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HARLEY mitigates user 
bias and facilitates efficient 
quantification and co‑localization 
analyses of foci in yeast 
fluorescence images
Ilya Shabanov* & J. Ross Buchan*

Quantification of cellular structures in fluorescence microscopy data is a key means of understanding 
cellular function. Unfortunately, numerous cellular structures present unique challenges in their ability 
to be unbiasedly and accurately detected and quantified. In our studies on stress granules in yeast, 
users displayed a striking variation of up to 3.7-fold in foci calls and were only able to replicate their 
results with 62–78% accuracy, when re-quantifying the same images. To facilitate consistent results 
we developed HARLEY (Human Augmented Recognition of LLPS Ensembles in Yeast), a customizable 
software for detection and quantification of stress granules in S. cerevisiae. After a brief model 
training on ~ 20 cells the detection and quantification of foci is fully automated and based on closed 
loops in intensity contours, constrained only by the a priori known size of the features of interest. 
Since no shape is implied, this method is not limited to round features, as is often the case with other 
algorithms. Candidate features are annotated with a set of geometrical and intensity-based properties 
to train a kernel Support Vector Machine to recognize features of interest. The trained classifier is 
then used to create consistent results across datasets. For less ambiguous foci datasets, a parametric 
selection is available. HARLEY is an intuitive tool aimed at yeast microscopy users without much 
technical expertise. It allows batch processing of foci detection and quantification, and the ability to 
run various geometry-based and pixel-based colocalization analyses to uncover trends or correlations 
in foci-related data. HARLEY is open source and can be downloaded from https://​github.​com/​lnilya/​
harley.

Live and fixed cell fluorescence microscopy is a common approach utilized by biologists to elucidate understand-
ing of cellular function. The ability to accurately identify and quantify objects (i.e., foci) in microscopy data is thus 
key, and yet routinely papers are published with microscopy data that suffers from a lack of rigorous, unbiased 
analysis of foci of interest. An accurate measure of foci number, size, intensity, geometry or colocalization with 
other cellular foci or compartments may often reveal variations in intriguing underlying biological phenomena. 
However, variation in the aforementioned foci properties, and in cellular background signal or other relevant 
cellular contexts, can make foci quantification resistant to efficient, automated, analysis. Several approaches to 
quantifying cellular microscopy data have thus been developed as briefly outlined below.

Threshold based methods.  Threshold based methods assume that features of interest have a higher or 
lower intensity than the background surrounding them. Identifying such thresholds leads to a binary segmenta-
tion in feature and background areas. Various morphological and denoising operations are usually combined to 
obtain a good segmentation.

Top-hat or H-maxima transformations are typical choices employed for denoising, detection or accentua-
tion of features by algorithms like FoCo1, FociCounter2 or CellProfiler’s3 “Speckle Counting” pipeline. Statistical 
thresholding like Otsu’s method or many other alternatives are then used to yield a final threshold. These methods 
are readily extendable to 3D data as demonstrated by FocAn4.
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Morphological operations often require a kernel (i.e., a small search pattern image) that presupposes a shape 
of the feature in question. In most cases a disc of a set radius is used, limiting the algorithm to detecting round 
foci. More importantly, thresholding-based techniques are sensitive to a non-uniformly distributed background 
signal. For example, in the analysis of stress granules (SGs) in S.cerevisiae, vacuoles, which have no cytoplasmic 
signal, and vary greatly in size, can impair the identification of the actual cytoplasmic background signal.

Kernel based methods.  In a very general sense kernel-based methods identify local features of an image 
by scanning through the image and scoring positions according to their similarity to an expected kernel image. 
A convolution operation between kernel and image yields a similarity map. Portions of the image correlating 
most closely to the kernel receive high scores and thus can be identified as features of interest by using threshold-
ing or local maxima detection. FociQuant5 detects kinetochores (and other foci) and BUHO6 detects SGs using 
this general method.

The main limitations of kernel-based methods are the kernels themselves, since they offer a somewhat rigid 
representation of what a feature is. Different shapes, rotations or scales require multiple kernels and may rely 
on weight or threshold parameters for the final result. Convolutional Neuronal Networks (CNN) solve some of 
these problems by learning the shapes of the kernels from a dataset and performing convolutions at different 
scales. CNNs however require large amounts of labeled data to be trained and can be computationally expensive.

Differential scale‑space methods.  For a given image I
(

x, y
)

 differential scale-space methods generally 
first construct a stack of images smoothened at different strengths (or scales) t  called a scale space L

(

x, y, t
)

 and 
then look for extrema of differential features (e.g., any combination of partial derivatives of L ) therein. Detected 
maxima thus not only contain spatial coordinates of the feature, but also a scale corresponding to the size of the 
feature making them scale invariant.

The most common differential operators are the Laplacian of Gaussian (LoG), its approximation Difference 
of Gaussian and the Determinant of the Hessian Matrix (DetH). A significant number of other operators have 
been proposed, described in Ref.7. The challenge with these methods arises in delimiting a boundary of the 
feature, since they inherently only detect points. One solution is to define a region that is convex around the 
detected point and define the boundary along the zero crossing of the Gaussian curvature as proposed by Ref.8.

