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Recent updates in the treatment of diabetic polyneuropathy
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Abstract

Distal symmetric diabetic peripheral polyneuropathy (DPN) is the most common form of neuropathy in the world, affecting 30 
to 50% of diabetic individuals and resulting in significant morbidity and socioeconomic costs. This review summarizes updates 
in the diagnosis and management of DPN. Recently updated clinical criteria facilitate bedside diagnosis, and a number of new 
technologies are being explored for diagnostic confirmation in specific settings and for use as surrogate measures in clinical trials. 
Evolving literature indicates that distinct but overlapping mechanisms underlie neuropathy in type 1 versus type 2 diabetes, and 
there is a growing focus on the role of metabolic factors in the development and progression of DPN. Exercise-based lifestyle 
interventions have shown therapeutic promise. A variety of potential disease-modifying and symptomatic therapies are in  
development. Innovations in clinical trial design include the incorporation of detailed pain phenotyping and biomarkers for central 
sensitization.
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Introduction
Diabetes mellitus is a worldwide pandemic, affecting 537  
million adults1 (37.3 million in the US as of 20212), a number  
that is projected to increase to 783 million people by 20453.  
Diabetic peripheral polyneuropathy (DPN) affects about 50% 
of patients with diabetes mellitus and is the most common  
cause of neuropathy worldwide4,5. DPN is also the precipitating  
risk factor for diabetic foot complications, including diabetic  
ulcers, Charcot arthropathy, and lower limb amputations. 
These sequelae are independently associated with increased  
mortality risk6. Associated healthcare costs related to diabetes  
mellitus and its complications increased from $232 billion  
in 2007 to $760 billion in 2019 worldwide7, and up to 27%  
of these costs are attributed to DPN8.

Diabetic neuropathies may be classified into generalized and  
focal/multifocal forms. The most common diabetic neuropathy 
is a length-dependent, symmetrical sensory-motor peripheral  
polyneuropathy9. DPN develops in the context of a system of 
metabolic derangements, including hyperglycemia, increased  
polyol flux, oxidative stress, and lipid alterations, in addition 
to other cardiovascular risk factors9–12. The Toronto consensus  
criteria provide a framework for DPN diagnosis, which is 
based on the combination of neuropathy symptoms and signs  
and can be confirmed using nerve conduction studies (NCSs)13. 
NCSs are normal in small fiber neuropathy, which is usually  
associated with significant neuropathic pain. In this setting, 
a validated measure of unmyelinated small-diameter axonal  
injury may be used to confirm the diagnosis14. The most used 
diagnostic tool for small fiber neuropathy is a skin biopsy 
with quantification of intraepidermal nerve fiber density  
(IENFD)14.

In this article, we highlight five areas of recent updates in 
DPN: evolving biomarkers for early and accessible diagnosis,  
metabolic risk factors, innovations in clinical trials for painful  
diabetic neuropathy, genetic modifiers of disease risk, and  
recent therapeutic developments.

Novel diagnostic tests and biomarkers
A major criticism in the screening process for DPN is that  
by the time neuropathy becomes detectable by current  
assessments; nerve injury is well established and difficult to  
reverse15,16. Thus, there is a need for more increasingly sensitive  
and responsive biomarkers as screening and diagnostic tools 
and surrogate end-point measures17. Accurate diagnosis of  
different DPN phenotypes, including small fiber neuropathy, 
is necessary for clinical trial design and to facilitate targeted  
therapeutic intervention. The 2020 Analgesic, Anesthetic, and 
Addiction Clinical Trial Translations, Innovations, Opportunities, 
and Networks (ACTTION) criteria are standardized diagnostic  
criteria for idiopathic large, small, and mixed fiber neuropathies  
for research use: at least one small or large fiber symptom  
and sign and abnormal IENFD or sensory NCS (or both) 
for small fiber, large fiber, and mixed polyneuropathies,  
respectively18. Publication of specific aligned criteria for 
DPN is expected in 2022. IENFD remains the gold standard  

pathological confirmation of small fiber neuropathy, but the 
test is minimally invasive, and the biopsy specimen needs to 
be processed and evaluated at highly experienced laboratories 
to avoid false-positive results that can occur from suboptimal  
handling18. The development of less invasive and more  
easily performed biomarkers is necessary to facilitate diag-
nosis and design of clinical trials for disease prevention or  
early intervention. A summary of the biomarkers discussed  
below is shown in Table 1.

