an antibody to bind off-target molecules, binding to bacu-
lovirus particles, polyspecificity reagent, or cross-interaction 
chromatography have been explored.11–13 In a recent study, 
polyspecificity was associated with poor clearance in human 
clinical trials, making it a critical parameter to consider in 
antibody lead selection.14 Beyond polyspecificity, assays exist 
to measure an antibody’s susceptibility to self-interact via affi-
nity-capture self-interaction nanoparticle spectroscopy (AC- 

SINS) and size-exclusion chromatography (SEC). Self- 
interaction can drive aggregation and must be monitored and 
mitigated. The benefit of these assays is that they require 
minimal amounts of protein (< 1 mg per assay).

Assays that are more demanding of protein quantity are also 
critical in assessing developability.10 For example, antibodies 
delivered through subcutaneous injections require formulation 
and administration at high concentrations.15 Highly viscous 
antibodies provide substantial challenges to subcutaneous 
delivery and manufacturing, making it necessary to identify 
antibodies with low viscosity to reduce the risk of clinical 
failure and increase patient compliance.16 Similarly, forced- 
degradation studies, which evaluate the chemical stability of 
an antibody, require several milligrams of protein.17

Conducting the full spectrum of developability assays com-
bined with binding and functional studies remains a challenge 
in early drug discovery because of the numerous hits detected. 
Thus, algorithms that can guide antibody prioritization and help 
eliminate poorly behaved antibodies are useful.18–20 Many of the 
currently available algorithms rely on surface-based descriptors 
of predicted antibody structures to determine the developability 
of an antibody. One pioneering tool, the structural aggregation 
propensity (SAP) metric, uses the presence of solvent-exposed 
hydrophobic surfaces to determine developability.
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In recent years, several new in silico strategies have been put 
forth to evaluate antibody developability.20–22 Of particular note 
is the Therapeutic Antibody Profiler (TAP) proposed by 
Raybould et al.20 It uses five developability attributes to identify 
antibodies that are differentiated from clinical-stage therapeutics 
(CST). Four of the profiling rules only evaluate the complemen-
tary-determining regions (CDRs) by analyzing length, presence 
of hydrophobic patches, presence of positive patches, and pre-
sence of negative patches. The final term considers charge 
symmetry across the variable domain. Thorsteinson et al. 
pointed out that the positive and negative patch descriptors do 
not separate CSTs from arbitrary antibodies.21 As a result, they 
introduced a modified version of the algorithm that replaces the 
charge-based terms with new terms aligned with clinical data.

We took an alternative approach to generating 
a developability algorithm. We evaluated over 900 descriptors 
at separating CSTs from human-repertoire data. A critical 
assumption was that CSTs are enriched for developability 
attributes that are not as prevalent in repertoire antibodies. 
The results of Shehata et al. challenges this assumption, as 
B-cell derived antibodies display a distribution of biophysical 
properties that overlaps with the approved antibody set used in 
that study.23 However, we used non-natively paired repertoire 
sequences, which may shift the biophysical properties of the 
repertoire set. Additionally, repertoire sequences were not 
screened for their ability to be produced in large quantities, 
concentrated, or freeze thawed, which are attributes often 
performed prior to clinical evaluation.

It is also important to note that not all CSTs are devoid 
of biophysical issues.9,22 For example, Ahmed et al. selected 
descriptors that predict that 33% of non-approved CSTs 
will have differential physicochemical properties from 
approved antibodies.22 Interestingly, we identify many 
descriptors capable of separating CSTs from the repertoire 
data, though partial overlap between the CSTs and reper-
toire sequences remains. Several of these descriptors were 
combined into a single score that we introduce as the 
Therapeutic Antibody Developability Analysis (TA-DA), 
a novel antibody developability predictor.

Results

Datasets

We used two datasets to determine what differentiates clinical 
from repertoire antibodies. The first dataset contains the vari-
able regions of 339 antibody sequences derived from the ther-
apeutic structural antibody database (Thera-SAbDab).24 These 
sequences represent antibodies that are either approved, 
underwent clinical evaluation, or are currently being evaluated 
in the clinic. Only sequences with a “Whole mAb” format 
assignment are evaluated. Antibody-drug conjugates are not 
included in this study due to concerns about the impact the 
varying drugs and linkers have on biophysical attributes of the 
final drug products.