These methods detect many false negatives that usually require a threshold parameter to be removed. Another 
problem with methods like LoG and DetH is that they yield the highest values for round features; irregular and 
elongated shapes therefore pose a problem in noisy data. Furthermore, in cell images with strong background 
signal the curvature of the cell outline itself starts contributing to a set of false negatives as the scale is increased.

Machine learning methods.  Machine Learning approaches typically work on raw images, and given 
labeled datasets, learn automatically how to extract and classify the features of interest. As in our approach 
(described later) they can be easily combined with classical computer vision methods to increase performance 
or reduce the amount of data needed for training.

Many architectures have been proposed for various tasks, with CNNs being commonly used. DeepFoci9 uti-
lizes U-Net, a specific CNN architecture to detect and segment foci and nuclei with promising accuracy in a fully 
unsupervised manner. A combined approach in10 uses classical techniques to detect regions of interest, extracts 
an over abundant set of features using filters and feeds these results into a classifier. FindFoci11 uses a machine 
learning approach to devise parameters to filter out foci of interest in accordance with a human experimenter.

Deep Learning approaches can also leverage context. Having the whole image as input, information about 
location inside the cell and from foci to foci can be incorporated. Unsurprisingly, these approaches usually 
outperform previously mentioned methods. This however comes at a cost of long training times and the need 
for large, labeled datasets. To our knowledge there are no deep learning-based approaches specific to yeast SGs.

Other methods.  In theory many of the methods can be combined to create a more nuanced quantification. 
An example of such work is found with Obj.MPP software12 that uses a marked point process framework. A set 
of parametrically defined objects like disks, squares, or ellipses is compared via different quality functions to the 
image. These quality functions process differential (e.g., gradient) information along the edges of objects and 
around them. AutoFoci13 combines a top-hat transformation, an estimate of local curvature (using LoG) and a 
foci shape derived coefficient to create an Object Evaluation Parameter.

Several issues regarding analysis of microscopy data remain unresolved. First, excluding manual classification 
(e.g., in Fiji) or generic approaches (e.g., CellProfiler), the identification of SGs, or other cytoplasmic foci with 
significant cytoplasmic background signal has seen very few tailored automated approaches. Second, as reported 
in an exhaustive study on bioimaging informatics tools14, overall usability is a significant hurdle for the use of 
automated methods, making CellProfiler one of most popular, yet not necessarily optimal9 methods. Finally, 
in biological publications the issue of human variability and error is often not addressed. A previous study11 
showed with 3 users that in manual counting of γH2AX foci, 20–30% percent of assignments are unmatched 
between any two experimenters. While there is no evaluation of how consistent the same human is and the 
use of the “F1 score” (a typical measure to compare two classification results) for unbalanced datasets can be 
somewhat misleading15, this study is very indicative of significant human bias. A similar study on γH2AX foci 
with 5 experimenters from 3 labs16 reported 81.1% of assessments between experts to deviate in a statistically 
significant manner.

Here, we asked 7 users of varying degrees of self-identified expertise to quantify a yeast SG dataset twice 
and observed a striking 3.7-fold variation between users in terms of foci calls. Furthermore, users could only 
replicate 62–78% of their individual quantification performance when re-quantifying a subset of the SG dataset. 
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This motivated us to develop a new user-friendly framework, cell, and foci detection software termed HARLEY 
(Human-Augmented Recognition of LLPS Ensembles in Yeast) which enables manual or trained quantification 
of SG and other foci-like structures or organelles. HARLEY is freely available on Github (https://​github.​com/​
lnilya/​harley). In this paper, we describe its mechanism of action, and how users may utilize it for their yeast 
microscopy data analysis tasks. The software also allows for various analyses of colocalization, pre-processing, 
denoising and other common yeast microscopy related tasks.

Materials and methods
HARLEY installation and Github repository detail.  A readme document with installation instruc-
tions for HARELY, which runs in the Google Chrome browser, is present at https://​github.​com/​lnilya/​harley. 
Here, any bugs or troubleshooting issues may also be reported (Issues and Discussions tabs). Note that some of 
the walkthrough videos were recorded with earlier versions of HARLEY than the current release (1.2.4), thus 
minor, mostly aesthetic differences may be present; these do not detract from explanations given. To further aid 
in explanation of the parameters of HARLEY, which already utilizes help pop-up boxes for each parameter, we 
have provided a more detailed discussion of these parameters in supplementary methods S1.