Corneal confocal microscopy is a noninvasive technique that 
can detect and quantify small nerve fiber loss in DPN and  
other forms of neuropathy19. A confocal laser scanning  
microscope noninvasively visualizes small-diameter unmy-
elinated axons in the cornea. Patients with DPN have reduced 
corneal nerve fiber density and length compared with normal  
controls19. In a cohort of 143 patients with diabetes20, corneal 
fiber density correlated with neuropathy signs on examination.  
Comparison of corneal nerve fiber length and density against 
neuropathy exam findings (vibration, cold, and warmth  
sensation thresholds) in controls (n = 30), painful diabetic neu-
ropathy (n = 78), and painless diabetic neuropathy (n = 62)21  
suggested that inferior whorl fiber changes preceded changes 
at the central whorl in a length-dependent fashion and  
correlated with decreased cold and warmth perception  
thresholds in those with painful diabetic neuropathy21. More  
investigation and validation studies are needed before corneal  
confocal microscopy can be considered as an alternative  
measure of small-caliber nerve fiber loss.

Nerve excitability testing (NET) may show promise as an  
emerging experimental neurophysiological biomarker of early 
axonal dysfunction. NET measures axonal firing thresholds  
in response to submaximal and supramaximal current delivered  
via noninvasive electrodes22, acting as a surrogate of axonal 
membrane dysfunction before axonal damage occurs and 
NCS findings are evident23,24. The hope is that NET may 
detect early changes in axonal function in DPN before 
axonal degeneration becomes irreversible, as demonstrated in  
oxaliplatin-induced neurotoxicity25. Patients with mild DPN 
(absent H-reflexes or distal sensory nerve conduction slowing)  
had abnormal axonal excitability profiles compared with  
healthy controls: longer duration of the relative refractory  
period, lesser prominent change of superexcitability, and 
smaller threshold changes to 50% depolarizing current26. Limi-
tations of this technology include (1) this technique requires 
specialist training and equipment and is not widely available,  
(2) NET is more reliable and reproducible in motor nerves  
than sensory nerves27, (3) it does not provide information  
about the status of small fiber nerves, (4) no clinically  
relevant normative ranges are defined, and (5) NET still 
needs to be validated as an alternative biomarker for diabetic  
peripheral neuropathy22.

Neurofilament light chain (NfL) protein, a marker of axonal 
degeneration, and circulating myelin protein zero (MPZ) mRNA 
transcripts show promise as blood biomarkers for diabetic  
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neuropathy28. NfL is increased in DPN patients compared  
with controls, and MPZ mRNA transcript levels are  
reduced28. The latter may predict future axonal loss 24 months  
in advance28. Reduced MPZ mRNA levels predicted a 
hypoalgesic phenotype as opposed to increased NfL levels,  
which predicted a hyperalgesic phenotype28. NfL has been  
proposed as a biomarker of many neurodegenerative condi-
tions, including motor neuron disease, degenerative movement 
disorders, dementia, and hereditary amyloidosis29. Serum NfL  
levels have also been shown to correlate with treatment 
response in patients with hereditary transthyretin amyloid  
(variant transthyretin amyloidosis, or ATTRv) polyneuropathy30.  
Patients with ATTRv polyneuropathy had higher levels of serum 
NfL than healthy controls (16 vs. 69.4 pg/mL, respectively), 
and after 18 months, serum NfL levels increased with pla-
cebo (36.3 mg/mL increase) and decreased with transthyretin  
(TTR) silencer patisiran treatment (-23.3 pg/mL), correlating  
with clinical progression in the placebo group versus the  
treatment group30. While nonspecific, this correlation with 
treatment response suggests that NfL holds promise as a 
biomarker for disease progression and treatment response in  
neurodegenerative diseases, including DPN.

In contrast with diabetic patients without neuropathy, patients 
with DPN in type 2 diabetes showed elevated inflammatory 
markers C-reactive protein (CRP), tumor necrosis factor-alpha  
(TNF-α), intercellular adhesion molecule 1 (ICAM-1), and 
interleukin 6 (IL-6)17,31. High levels of TNF-α and IL-6 were  

associated with the development of DPN over time32. An  
increase in systemic inflammatory markers TNF-α and IL-6  
was associated with DPN in type 2 diabetes, but these  
markers were also increased in painful neuropathies of various  
etiologies over nonpainful neuropathies31. Cytokine activation  
is associated with the generation of neuropathic pain33, but  
cytokine-specific antagonists (such as TNF-α inhibitors) failed 
to treat neuropathic pain34, suggesting that cytokines and 
chemokines function more as a network than single proteins  
in mediating painful polyneuropathies31.