The second dataset corresponds to variable regions from 
4,929 antibodies randomly selected to represent the 
observed antibody space (OAS).20,25 These sequences were 

obtained via next-generation sequencing studies of human 
antibody repertoires. It is important to note, these specific 
sequences are not natively paired but are derived from 
a simultaneous sequence study.20 These antibodies have 
not undergone rigorous selection criteria compared to 
those in the clinic.

Descriptors

We generated homology models for the 5268 variable region 
sequences and calculated 910 structure and sequence-based 
descriptors using the BioLuminate package (Figure 1).26–28 

These descriptors cover a range of published in silico models. 
For example, the descriptors contain various sequence-based 
hydrophobicity scales and structure-based surface models.29–31 

Descriptors also assess sub-sections of the variable region, such 
as each CDR alone and each framework region of an antibody.

Performance of descriptors

Each descriptor was evaluated for the ability to differentiate clin-
ical antibodies from antibodies derived from the human reper-
toire. Since the test is binary – repertoire or clinical – a receiver 
operating characteristic (ROC) curve can be used (Figure 2). The 
area under the ROC curve (AUC) allows rapid assessment of 
performance. Descriptors unable to separate clinical antibodies 
from repertoire antibodies receive a score of 0.5, while antibodies 
that obtain complete separation receive a score of 1.0.

Only 144 descriptors received an AUC score above 0.6 
(Figure 3), indicating that many descriptors poorly separate 
clinical antibodies from repertoire antibodies. Interestingly, 
most of the top-performing descriptors (Table S1) measure 
the solvent exposure of hydrophobic atoms. The developability 
challenges created by solvent-exposed hydrophobic atoms are 
well-established.19 Thus, unsurprisingly, many of the top- 
performing terms rely on this property.

Combining descriptors

After benchmarking individual descriptors, we created a single 
score integrating multiple properties. A unified score is bene-
ficial since an antibody may be problematic based on several 
descriptors, but not to a single property. Five descriptors were 
chosen (Figure 4) and combined into a single score based on: 1) 
AUC, 2) diversity of the descriptor relative to the other descrip-
tors chosen, and 3) verification that the descriptor aligns with 
physio-chemical intuition. Aligning with physio-chemical 
intuition is critical because it reduces the chance of spurious 
correlation, which we must be mindful of since hundreds of 
descriptors are evaluated in this study.

Four of the five chosen descriptors are structure-based. Two 
of the structure-based descriptors use the AggScore algorithm.31 

AggScore penalizes clusters of surface-exposed hydrophobic 
atoms that do not have surrounding charge patches to mitigate 
inter-molecular hydrophobic-hydrophobic interactions. These 
two descriptors differ since one considers the light chain frame-
work one exclusively (LFR1_AggScore), while the other evalu-
ates the entire framework of the antibody (FR_AggScore). 
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Repertoire antibodies were enriched for hydrophobic clusters of 
atoms and receive higher scores from both descriptors. The third 
descriptor, CDRL_positive_patch_energy, quantifies solvent- 
exposed positively charged atoms in the light chain CDRs. In 
our study, repertoire antibodies were enriched for positively 
charged light chain CDRs relative to clinical antibodies. Others 
have noted that positive charge in the CDRs can drive 
polyspecificity.33

The last two descriptors evaluate the entire variable region. 
One is a structure-based descriptor known as 
All_Atomic_contact_energy.34 Lower scores for this descriptor 
correlate with buried hydrophobic atoms and exposure of 
charged or polar atoms, akin to the hydrophobic effect.29,35 

Clinical antibodies receive lower atomic-contact energies and 

thus satisfy the hydrophobic effect better than repertoire anti-
bodies. The only sequence-based descriptor chosen, TOP_IDP, 
assigns each amino acid a weight proportional to the frequency 
of appearance of that amino acid in intrinsically disordered 
proteins relative to ordered proteins.32 It then sums the weights 
across the sequence to obtain a cumulative score. Clinical 
antibodies are enriched with order-promoting amino acids 
relative to repertoire antibodies.

These five descriptors were combined by taking the sum of 
the independent parameters and performing logistic regression 
(see methods). Briefly, logistic regression fits a sigmoid func-
tion by taking the log-odds as input and outputting 
a probability between 0 and 1. This makes logistic regression 
well suited for building classifiers. In this case, clinical 

Figure 1. In silico descriptor classes. Over 900 in silico descriptors were calculated for the 5268 antibody sequences used in this study. The descriptors are classified into 4 
categories. (a) Patch- descriptors computed from clusters of solvent-exposed atoms. (b) Sequence descriptors that assign various propensities to each amino acid, which 
are then summed across the sequence of an antibody. These include, but are not limited to, secondary-structure propensity and various hydrophobicity scales. (c) Scalar 
descriptors are singular values which rely on interdependent interactions within the molecule, such as isoelectric point (pI) (d). Region descriptors use scores from patch 
and sequence descriptors but are calculated on a subset of the antibody sequence or structure (e.g., hydrophobic or charge patches in HCDR3).