Yeast SG induction, microscopy data capture and applicability of HARLEY.  BY4741 yeast trans-
formed with pRB1 (Pab1-GFP, Edc3-mCh) were grown to mid-log phase in -Ura synthetic dropout media, and 
subject to NaN3 stress as previous described17. Live yeast cells were imaged on glass slides (Globe Scientific, cat: 
1301) with 1.5 coverslips (VWR, cat: 48366-227). Z-stack data (10 slices, 0.4 μm each) was collected using a 100X 
oil-immersion (1.515; Cargille, cat: 16245) objective (NA 1.40) with 1.6 × auxiliary magnification on a Deltavi-
sion Elite widefield microscope equipped with a 15-bit PCO Edge sCMOS camera. Pab1-GFP was imaged with a 
0.2 s exposure at 100% transmittance (Excitation 475/25 nm, Emission 525/36 nm) while Edc3-mCh was imaged 
with a 0.15 s exposure at 100% transmittance (Excitation 575/25 nm, Emission 632/60 nm). Images were sub-
ject to deconvolution using standard parameters (Enhanced ratio, 10 cycles, medium filtering) using Softworx 
7.0.0 (Deltavision software), followed by maximum intensity Z-stack projection. While Deltavision Elite images 
have a bit depth of 0-32768, images of any bit depth equal or greater than 256 (i.e., 8-bit) should work well with 
HARLEY. A brightfield light image was also collected at the Z-stack center to facilitate cell boundary detection. 
HARLEY has only been tested on data generated from the Deltavision Elite. However, given its design principles 
(see later), we see no reason why equivalent data generated from many other microscopy platforms (widefield, 
confocal, super-resolution ± deconvolution) with comparable or superior resolution and sensitivity should not 
also yield satisfactory results.

Software versions.  Our software is based on ReactJS 17 for its frontend and Python 3.8 for its backend. 
Exact versions of employed packages can be found in the respective package files in our Github repository at 
https://​github.​com/​lnilya/​harley.

Recruitment of users and dataset.  7 independent users with familiarity in quantifying SG data were 
recruited by the PI to quantify SGs in a collection of 55 individual cell images, using a web-based app we devel-
oped (see the labeling step of the model training pipeline in HARLEY; Supplementary video S3). This allowed 
users to both label and delimit a boundary around the periphery of each putative SG foci.

On a scale of 1 = Layman, 2 = Intermediate and 3 = Expert, only the user “R” self-classified as expert, with all 
others being intermediates.

Foci candidates were determined using our contour loop method. After labeling a candidate (consisting of 
shortest and longest contour loop) as a focus, users could choose a contour loop most closely matching their 
perception of foci outlines by dragging the mouse across the focus in an interactive user interface (UI). The same 
method is used in the model training step of our software and can be explored further there.

A second round of quantification of the same cells, randomized in order from the previous scoring, was used 
to assess intra-user quantification variability.

Two users (A and M) failed to delineate boundaries around foci and only clicked on the foci in question; we 
therefore excluded their results in foci size analysis.

Model evaluation using Matthews correlation coefficient.  For a set of identified foci candidates, a 
decision needs to be made whether a candidate is a feature of interest, leading to a binary classification prob-
lem with a heavily unbalanced dataset (i.e., several times fewer foci than non-foci). As described previously15, 
the commonly employed measures of Recall, Precision or their combination (the F1 score; also known as Dice 
coefficient) to compare these classifications are poorly suited when the dataset is unbalanced. To compare the 
results of models and users we therefore use the Matthews Correlation Coefficient (MCC)18, a much more robust 
measure for unbalanced datasets.

The MCC is defined as a function of the confusion matrix consisting of the four numbers:

•	 TP : True positives—number correctly classified foci
•	 TN : True negatives—number of correctly rejected foci
•	 FP : False positives—number of wrongly classified foci
•	 FN : False negatives—number of wrongly rejected foci

https://github.com/lnilya/harley
https://github.com/lnilya/harley
https://github.com/lnilya/harley
https://github.com/lnilya/harley
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Values range from -1 to 1, with1 being perfect classification, 0 being the correlation of two completely rand-
omized experiments (e.g., coin toss) and -1 being perfect misclassification.

Cross validation MCC.  When comparing the results of a user’s classification with the results of a model 
trained on this same data (i.e., the user’s model) it would be unwise to simply use the MCC, since an overfitted 
model would yield over optimistic scores.

We therefore use the mean of a sixfold cross validation error over 6 models trained on the respective subsets 
of data. K-fold cross validation is a technique that splits the dataset into k disjunct sets of equal length D =

⋃

i Di 
with Di ∩ Dj = ∅ ∀i �= j . We then train the model on the set Dni =

⋃

k �=i Dk and evaluate the MCC on the pre-
diction of the remainder of the dataset Di.

This denotes the user prediction and the model prediction trained on dataset Dni with h(Di) and mni(Di) 
respectively.

The resulting correlation will be lower but a more generalized measure of model performance. We use this 
score only when comparing the user to their own model. In all other cases the model is trained on the whole 
dataset and its prediction is then compared using the regular MCC.

Training of hyperparameters.  Support Vector Machines use a regularization parameter C that governs 
the size of the margin separating the classes. Since we are using radial basis functions as our kernels, the param-
eter γ governs the size of this kernel.

A typical method to find these parameters is to optimize them with regards to the Cross Validation error, 
since it avoids overfitting them to the data. We use a logarithmic grid search with values between 10–3 and 103 
for C and 10–8 and 10 for γ to find parameters that fit the data better. In practice we found this step to give only 
very minor improvements over the default settings of 1 and ‘scale’ for C and γ respectively from the sklearn.svm 
python implementation.