There is increasing evidence that changes in the brain and  
spinal cord reflect and modulate neuropathic pain in DPN35–38.  
In animal models, interventions that enhance or reduce spinal 
inhibition resulted in respectively decreased35,39 or increased40  
behavioral indices of pain41. Additionally, advanced imaging 
shows cortical changes that may serve as promising biomarkers  
in painful DPN, which we will discuss below.

The role of obesity and the metabolic syndrome in 
DPN pathogenesis
While both type 1 and type 2 diabetes are characterized by  
hyperglycemia, type 1 diabetes is caused by autoimmune 
injury to pancreatic beta cells resulting in reduced insulin and  
C-peptide levels42, whereas type 2 diabetes is due to insulin 
resistance in association with metabolic risk factors, including  
obesity and dyslipidemia43. Multiple pathophysiologic path-
ways contribute to the development of diabetic peripheral  

Table 1. Summary of novel biomarkers in diagnosis and evaluation of diabetic polyneuropathy.

Biomarker Advantages Obstacles

Corneal confocal microscopy Noninvasive Requires specialist training and equipment 
Lack of normative data

Nerve excitability testing Reversible changes 
Noninvasive

Requires specialist training and equipment 
More reliable in motor than sensory nerves 
No information about small fibers 
Lack of normative data

Microneurography Minimally invasive 
May be helpful in identifying treatment-responsive 
pain phenotypes

Requires specialist training and equipment 
Not specific to neuropathic pain 
Lack of normative data

Neurofilament light chain Blood biomarker 
myelin protein zero (MPZ) mRNA levels predict 
future axon loss 24 months in advance and 
predict hypo- vs. hyperalgesic phenotype

Nonspecific

Inflammatory markers Blood biomarker 
Associated with risk of developing diabetic 
peripheral polyneuropathy (DPN); may be more 
helpful in risk stratification than drug target

Nonspecific

Functional magnetic 
resonance imaging (fMRI) as 
a biomarker for pain

Demonstrates central nervous system (CNS) role 
in sensitization and deafferentation 
May be helpful in identifying treatment-responsive 
pain phenotypes

Requires specialist training and equipment 
Lack of normative data
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neuropathy, including microvascular injury and ischemic stress 
to the peripheral nerve, inflammation, oxidative stress, and mito-
chondrial injury41. Multiple animal studies and cross-sectional,  
observational, and case-control studies across multiple conti-
nents spanning 40 years strongly suggest that metabolic syn-
drome and its component features are associated with an 
increased risk of developing polyneuropathy in type 2 diabetes  
and idiopathic neuropathy as well as in long-standing type 1  
diabetes44. Metabolic syndrome is defined by the presence of 
at least three out of five criteria: elevated serum triglycerides, 
reduced high-density lipoprotein cholesterol, central obesity,  
hypertension, and diabetes or prediabetes45.

Both idiopathic peripheral polyneuropathy and diabetic 
polyneuropathy manifest with length-dependent sensory loss, 
with preferential injury to small nerve fibers. In addition, 
the presence of metabolic syndrome is a significant risk fac-
tor for developing polyneuropathy in both type 1 and type 2  
diabetes44. The association between metabolic syndrome and  
sensory polyneuropathy is present independent of glycemic  
status in multiple studies46–49, suggesting that the other com-
ponents of the metabolic syndrome may play a greater role 
in modulating the development of neuropathy in type 2  
diabetes. In type 1 diabetes, aggressive glucose control  
significantly reduces the risk of neuropathy, but this effect 
is much more attenuated in type 2 diabetes (the relative risk 
reduction in type 1 is over 75% but is less than 10% in type 
2 diabetes)50,51. Both dyslipidemia and prediabetes are also  
independently associated with the development of idiopathic  
peripheral polyneuropathy44. A meta-analysis investigating the 
association of dyslipidemia and diabetic neuropathy in 2021  
examined 39 clinical trials containing 32,668 patients with  
either type 1 or type 2 diabetes and found that higher trig-
lyceride and low-density lipoprotein levels were associated  
with an increased risk of diabetic neuropathy52. Tissue-specific  
dyslipidemia profiles distinguished diabetic nephropathy, 
retinopathy, and neuropathy, each with a distinct set of lipid 
species affected53. In a diabetic mouse model, overall lipid  
species were increased in kidneys and nerves, while lipid con-
tent was decreased in retinas. In human sural nerve biopsies,  
progressive and stable diabetic neuropathies had distinct tran-
scriptomic profiles53,54. Of the three diabetic complications,  
diabetic neuropathy is most associated with dyslipidemia, 
which in turn induces mitochondrial deficits and accumulation  
of lipotoxic species to axons leading to axonal degeneration55.