Figure 2. Analysis of individual descriptors. All repertoire and clinical antibodies are scored with each descriptor. A receiver operating characteristic (ROC) curve is then 
calculated by setting a cutoff between repertoire and clinical sequences at the lowest value calculated, forcing all sequences to fall into one class. This cutoff is 
continuously adjusted until all sequences are predicted to be in the alternative class. At every cutoff, a true positive rate (TPR) and false positive rate (FPR) is determined. 
The area under the curve (AUC) measures the performance of each descriptor at separating clinical from repertoire.
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antibodies were assigned a value of 1, and repertoire antibodies 
were assigned a value of 0. Since there are thousands of reper-
toire antibodies and only a few hundred clinical antibodies, the 
logistic regression model is fit by generating 1400 clinical 
antibodies by sampling with replacement (using the same 
sequence multiple times). In contrast, 1400 repertoire antibo-
dies were randomly selected without replacement (all 
sequences were unique) for training. Training was performed 
several times to evaluate the sensitivity of the weights for each 
descriptor to the fitting protocol. The value of the weights used 
in this study along with the corresponding standard deviations 
are shown in Table S2. The weights show little sensitivity to 
varying training-set sequences, and as a result underwent 
minimal fluctuations.

Evaluating performance of TA-DA

A test set of 20 clinical antibodies and 20 repertoire antibodies 
withheld from the training data was created. The logistic- 
regression model hereon referred to as the Therapeutic 
Antibody Developability Analysis (TA-DA), was tested for its 
ability to separate clinical antibodies from repertoire antibo-
dies. An AUC of 0.8 was obtained (Figure 5). It is worth noting, 
mavrilimumab is a distinct outlier among the clinical antibo-
dies in the test set, receiving a TA-DA score = 0.26. This low 
score is driven by the predicted aggregation-prone hotspots in 
the framework region of the antibody. Beyond traditional 
monoclonal antibodies, bispecific antibodies not included in 
the original training data provide an orthogonal test set for TA- 
DA. As this entire dataset is in the clinic, it is expected that all 

Figure 3. Area under the curve (AUC) of each descriptor. The AUC value for each descriptor is calculated. Most descriptors receive an AUC close to 0.5.

Figure 4. TA-DA – integration of five selected descriptors. Five descriptors were selected to be combined into a single score, termed TA-DA. Two of the descriptors 
(panels A and B) use patches (shown in red) calculated by AggScore to separate clinical antibodies from repertoire antibodies.31 The third descriptor (panel C) considers 
the positive patches (shown in blue) in the CDRs of the light chain. The fourth descriptor (panel D), All_Atomic_Contact_Energy, rewards burial of hydrophobic atoms 
(shown in green) and the solvent exposure of charged atoms (shown in blue and red) and penalizes the reverse. Lastly, a sequence-based descriptor, TOP-IDP (panel E), 
is summed over the entire antibody sequence, with weights given to each amino acid, with lower scores being clinically enriched.32
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these antibodies will receive high scores (values > 0.5). Over 
80% of bispecific antibodies receive high scores, further vali-
dating the algorithm (Figure 6).

Discussion

Here, we quantify the ability of hundreds of in silico descrip-
tors to separate clinical antibodies from repertoire antibodies 
that are not natively paired but come from a simultaneous 
sequence study. From this analysis, we chose five descriptors 
to create a unified model referred to as TA-DA, which showed 
the ability to separate clinical antibodies from human 

repertoire antibodies (AUC = 0.8 on the hold-out test set). 
Perfect separation of clinical antibodies from repertoire anti-
bodies based solely on the variable region is unlikely due to 
differences in constant domains, formulation buffer, and man-
ufacturing protocols, which affect the range of acceptable 
attributes.

Further complicating the separation of these two datasets 
is that repertoire antibodies have been observed to display 
biophysical properties on par with approved antibodies, and 
CST antibodies have been observed to contain problematic 
physicochemical characteristics.9,22,23 Moreover, repertoire 
antibodies have been observed to share >95% sequence 
identity with CSTs in rare instances.36 Thus, a degree of 
overlap between CSTs and human-repertoire sequences is 
expected. In this case, the test set of CST sequences do not 
share >95% sequence identity to the repertoire test set of 
sequences (Figure 7). The highest variable heavy (VH) 
sequence identity pair is 86% and the highest variable 
light (VL) sequence identity pair is 93%. But most sequence 
identity pairs are below 80%. As a result, improvement in 
the model may still be possible.