Random quantifier.  We use the MCC with a random quantifier (Rnd) as a first measure of human vari-
ability in a user’s quantification efforts. For each cell, Rnd randomly picks the same number of foci as the user 
has chosen, resulting in a “classified” dataset which can now be compared to the user’s result using the MCC. This 
comparison is repeated 50 times and the mean is used as the final score, reported in this publication.

Feature space.  Our feature space is built by first obtaining the closed contours of a given length (as defined 
by experimenter and scale of images), then predicting the size of the foci with our algorithm and extracting a set 
of features based on expert knowledge from these values: (1) maximum, minimum, mean intensity of focus; (2) 
area, eccentricity and solidity; (3) size in relation to cell size; (4) brightness ratio predicted outline and center; (5) 
brightness ratio longest outline and center; (6) absolute difference in brightness center and outline; (7) normal-
ized distance to cell center; (8) brightness index inside cell (1 brightest in cell, 0 dimmest in cell). These choices 
were also partially motivated by ease of extraction and speed of execution. The resulting system runs in real 
time along the user’s labelling giving instant feedback on the test and training errors and converges quickly in 
practical terms. The feature space is whitened and rescaled 0–1 before processing by the SVM. After detection 
the initial foci intensities can be exported by the software.

Extraction of cell boundaries from bright field images.  Since cells in fluorescence microscopy may 
have a varying degree of background signal that could be used to delimit single cells, we use brightfield images 
to extract cell outlines. The process yields a binary mask that is used with fluorescence images to extract and 
normalize data for single cells.

Ridge detection.  Our algorithm first uses the Frangi ridge filter19 that is then thresholded to give the first draft 
of cell outlines as a binary mask. A graphical UI guides the experimenter throughout the whole process allowing 
easy correction of mistakes and cell-identifying parameters.

Cleaning.  A cleaning step is then employed that removes blobs in that mask that do not match certain criteria. 
These criteria are size or area constraints, as well as bounds on eccentricity and solidity of blocks available in the 
skimage.measure v0.19.0 package, yielding a more refined outline of cells. In practice, these parameters once set 
can be reused with very little modification from image to image.

Ellipse fits.  The cleaned outlines are then thinned20 to give a skeleton image of the outlines. We now evaluate a 
set of pixel positions C =

{

xi,j

}

 in the image whose distance to the skeleton lies between rmin and rmax ; these 
are parameters on minimum and maximum cell size.

MCC =
TP · TN − FP · FN

√
(TP + FP ) · (TP + FN ) · (TN + FP ) · (TN + FN )

CVMCC =
1

k

∑

i
MCC(h(Di), mni(Di))
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For each of these candidate points we fit an ellipse that approximates skeleton points around xi,j and calculate 
an approximation error as a sum of squared distances between the skeleton and the resulting ellipse. Addition-
ally, we can filter out points where the skeleton lacks points in a range of angular directions, e.g., the outline is 
not a closed shape.

The result is a heatmap with local minima representing locations of cell centers. It is important to note that 
parameters defined here depend on the magnification of the images and are transferrable between images.

Boundaries.  The final ellipses at these minima of approximation error are then “snapped” to the boundaries 
using a self-developed, modified version of the active contours model21 to yield final cell outlines. These are 
prone to noise and strong internal edges, like vacuoles or nuclei, resulting in only partial recognition of the cell. 
These errors can be manually rejected by our interactive UI.

Even though this method works well (Supplementary Video S1) and proposes a semi-automated way of 
detecting cells that in our test images is more than sufficient to gather and review hundreds of cells in minutes, 
we acknowledge that it probably will not outperform state of the art deep learning techniques. However, the 
typical number of cells quantified in yeast microscopy research is in the magnitude of hundreds and we therefore 
did not investigate better methods further.

Preprocessing of fluorescence images.  Fluorescence images are first stacked using a max-projection 
and then denoised using Non-Local Means Denoising22. Both steps are guided through an interactive UI (Fig. 2b 
and Supplementary Video S2). Since noise levels and image stacks vary between experiments and microscopes, 
these settings are selected image by image.

Ethical approval.  This study is exempt from the need for ethical approval as per advice received from the 
Institutional Review Board of the University of Arizona.

Results
Manual quantification of yeast SG data generates large intra and inter‑variability amongst 
users.  7 users of intermediate to expert familiarity with SG quantification identified SG foci and their bound-
aries in a dataset of 55 yeast cells exposed to NaN3 stress. These users repeated their quantification 1–2 weeks 
later with a shuffled version of the dataset. Many users exhibited significant differences in foci identificationn 
(Fig. 1a). User foci sections varied from 21 to 79% (3.76-fold) of available foci (see “Materials and methods”) on 
average (Fig. 1b), while average SG foci radii selections ranged from 108 to 152 nm (Fig. 1c). Foci calls from the 
first and second quantification run by users resulted in a reproducibility range of 62–78% (Fig. 1d; MCC, see 
“Materials and methods”). These results demonstrate how variable quantification between users can be, and that 
even the most conservative users (those who score fewer foci on average) have difficulty in reproducing their 
own quantification results. Finally, for most users we find only small variation in the determination of foci size 
between quantification runs (Fig. 1e).