Growing evidence suggests that obesity alone without hyper-
glycemia is a significant risk factor for neuropathy56. More  
individuals with obesity had neuropathy compared with lean 
individuals, and the presence of neuropathy has been asso-
ciated with abdominal obesity, hypertension, and elevated  
triglycerides56. Additionally, obese patients without neuropathy  
had reduced intraepidermal nerve fiber densities and worse 
pain, quality of life, and depression scores in contrast with lean  
controls56,57.

The impact of aggressive management of metabolic syndrome 
features has yet to be determined; however, clinical and pre-
clinical data suggest that this approach may have promise.  
Lifestyle interventions over 12 weeks, including strategies 
for glucose control, physical activity, weight loss, and diet  
modifications, reduced the severity of DPN symptoms58. Simi-
larly, the Look AHEAD study demonstrated that intensive  
lifestyle modifications significantly decreased DPN symptoms, 
which were associated with a degree of weight loss 1 to 2.3  
years after termination of active intervention59. Multiple clini-
cal trials are under way to examine the effect of lifestyle 
interventions on diabetic neuropathy (NCT04813146 and  
NCT01565317). The Topiramate as a Disease Modifying  
Treatment for Cryptogenic Sensory Neuropathy (TopCSPN)  
trial (NCT02878798), funded by the National Institutes of  
Health, is examining whether 100 mg of topiramate daily slows 
the progression of idiopathic neuropathy based on weight 
loss and its effects on metabolism. Results are expected later  
this year.

Innovations in painful DPN clinical trial design
About 30% of patients with DPN have neuropathic pain, 
which is a significant cause of patient morbidity60–62. There is  
increasing interest in whether the pain phenotype may help 
characterize the underlying pathophysiology and thereby  
suggest a more tailored treatment approach. Characterization  
by quantitative sensory testing (QST) of over seven types of  
neuropathic pain syndromes (including polyneuropathy,  
postherpetic neuralgia, peripheral nerve injury, trigeminal  
neuralgia, and central pain) showed that the pain phenotypes  
were incredibly heterogeneous and that different patients 
with the same disease can have different phenotype profiles 
(such as pinprick hyperalgesia vs. hypoalgesia)63. In studies  
characterizing subjective pain descriptors, two types of neu-
ropathic pain have been described: ongoing burning pain and  
electric shock-like sensations64. While there was no clear 
relationship between burning pain and specific patterns of 
abnormal sensory modalities on QST, the level of burning 
pain was inversely related to laser-evoked potentials, which  
primarily measure Aδ fibers64. In contrast, electric shock-like 
sensations were associated with abnormal non-nociceptive 
Aβ-fibers based on somatosensory-evoked potentials or NCS  
abnormalities64. Four theoretical mechanisms61 underlie ongo-
ing burning neuropathic pain: (1) sensitization of “irritable” 
nociceptors where distal nerve terminals are spared and IENFD  
may be normal, (2) hyperexcitable “regenerating sprouts” in 
ongoing regeneration with reduced IENFD, (3) functional  
deafferentation due to distal axonal degeneration manifesting  
as distal numbness and proximal hypersensitivity, and  
(4) anatomical denervation in processes such as ganglionopathy  
or root lesions where the pain is felt in the same region as  
hypoesthesia64.

Sodium channel blockers have been explored as a potentially  
efficacious therapy for the irritable nociceptor phenotype65.  
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Demant et al. (2014) categorized 97 patients with neuropathic 
pain64 as having an irritable nociceptor versus nonirritable  
phenotype66. These patients were randomly assigned to treatment  
with oxcarbazepine or placebo. The numbers needed to treat 
for a more than 50% reduction in total pain score were 3.9 in 
the irritable nociceptor group and 13 for the nonirritable noci-
ceptor group66,67, suggesting that sodium channel antagonists  
may be effective in the irritable nociceptor phenotype.