Thus, we plotted training set size versus performance to 
determine if increasing the dataset size would improve the 
separation between clinical and repertoire antibodies 
(Figure 8). As shown in Figure 8, model performance plateaus 
at 80 clinical antibodies, suggesting that increasing the number 
of clinical antibodies in the training set would not improve the 
model.

Additionally, in this study, only logistic regression was 
explored for model construction. However, other 
approaches for building a classifier exist, such as random 
forest. Further studies probing these alternative strategies 
could improve the model. We also did not explore mole-
cular dynamics-based descriptors. These types of descrip-
tors provide an additional avenue to refine TA-DA, as 
dynamics likely affect the molecular surface presented by 

Figure 5. TA-DA performance on hold-out test set. Twenty clinical-stage anti-
bodies and 20 repertoire antibodies, withheld from the training set, were scored 
with the Therapeutic Antibody Developability Analysis (TA-DA) model. Scores for 
repertoire sequences are shown on the left and scores for clinical sequences are 
shown on the right. AUC, confidence intervals, and p-values are reported.

Figure 6. TA-DA performance on bispecifics. Thirteen bispecific clinical stage therapeutics (CSTs) were scored with TA-DA. Variable domains identical or closely related 
to the training set are removed, resulting in 22 test sequences. Scores above 0.55 are predicted to be clinical-like. 18 of the 22 variable regions receive a score above 
0.55.
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an antibody. These types of descriptors are under investiga-
tion. However, molecular dynamics calculations signifi-
cantly increase computational complexity. Thus, the 
benefits of these descriptors must outweigh the significant 
increase in runtime added.

To gain insight between the TA-DA score and biophysical 
properties, we compared the TA-DA score of clinical antibo-
dies to an array of biophysical properties measured by Jain 
et al.9 Intriguingly, TA-DA correlated best with polyspecificity 
assays, such as ELISA, BVP ELISA, and poly-specificity 
reagent. The rank-order correlations are low, with values 
between 0.2 and 0.3 for these polyspecificity assays (Table 1). 
However, considering that model fitting did not include any 
information from these assays, it is notable that any relation-
ship exists.

As with other in silico developability tools, TA-DA has 
several shortcomings and thus only provides a guideline for 
evaluating lead candidates and is not intended to be a strict rule 
or used in place of experimental data. For instance, TA-DA 
does not consider chemical modifications, which can occur to 

an antibody during production, storage, or in vivo circulation. 
Antibody chemical modifications can affect antigen binding, 
immunogenicity, and product homogeneity. As our under-
standing of chemical liabilities improves, future improvements 
to TA-DA may incorporate antibody chemical modifications.37

Figure 7. Pairwise sequence identity distributions between CST and repertoire antibodies in test set. A multi-sequence alignment of the 20 CST antibodies with the 20 
repertoire antibodies in the test set is performed. The 400 pairwise sequence identities are shown for the (a) variable heavy, VH and the (b) variable light, VL.

Figure 8. Test set performance with varying training-set size. The number of clinical antibody sequences used in the training set increased from 10 sequences to 339. 
Performance on a standardize hold-out test set plateaus after 80 clinical antibodies are used in the training set.

Table 1. TA-DA vs. biophysical assays. A rank-order correlation metric is calculated 
between TA-DA and a dozen biophysical assays measured by Jain et al.9

Assay

Spearman

Correlation (ρ)

HEK titer 0.21
Fab Tm 0.15
SGAC-SINS 0.05
HIC Retention Time −0.04
SMAC Retention Time 0.05
Accelerated Stability Slope −0.14
Polyspecficity Reagent Score −0.26
AC-SINS −0.11
CIC Retention time −0.15
CSI-BLI Delta Response −0.2
ELISA −0.29
BVP ELISA −0.28
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Another important limitation to note is that four of the five 
TA-DA descriptors depend on a predicted antibody structure. 
Thus, the performance of TA-DA is connected to the accuracy 
of antibody homology models. The H3 region, by far the most 
challenging to predict,26 could therefore create a significant 
hurdle for TA-DA. However, TA-DA shows limited sensitivity 
(TA-DA difference = 0.04) to structural differences in the 
predicted H3 loop of adalimumab vs. the crystal structure 
(4NYL), despite the inaccuracy of the H3 loop in the homology 
model (C⍺ RMSD = 3.2 Å). The tolerance of TA-DA to H3 
misprediction stems from the structure-based descriptors 
focusing on the framework region of the antibody as well as 
the light chain CDRs. The remaining structure-based descrip-
tor, All_Atomic_Contact_Energy, evaluates the entire variable 
domain, of which the H3 only makes a small portion.