The message from these findings is clear: manual quantification is prone to very large errors especially between 
different users, particularly when the signal to noise ratio of SG foci to diffuse cytoplasmic background is not 
especially high (a common issue in SG yeast data analysis). Due to a lack of accessible, automated data analysis 
tools suited for SG quantification in yeast, we set about developing an automated software solution.

HARLEY (human augmented recognition of LLPS ensembles in yeast); a novel software for 
cell segmentation and foci identification via a trained model.  Our software allows researchers to 
efficiently proceed from image data to final quantification results and consists of a pipeline of steps that are 
independent and interchangeable with other methods. At important steps of the pipeline a human experimenter 
may use the UI to adjust results. The full pipeline consists of (1) Extraction of single cell boundaries as masks on 
bright field images (Supplementary Video S1). (2) Max-intensity stacking and denoising of fluorescence images 
(preprocessing; Supplementary Video S2). (3) Extraction of contour loops in individual cells as foci candidates 
(4) Manual labelling of valid foci by a human to train a model (Supplementary Video S3) and (5) Automated 
classification of foci using the obtained model with the possibility for manual correction (Supplementary Video 
S4; Fig. 2a–c). Datasets with very clear, bright foci (e.g., P-bodies, Microtubules, Spindle Pole Bodies, Nucleoli) 
can be inconvenient to train, due to the absence or very low frequency of closed contour loops that are not actu-
ally foci (an SVM requires negative examples to learn as well). In this case we recommend use of a different pipe-
line that uses thresholds on brightness to include/exclude foci without training a model (Supplementary Video 
S6). All of the above steps, once optimized, can be applied to multiple data files and run in a batch mode format 
(again with optimal manual correction), which can save users considerable analysis time and effort. Finally, foci 
data is exportable as an Excel file, which is broken down on a per cell basis to indicate the number of foci in a 
cell, their overall size and brightness (all exported brightness values are unnormalized and correspond to the 
original values detected by the microscope). Average foci number per cell, and percentage of cells with foci are 
also generated.

Co‑localization features of HARLEY.  A second major feature of HARLEY is a colocalization analysis 
(Supplementary Video S5; Fig. 2d), that allows for classical Pearson Correlation analysis on a per cell and per foci 
basis, but also for exploring geometrical relations like distances between foci (measured between foci centroids 
or contour boundaries), and their percentage/area of overlap. Different properties of foci, their overlapping 
partners or neighbors can be scatter plotted to detect trends and correlation using various built-in regression 
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Figure 1.   SG quantification is highly variable amongst users and on repetition. Seven users (H, A, B, R, L, M 
and F) classified foci. Users that did not specify foci sizes are excluded in panels (c) and (e). (a) Example of two 
ambiguous cells in dataset, with choices of the most permissive (magenta) and most conservative user (teal). 
(b) Ratio of selected foci to available foci in individual cells by user. (c) Approximate radius in nm of foci by 
user. Since foci are not perfectly round, the radius corresponds to a circle of the same area as selected foci. (d) 
Autocorrelation (i.e., user reproducibility) measured by Mathews Correlation Coefficient (MCC; see “Materials 
and methods”) between two quantification runs on the same dataset. (e) Ratio of foci area differences in second 
run relative to the first.
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functions. Data is exportable in various formats including Excel (for tabular data and overview), JSON (for easy 
import into other scripts) and Python Pickle (raw data of foci geometry and images, for further computational 
processing).

Below, we describe the underlying mechanistic principles of our algorithm.

Identifying foci candidates and boundaries.  The key building block of our algorithm are closed con-
tour loops of length within a predefined range, readily found to sub-pixel precision using a marching squares 
algorithm23. If one were to imagine an image in 3 dimensions with the intensity being the height, closed contour 
lines are lines along which the intensity (or height) does not change and that either circle a peak or a valley, akin 
to topology lines on maps.

Figure 2.   Schematic overview of HARLEY. (a) Detection of cell outlines using brightfield images. After ridge 
detection and cleaning to distinguish putative cell edges, cell center calculation (heatmap dots), ellipse fitting 
and snapping defines cell boundaries (with optional manual rejection of aberrant cell boundaries—e.g., red 
line). (b) Preprocessing and extraction of single cells using the cell outlines and stacked fluorescence images. (c) 
Extraction of foci candidates as contour loops of constrained length, labeling of a training set and automated 
selection of foci via the trained model. For convenience, a set of thresholds on brightness can be used to detect 
foci in unambiguous datasets. (d) Colocalization and various analyses of foci data.
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This analogy immediately allows us to identify an important property: contour loops around a point never 
intersect. They are either non overlapping, equal or the longer one contains the shorter one, rendering it unnec-
essary to deal with clumped foci explicitly. Our method therefore tends to join clumped features into single 
larger objects.

We can now define a focus-candidate as a tuple of an outer and a contained inner contour:
(

Ck ,Cj

)

 with the contour loops k  = j having the lengths Lmax and Lmin respectively; the lengths being param-
eters set by the experimenter (Supplementary Video S3). As we shall see later the algorithm is not very sensitive 
to these settings, they are simply upper and lower bounds on the features in question.