Microneurography may serve as a biomarker for the irritable 
nociceptor phenotype and as an objective, quantifiable measure  
of subjective pain68. In this technique, a microelectrode is  
inserted into the nerve fascicle and records action potentials 
from a single axon, thus measuring the degree of spontaneous  
activity from the peripheral nerve. Patients with painful 
polyneuropathy demonstrate a higher proportion of spontane-
ously active or mechanically sensitized C-nociceptors in con-
trast to patients with painless polyneuropathy and also showed 
less activity-dependent slowing suggestive of a peripheral  
sensitization69. However, microneurography is a time-consuming  
process performed at a few institutions and requires special  
expertise by the investigator and collaboration from the  
awake patient. Furthermore, there are no normative data in  
healthy subjects, and C-type nociceptor hyperactivity and 
sensitization may not be specific to patients with periph-
eral neuropathy, as this has also been demonstrated in patients 
with other etiologies of pain, including fibromyalgia70,  
erythromelalgia71, or complex regional pain syndrome72. While 
these limitations prohibit its use in bedside clinical practice,  
it may be a promising option in identifying the subset of  
patients with irritable nociceptor phenotype that might be 
more responsive to treatment, demonstrated in the randomized  
control trial of ABT-639 (a T-type calcium channel blocker) 
on spontaneous C-type nociceptor activity in patients with  
painful diabetic neuropathy73. Although the trial showed no 
differences in C-nociceptor activity or pain in 34 patients,  
microneurography may still hold promise in identifying irri-
table nociceptor phenotypes for future drug trials in painful  
polyneuropathy.

Selvarajah et al. (2019)74 demonstrated a relationship between 
brain volume and functional changes in the somatosensory 
cortex correlating with the severity of peripheral neuropathy 
as demonstrated by functional magnetic resonance imaging  
(fMRI)75. Patients with the greatest severity of neuropathy 
characterized by NCS correlated with the greatest reduction 
in sensory cortical thickness as well as a widening of the S1 
functional representation of the foot and thigh, suggesting deaf-
ferentation affecting the sensory neurons with the recruitment  
of nearby functioning neurons74.

In 2020, Wilkinson et al.76 examined the impact of IV  
lidocaine on pain severity, sensory phenotype (hyperalgesia vs. 
sensory loss), and fMRI somatosensory cortical response in  
29 patients with DPN compared with 26 healthy controls74. 
Responders were defined by a 30% decrease in pain intensity,  
lasting for at least 3 weeks74. Patients with an irritable  

nociceptor phenotype were more likely to respond to IV  
lidocaine than patients with a nonirritable nociceptor  
phenotype74. fMRI in nonresponders had lower S1 cortical  
volumes and functional connectivity compared with respond-
ers and healthy controls74. These results suggest that pain  
phenotypes can help predict treatment response (that is, 
patients with an irritable nociceptor phenotype are more 
likely to respond to sodium channel blockers) and that treat-
ment response may be characterized by connectivity between  
primary somatosensory cortex on fMRI.

Genetic modifiers of disease risk
A genome-wide association study of the ACCORD and  
BARI 2D cohorts77 found a genetic locus on Chr2q24, which 
was more frequent in diabetic patients without peripheral  
neuropathy than in patients with diabetic neuropathy. This is 
a novel locus associated with the risk of diabetic peripheral  
neuropathy, and its function has not yet been clearly  
defined77. It has been suggested to be associated with higher 
tibial nerve expression of the SCN2A gene, which is located  
nearby as well as potentially influencing glucose metabolism  
and insulin resistance78. microRNAs, which regulate up to  
30% of human genes, are emerging from animal models of  
neuropathy risk as possible biomarkers of risk and patho-
genesis in diabetic neuropathy in humans79. Diabetic sensory  
neurons demonstrate a unique pattern of microRNA altera-
tions in preclinical models of neuropathy in type 1 diabetes80.  
In type 2 diabetic neuropathy, epigenomic factors such as 
DNA methylation and post-translational histone modifica-
tions are considered possible contributors to the development  
of “metabolic memory” and risks of developing diabetic  
complications81.