The results we report here describe generation of a novel 
therapeutic developability score, termed TA-DA. This 
approach both complements and builds on current tools to 
assess antibody developability that are appealing from many 
perspectives including: 1) identifying potential issues early, 2) 
saving time and cost, and 3) rapid analysis requiring only 
minutes on a single CPU. For these reasons and advantages 
described, the TA-DA in silico tool addresses the need to 
supplement biologics discovery and development with compu-
tational approaches that can be an important contributor for 
selection of lead-antibody candidates.

Materials and methods

Datasets

All clinical antibody sequences were obtained from Thera- 
SAbDab’s dataset as of February 20, 2020.24 This list of 
sequences was then further culled by considering only antibo-
dies assigned a “Whole mAb” format. Furthermore, human, 
humanized, and a limited number of chimeric antibodies were 
kept in the set. The resulting list contains 339 sequences. The 
international nonproprietary names (INN) of the final set of 
sequences are provided in Table S3. As an additional orthogo-
nal test set, 13 clinical stage antibodies that were assigned as 
“Bispecific mAb” by TheraSAbDab were selected for further 
benchmarking.

The Vander Heiden snapshot set of antibody repertoire 
sequences (14072) was downloaded from http://opig.stats.ox. 
ac.uk/resources.20,25 4929 sequences were randomly selected 
for the construction of antibody homology models. Sequences 
were triaged to simplify the computational complexity. Sequence 
identifiers for the training and test set are provided as an excel 
spreadsheet in the supplementary material (TA_DA_dataset. 
xlsx), along with descriptor values and TA-DA score.

Building homology models

Antibody homology models of variable regions were built 
using the BioLuminate 2019–1 release with the following 
command:

$SCHRODINGER/run -FROM bioluminate build_anti-
body.py -scheme Kabat -identity_cutoff 0.99 
< FASTA_File_Name.fasta>

BioLuminate’s homology modeling protocol has been 
described previously.26 Briefly, sequence similarity scores are 
calculated between the query sequence and a database of anti-
bodies of known variable domain structure. The closest match is 
then used as a template for the framework region of the query 
sequence. A maximum sequence identity cutoff of 0.99 is set to 
prevent the selection of a framework crystal structure template 
that may exist for a clinical antibody. After framework template 
selection, a unique template is selected for each CDR of the 
antibody based on sequence similarity, CDR stem geometry, 
and cluster size. The advance H3 loop remodeling protocol 
was not implemented in this study due to its high computa-
tional cost and the number of sequences analyzed in this work.

Calculating protein descriptors

BioLuminate 2019–1 release was used to generate 910 descrip-
tors that rely on either antibody sequence or structure using the 
following command:

$SCHRODINGER/run -FROM psp calc_protein_descrip-
tors.py -i < input directory path> -o < output directory path> - 
jobname <jobname> -p 7.4

As stated earlier, descriptors cover a range of published 
models.29–32 The full list of descriptors can be found in Table 
S1. Additionally, a random-number generator, not found in 
BioLuminate, was used to assign a value between 0 to 1 for all 
antibodies in this study.

Calculating ROC curves and performing logistic regression

The pROC package was installed and run in R version 3.4.1.38 

The roc() command was used to generate ROC curves and 
report the area under the curve (AUC). All clinical and reper-
toire antibodies were used in the ROC analysis. Logistic regres-
sion was performed with the glm() command using the 
following functional form:39

Clinical_Category = X1* FR_AggScore + X2* 
+LFR1_AggScore + X3* + CDRL_Positive_Patch_Energy + 
X4* + Disorder_Propensity_TOP_IDP+ X5* + 
All_Atomic_Contact_Energy + Const

The training set consisted of 2800 antibody sequences. 
Clinical antibody sequences (totaling 1400) were randomly 
selected with replacement from 319 clinical antibodies. The 
other 1400 sequences are repertoire sequences that were pulled 
from the 4929 repertoire sequences without replacement. 
Clinical sequences were assigned a category of 1, while reper-
toire sequences were assigned a category of 0.
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