Each contour line has its respective intensity Ik < Ij and at this location an intensity Ik < i < Ij will describe 
a contour between the outer contour Ck and the inner contour Cj.

For nearby foci, an outer contour might contain multiple inner contours, in which case we treat those as 
multiple separate candidates. Later, when the final outline of foci are calculated, the two candidates will either 
merge into one or remain two separate foci. The problem of merged or clumped foci is therefore dealt with 
implicitly and does not require any explicit segmentation, like a watershed approach that is commonly employed 
in such scenarios3,10.

Identifying the final contour from a focus candidate.  Just as different users would draw contours of a focus dif-
ferently (Fig. 1c), there cannot be any “correct” method of solving the problem of finding an optimal contour 
for a candidate. We suggest that more importantly than whether the result looks correct to a given user, contour 
focus identification should consistently give the same results and not rely on parameters. A good example of 
a parameterless approach is the Hessian Blob algorithm (Marsh et al., 2018) that uses the zero crossing of the 
gaussian curvature of an image as a boundary. The Gaussian curvature of the image however requires a scale 
factor (of the Gaussian), which is a result of the blob detection algorithm but is not present in our approach. 
Discrete methods of curvature estimates can lack precision given the size of the features that is often only a few 
pixels across.

We defined our foci candidates as a tuple of two contours 
(

Ck ,Cj

)

 an inner and an outer. The problem of 
finding final contour Copt between these two thus can be described as finding an intensity Ik < Iopt < Ij that 
maximizes some function fk,j of the two contours: Iopt

(

k, j
)

= argmax
(

fk,j(I)
)

The concept is visualized in Fig. 3c with inner and outer contours displayed as yellow lines. The choice of the 
function to optimize is arguably ambiguous. However, in order not to introduce any parameters we examined 
differential properties. Inflection points and maxima are typical choices in the literature. We suggest using the 
intensity at which the curvature (i.e., the second derivative f = d2

dx2
I ) is at a maximum rather than the inflection 

point (where it has a zero crossing).
To motivate this choice, we examine different models for an intensity peak by rotating a function of intensity 

around its y-axis (Fig. 3a,b). We see that it is easy to conceive a focus without any inflection points of intensity 

Figure 3.   Intensities and curvatures (not to scale) of artificial and real foci with resulting images. (a,b) Foci 
modelled by different functions in red and their second derivative in blue (not to scale). The top row represents a 
slice through the intensity along the radius and has the inflection point (magenta) and the curvature maximum 
(green) marked. These points correspond to outlines of foci depicted as circles of the same color in bottom row. 
(c) Real life example from our dataset with multiple inflection points. Yellow lines represent inner and outer 
contours of the foci candidate Ck and Cj respectively.
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(Fig. 3b). Generally, the curvature maximum outline corresponds more closely to the human perception of foci, 
while the inflection point boundary appears somewhat too tight.

In the above examples the intensity is a function of radius I(r) ; what we have though are contour outlines 
along a fixed intensity that are not circular. In order to approximate a solution, we can imagine a circular focus 
where the intensity drops linearly with the radius and the area is therefore a(I) = πr2 . We observe further that 
the area is now in a simple relation to the intensity function I(r) we are looking for:

This means we can obtain the intensity function by inverting the square root of the area function of a contour, 
which leads to a correct solution in case of a circular focus, where the intensity equals the radius or an approxima-
tion otherwise. Evaluation of areas of contours between 

(

Ck ,Cj

)

 at different intensities gives a piecewise linear 
function that can be inverted (since the area is a monotonous function) and differentiated using numerical 
methods to derive a final contour for this focus.

Figure 3c shows the result for a focus in our dataset. Note that in this case we have multiple inflection points, 
but only one absolute maximum, making the resulting contour intensity unambiguous. Furthermore, this exam-
ple demonstrates the limited influence of parameters Lmax and Lmin for determining the final foci. While they 
need to be chosen reasonably to include those points of maximum curvature, they have no significant influence 
on the choice of the final focus outline making the algorithm more stable regarding these parameters. Practi-
cally, our software also allows adjustment to the area of the generated foci by a fixed factor, if the automatically 
determined outline does not correspond to the users understanding.

Foci classification.  Having found foci as closed contour lines along the maximum curvature we end up with 
many more candidates, most of which are just perturbations of background signal rather than what human users 
would classify as bona fide foci. The choice of which candidates to count as foci and which to reject strongly 
depends on the user, as previously shown (Fig. 1b).

Typical criteria a user may intuitively use in identifying foci include a certain % of intensity above the sur-
rounding background signal, foci morphology and co-localization or proximity with other identifiable cellular 
structures. Some of these criteria are hard to quantify and due to their subjective nature only of limited reproduc-
ibility. Defining these rules for all users and cases is therefore not possible. Instead, we extract basic properties 
of the image and let a classifier algorithm deduce rules based on a labeling provided by a user.