In recent years, a mechanistic model of axonal degeneration 
demonstrated that the balance between pro-survival factors 
and pro-degenerative molecules drives axonal metabolism and  
self-destruction. SARM1 is a pro-degenerative molecule and 
represents a key step in a program for axonal degeneration  
following injury (“Wallerian degeneration”)82. This pathway 
was discovered when a colony of C57Bl/6J mice spontaneously  
developed the WldS mutation, which resulted in dramatically 
slowed Wallerian degeneration83. WldS mice are resistant to 
axonal degeneration due to nerve injury and other neuropathic 
insults, including neurotoxic chemotherapy84,85. Subsequently,  
SARM1 was noted to be required for axonal degeneration in 
fruit flies and mice86. Structure and functional studies showed 
that SARM1 is a critical enzyme in initiating axonal death87.  
Upstream from SARM1 activity, survival factor NMNAT2 is 
an endogenous enzyme in healthy axons and restrains SARM1  
degenerative activity88. The absence of NMNAT2 induced 
axonal degeneration, but since this pathway is dependent on  
SARM1 activity88, degeneration could be prevented in pre-
clinical models by knocking down SARM1 or inhibiting its 
function pharmacologically89. Deletion of SARM1 prevented  
the development of neuropathy in the streptozotocin mouse  
model of type 1 DPN90. SARM1 is emerging as a potential  
treatment target for multiple forms of neuropathy. It is also 



Faculty Reviews 2022 11:(30)Faculty Opinions

possible that genetic variation in SARM1 can predict disease  
risk91. While data are not available for DPN, recent studies  
suggest that naturally occurring variation in the SARM1 gene may  
increase the risk of amyotrophic lateral sclerosis91,92.

Recent therapeutic developments for DPN
An evolving literature supports the utility of lifestyle-based 
therapies for patients with DPN and neuropathy associated with 
prediabetes (Table 2). Short-term exercise trials have demon-
strated improvement in gait, strength, and function in small  
cohorts58,93–100. Low-intensity exercises improved quality of life 
as well as reduced pain and tingling symptoms101. Indeed, in  
diabetic patients without neuropathy, weekly exercise for one 
year significantly increased distal IENFD compared with those 
without exercise, suggesting that presymptomatic injury to  
small unmyelinated fibers may be reversible102. Similar results  
were demonstrated in patients with metabolic syndrome with-
out clinical neuropathy103. A clinical trial examining the com-
bination of bariatric surgery and high-intensity exercise in the 
prevention and treatment of diabetic neuropathy is underway  
(NCT03617185).

In the past few years, a handful of small cohort clinical  
trials104 have explored the effects of vitamin supplementation 
in diabetic neuropathy: oral alpha lipoic acid105, vitamin E106,107,  
vitamin D108, EMA401109, and sodium channel blocker  
PF-05089771110; these studies have mostly been negative or  
inconclusive.

Several recent studies have explored neuromodulation as a 
therapeutic strategy for painful DPN. In 2021, results from  
the SENZA-PDN trial (multicenter, randomized comparison 
of conventional medical management against 10-kHz spinal  
cord stimulation plus medical management) showed signifi-
cant pain relief sustained over 6 months111 in 95 patients in the 
treatment group. Long-term follow-up results from a smaller 
trial were published in 2018, noting treatment success in  
55% of spinal cord stimulation in patients with painful dia-
betic neuropathy after 5 years112. Patients with more severe  
neuropathy (Michigan Diabetic Neuropathy Score [MDNS] 
3) had a higher risk of long-term treatment failure at the  
5-year follow-up, resulting in device removal112. In contrast, 
a higher baseline nocturnal pain score was associated with  
decreased risk of treatment failure112. Complications include 
infection (5%) and pocket pain (25%), and about half required 
adjustments or replacements in equipment, such as lead  
revision (10%) or battery replacement (33%)112.

Attempts at peripheral neurostimulation have been largely 
unsuccessful. Bioelectronic therapies were explored in small  
cohorts of patients with painful diabetic neuropathy: transcu-
taneous electrical nerve stimulation (TENS) in a retrospective 
study showed an average use of 1.7 years, with 76% of patients 
reporting subjective improvement in pain113,114. Pulse-dose  
electrical stimulation for 4 weeks in 10 patients showed a  
reduction in pain at the end of treatment and for 4 weeks 
after discontinuation of treatment115,116. Frequency-modulated  
electromagnetic neural stimulation (FREMS) showed pain 

reduction and increased tactile perception117. Pulsed electro-
magnetic field therapy in painful diabetic neuropathy showed  
mixed results118–120. Acupuncture showed a decrease in pain 
during a 12-week intervention period, but this response was 
not sustained after treatment stopped121. The ACUDPN trial  
(NCT03755960) started in 2018 and examined the effect 
of acupuncture over 8 weeks on pain severity and nerve  
conduction parameters; results are pending.