To train an automated classifier we first extract a feature vector xi from each focus (see “Materials and meth-
ods”) yielding a dataset D =

{

xi|i = 1, ...,N
}

 . Our software allows users to simply set bounds on these features 
to generate labels li ∈ {0, 1} where 1 and 0 mean that a closed contour loop is or is not a focus respectively.

More generally such rules are a plane that partitions the feature space:

Given a manually labeled dataset we use a Support Vector Machine (SVM) to solve the problem of finding 
optimal weights w and b under the side constraint that the plane should be separating the two classes with as 
large a margin as possible. In simplified terms, a kernel SVM extends this plane of separation to a non-linear 
surface of separation. In our approach we use radial basis functions as kernels (details on hyper parameter set-
tings in the “Materials and methods”). SVMs are a powerful and flexible class of supervised algorithms that have 
been successfully applied to image and microscopy data for decades24–26. We forego the formal mathematical 
explanation and implementation details, which are well described elsewhere27.

In summary we have (1) devised a method to detect potential foci using two contour loops of minimal and 
maximal length; (2) proposed a method of finding an optimal contour within these two by approximating the 
intensity function from the area of contours; and (3) proposed the use of a SVM on various features extracted 
from these foci to automatically and rapidly label valid foci. Our software deals with all the preparatory steps 
to this point, like cell outline detection, denoising and stacking of fluorescence microscopy images (Fig. 2, Sup-
plementary videos S1–S4).

Models match their human behavior closer than other humans while generalizing towards a 
shared “ground truth”.  While human users usually classify foci from a set of self-chosen rules like “foci 
are 50% brighter than their surroundings” we have shown that they do not follow these consistently with the 
best correlations on reclassification of the same dataset being only around 80% (Fig. 1d). The result of user clas-
sification could therefore be thought of as a deterministic predictor pr plus some added random “noise” ξ . The 
term “noise “used here refers to an unexplained variability within the labeling, which is a function of human user 
variability given the dataset.

Intuitively a classifier capable of generalizing the data should primarily capture the deterministic term, leav-
ing the noise term indicative of an upper bound for the model performance. Captured in the deterministic term 
is a user’s familiarity with what a SG should look like and that which a model should capture primarily. While 
our sample size is too small to undertake a thorough statistical examination of the noise and assess performance 
boundaries for the model, our results are indicative that our model indeed removes some of this noise.

√

a(I)

π
= I−1(I(r))

li =
{

0 if wTxi + b > 0
1 else

li = prh
(

xi
)

+ ξh
(

xi|D
)
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For most users, the correlation to their model lies above the correlation to other users (Fig. 4a), which means 
that the model performs a quantification that closer matches that user versus another.

To assess the relation to noise, we compared the users and models to a random classifier (“Rnd”, see “Materi-
als and methods”). Figure 4b compares models trained on their respective user to other users and other models. 
Notably, models generally correlate closer together than to the other users (blue bars above red), regardless of 
the user they have been trained on. This suggests that models tend to generalize the deterministic term of the 
classification rather than learn the noise. In theory if the understanding of a SGs was identically defined across 
all users (like what a “Dog” or “Cat” is), then users would only differ in the noise term and all models would tend 
to generalize towards the same result. Furthermore, we observe that the correlation to the random classifier is 
lower for all models compared to the users (yellow bars below magenta). This demonstrates that model training 
reduces the noise in the classification.

Prediction of foci sizes by our algorithm sizes is often close to some users but is of limited 
use depending on image resolution.  Our goal for determining an outline for foci was to not use any 
parameters and we devised an approximative differential approach (see earlier, Fig. 3). While some users have a 
preference close to the results of HARLEY, other deviate by up to 54% (Fig. 5).

SGs in our dataset are as little as 4-5px in radius. A deviation of 1px (or 40.7 nm) therefore already constitutes 
a 25% deviation. (For data input the users worked on an upscaled image of the cell allowing for more control, 
but blurry images).

Under these considerations, the results of the size prediction are fairly close to the users with a tendency to 
overestimate the area. A further improvement is achieved by adjusting a parameter to increase or decrease all foci 
sizes by a parameter in the UI of our software (Supplementary Video S4), which in the best case corresponds to 
shifting the results in Fig. 5 upwards by their mean. Other solutions like a separate model for size prediction are 
feasible, however size of foci in absolute terms is often not informative by itself. Instead, detecting relative changes 
in foci size is more often informative, for which the problem of overestimating the size does not really matter.

A stress granule training set ≥ 15 cells achieves effective user SVM modelling.  To assess how 
quickly HARLEY can learn the SG-identifying behavior of a given user, we randomly took an increasing sub-
set of data, trained the model and evaluated its performance on the remainder of the data. In contrast to cross 
validation, the subsets are chosen randomly, and we generated 30 samples for each subset size. The subset size is 
measured in number of foci candidates with the average cell containing 13.2 candidates.