The American Academy of Neurology updated guidelines 
for the management of painful DPN in 2022122. Four classes 
of medications are recommended in the treatment of painful  
DPN: gabapentinoids, tricyclic antidepressants, sodium chan-
nel blockers, and serotonin and norepinephrine reuptake 
inhibitors; opioids are not recommended122. If a trial of one  
medication class achieves partial pain control, adding on a 
second class is recommended. If one class has no effect on  
pain control, a trial of a different medication class is recom-
mended over attempting a second agent from the same class.  
Clarifying expectations of pain management is essential in 
achieving patient satisfaction: while patients often expect  
complete pain resolution, a 30% reduction in pain level is  
considered successful in clinical trials, and the goal of phar-
macotherapy is to reduce but not necessarily eliminate  
neuropathic pain122. Evaluation for comorbidities such as sleep 
and mood disorders is recommended. These are more preva-
lent than in the general population, and both affect pain expe-
rience, and treatment can be more effective in improving  
pain control and quality of life122.

A number of potentially disease-modifying therapies are in 
preclinical development. Sirtuins such as resveratrol123 have 
been suggested as potential pharmacologic targets for the pre-
vention of diabetic neuropathy, given their role in off-loading  
mitochondrial respiratory demand. Benfotiamine was explored 
as a potential therapy via reducing excess glucose metabolism  
down the pentose phosphate pathway, which in turn forms  
advanced glycation end-products, resulting in increased oxi-
dative stress124. A 3-week placebo-controlled trial in 2005  
showed a reduction in neuropathic pain but no improvement 
in vibratory sensation125. This was confirmed in a phase III  
trial in 2008, and long-term benfotiamine supplementation 
showed improvement in NCSs and inflammatory markers such  
as TNF-α, IL-6, and IL-18126. A small study has been proposed 
to evaluate the effect of benfotiamine on IENFD and diabetic  
neuropathy (NCT01868191). Omega-3 polyunsaturated fatty 
acids are also of interest in preventing the progression of  
neuropathy with early preclinical evidence of preserving 
nerve function127, and multiple clinical trials (NCT05169060, 
NCT05145452, and NCT04222660) are under way. Early 
Phase Pain Investigation Clinical Network (EPPIC-Net) is cur-
rently funding two clinical trials for DPN: the development of  
NRD135S. E1, a nonopioid oral analgesic that downregulates 
purinergic receptors involved in the central nervous system  
processing of pain (NCT02345291), and a phase 2 study on 
the efficacy of topical pirenzepine, a muscarinic antagonist  
which showed promise in mouse models for painful DPN  
(NCT04786340)128.
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Table 2. Summary of exercise, molecular therapeutics, and neuromodulation clinical trials in diabetic polyneuropathy.

Design Outcome

Exercise

Proprioceptive exercise 
training94

Prospective study. 
8 weeks of proprioceptive exercise (n = 14) vs. 
control (n = 14)

Improved balance, six-minute walking test (6MWT), 
Beck Anxiety Inventory, Hamilton Depression Rating 
scale

Sensorimotor training in 
middle-aged and older 
adults95

Randomized control trial (RCT). 8 weeks of 
sensorimotor training (n = 22) vs. usual care 
only (n = 22)

Velocity, stride length, stance, double limb support 
improved in test group

Hand, finger, foot exercises96 RCT. 8 weeks of exercises (n = 51) vs. control 
(n = 53)

Motor score and activities of daily living (ADLs) were 
improved in the test group at 8 and 16 weeks

Combined training 
(resistance-aerobic)97

RCT. 8 weeks of exercise (n = 12) vs. control 
(n = 12)

No significant change in serum kinesin-1 level, aerobic 
endurance, upper body strength. Increased lower body 
strength in test group

Proprioceptive training98 Prospective study. 8 weeks of exercise (n = 19) 
vs. control (n = 19)

Improved balance in exercise group

Strength and balance 
training100

RCT. 8 weeks of intervention (n = 70) vs. 
control (n = 73)

No changes in health-related quality of life (HrQoL) 
improved functional status and balance at 6 months in 
test group 

Lifestyle intervention58 Prospective study. 12 weeks of a lifestyle 
intervention (n = 40) vs. control

Diabetic peripheral polyneuropathy (DPN) severity 
decreased at end of 12 weeks in test group

Exercise vs. lifestyle102 Prospective study. 1 year of lifestyle counseling 
(n = 40) vs. weekly exercise (n = 60)

Distal leg intraepidermal nerve fiber density (IENFD) 
increased in the exercise cohort vs. no change in the 
counseling cohort

Exercise + lifestyle 
counseling103

Prospective study. 
4 months of intervention (n = 36) vs. control  
(n = 31)

30-day distal leg reinnervation after capsaicin-induced 
axotomy is improved in the test group

Supplements/molecular

alpha-lipoic acid105 Prospective study. 
600 mg daily of alpha-lipoic acid ×40 days  
(n = 72), no control

50% of patients reported improvement in neuropathic 
symptoms and improved quality of life

Vitamin E (VENUS)106 Double-blind RCT. 
12 months of 200 mg mixed tocotrienols twice 
a day (BID) (n = 150) vs. placebo (n = 150)

No difference in patient-reported total symptom score 
(TSS), neuropathy impairment score (NIS), or sensory 
nerve conduction study (NCS)

Vitamin E107 Double-blind RCT. 8 weeks of 200 mg 
tocotrienols BID (n = 39) vs. placebo (41)

Improved NCS conduction velocity (CV), increased 
nerve growth factor (NGF) levels in test group

Vitamin D3
129 Prospective study. 12 weeks of 50,000 IU 

vitamin D3 weekly (n = 60), no placebo
Improved A1c, vitamin D, Michigan Neuropathy 
Screening Instrument (MNSI) (questionnaire and exam) 
compared with baseline

Vitamin D130 Prospective study. Single intramuscular (IM) 
dose of vitamin D 600,000 IU (n = 143), no 
placebo

Reduced positive symptoms on DN4, total pain score, 
short-form McGill Pain Questionnaire (SFMPQ) at 20 
weeks vs. baseline

Vitamin D131 Prospective study. Vitamin D supplementation 
to correct vitamin D deficiency (n = 51), no 
placebo

Reduced pain scores at 3 months vs. baseline

Vitamin D132 Prospective study. 8 weeks of weekly vitamin D 
supplementation (n = 57) vs. placebo (n = 55)

Neuropathy Symptom Score (NSS) improved but no 
difference in Neuropathy Disability Score (NDS) or NCS

EMA401 (EMPADINE)109 RCT. 12 weeks of (EMA401) 100 mg BID  
(n = 137)

Prematurely terminated because of hepatotoxicity

Nav1.7 blocker  
PF-05089771110

RCT. 4 weeks of PF-05089771 150 mg BID 
(n = 40), pregabalin 150 mg BID (n = 40), 
placebo (n = 40)

No significant change in pain score of PF-05089771 vs. 
placebo; pain score of pregabalin was improved vs. 
placebo

Benfotiamine126 RCT. 6 weeks of benfotiamine 600 mg daily  
(n = 47) vs. 300 mg daily (n = 45) vs. placebo 
(n = 41)

Improved in NSS, no difference in TSS
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Conclusions
DPN is a highly prevalent disorder associated with signifi-
cant patient morbidity and healthcare costs. While there is an 
urgent need for more effective symptomatic treatments targeting  
neuropathic pain and disease-modifying and preventative 
therapies, recent advances promise to accelerate therapeutic 

development. Refined diagnostic criteria and characterization  
of specific pain phenotypes will inform clinical trial design, and 
developing biomarkers promise to facilitate earlier diagnosis  
and design of clinical trials for patients early in the disease  
course. Preclinical studies of metabolic and genetic risks for  
neuropathy are being translated into clinical trials.

Design Outcome

Neuromodulation

High-frequency (10-kHz) 
spinal cord stimulation111

RCT. 6 months of 10-kHz spinal cord 
stimulation (SCS) in refractory painful diabetic 
neuropathy (n = 95) vs. control (n = 94)

75/95 in intervention arm (vs. 5/94 in control arm) 
achieved 50% pain reduction without neurological 
worsening

Spinal cord stimulation, 
long-term  
(5-year follow-up)112

Prospective study. 5 years of spinal cord 
stimulator (N = 48), no control.

55% of patients achieved 50% pain reduction. 
Mean duration of treatment = 60 months 
80% of patients still used SCS after 5 years

Frequency-modulated 
electromagnetic neural 
stimulation (FREMS)117

Double-blind RCT. Two series of ten treatments 
of FREMS or placebo in random sequence, 
each no more than 3 weeks. n = 31

Reduced daytime and nighttime pain score, increased 
sensory perception (monofilament, vibration), and motor 
NCS at end of treatment and at 4 months follow-up

Group acupuncture121 RCT. 12 weeks of twice-weekly group 
acupuncture (n = 14) vs. once-weekly 
acupuncture (n = 14) vs. usual care (n = 14)

Decreased weekly pain intensity at week 12 vs. 
baseline; results were not maintained after acupuncture 
ended
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