Figure 4.   Evaluation of model performance. (a) Correlation of users to the trained model (green), other 
users (red) and the random classifier (magenta). The gray bar goes from 1 to the correlation of the user with 
themself (see Fig. 1d). (b) Mean correlations of models to all other models (blue), all users (red) along with the 
correlations of this model with the random classifier (yellow) and for comparison the user’s correlation from 
panel A (magenta).
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While the performance of the model keeps increasing, a training set of 100–200 foci candidates (on average 
less than 15 cells in our standardized NaN3 dataset) is sufficient for the model to learn most users (Fig. 6). In 
practice, labelling 15 cells takes not much more than 5–10 min with our software. Training times for the SVM 
itself for such small datasets are on the magnitude of milliseconds to seconds (for determining optimal hyper 
parameters), making this approach highly practical for users with relatively consistent scoring of foci.

User F seems to be an outlier with the model learning his behavior only very slowly. We suspect that this user 
has a very high level of inconsistency in their behavior. The highest correlation with a random classifier (Fig. 4), 
lowest reproducibility of their own results (Fig. 1) and the large variance in Fig. 6 support this. Furthermore, 
this user exhibited a high propensity of choosing all available foci candidates.

Discussion
We have shown that user variability is a significant problem in scoring of somewhat ambiguous cellular foci such 
as SGs. In a group of just 7 users, variability approached fourfold, with user reproducibility of foci identifica-
tion only reaching a maximum of about 80%. This casts significant doubt on interpreting marginal differences 
in SG microscopy data generated by different labs, users and even within studies where only a single user has 
been responsible for quantification. To counteract such variability, and aid meaningful data comparisons, we 
developed HARLEY to facilitate rapid and consistent identification of yeast cell boundaries and foci using a novel 
contour-loop based approach. Our approach is much more invariant to foci shape (i.e., works equally well for 
round or elongated shapes) and deals with clumped foci in an elegant implicit fashion. We have shown that our 
data training approach can rapidly generate a model that will allow users to consistently and rapidly quantify foci 
of interest, including via a batch mode. The ability of users to reproduce their own results is indicative of model 
performance with the best results coming from users who can reproduce their own results with ~ 80% correla-
tion, which is not surprising, since human quantification inconsistencies accumulate in the training dataset. This 
greatly improves upon prior data analysis strategies for yeast SGs and PBs that we have previously described28.

Many popular software tools currently used for quantification of foci in microscopy data enable practical 
parameter-constrained solutions, that are very sensitive to a technical understanding of the interplay and influ-
ence of these parameters14 or produce poor results on noisy data. A model training-based approach solves these 
issues by asking the user to define the desired outcome rather than parameters that lead to it. Biologists are 
often familiar with software like ImageJ, that while having a diverse array of uses, may become limited for high-
throughput analysis of microscopy data, owing to a somewhat inflexible structure and the need for manual input.

Figure 5.   Foci radii determined by HARLEY typically exceed user-defined radii. 0 corresponds to equal 
sizes. Negative values correspond to an overestimation on the side of the model. Since foci are not round, radii 
correspond to circles of same area as selected foci.

Figure 6.   Model performance by size of dataset. Model hyper parameters are not optimized. Shaded areas show 
one standard deviation above and beyond the mean determined from 30 repeats for each setting.
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A chief advantage of HARLEY is a clear, UI guided process that allows users with minimal technical expertise 
to quickly create consistent and reliable quantification results. The ability to share trained models allows repro-
duction and comparison of results reported by other labs, which we hope will increase the quality of reported 
data. While we are aware that deep learning approaches may generate better results, no deep learning approach 
can be trained in milliseconds using only a small number of cells.

HARLEY’s design was focused on foci detection, quantification and co-localization analysis in S.cerevisae 
(yeast). In particular, HARLEY excels at reproducibly and efficiently distinguishing foci like stress granules, whose 
often relatively low signal to noise ratio, and frequent resistance to classification based on simple thresholding 
methods, due to cell to cell variability, makes their classification cumbersome using other existing software 
tools (e.g., Fiji, Cellprofiler). While such tools can quantify such foci (and perform many other functions), in 
our experience HARLEY is more efficient at this particular task, and more intuitive to non-expert users who are 
not required to gain detailed understanding of Fiji or Cellprofiler features, and optimal ways to combine them. 
Thus, we anticipate that HARLEY will benefit the community and encourage more biologists to use automated 
software for their quantification. In supplementary Table S1, we further highlight advantages and reasons a user 
may choose to use HARLEY.

To improve our approach for foci detection the feature space likely needs to be extended. A straightforward 
solution would be to use a feature extraction CNN to generate the feature vectors for the SVM that are most 
relevant to the user or generate extensive datasets using a variety of filters. While a SVM only needs to learn 
the equation for a separating plane in the dimension of the feature space (expressed as linear weights on data-
points, with most being irrelevant, i.e., not support vectors), CNNs require learning of weights many orders of 
magnitudes above that (with values of 105–106 being not uncommon), which increases demands on time and 
computational power significantly. While a gain on accuracy is possible, the quality of training data may be 
more problematic due to strong variability in human labeling. A reasonable trade off on accuracy and practi-
cal usability must be found with the application of these approaches. A potential gain in consistency might be 
achieved by using quantifications from multiple human labelings combined into one model, to assess a common 
denominator of what humans deem foci.

More work should be conducted to assess how well a trained model solves the task of foci detection. How-
ever, it should be stressed that comparing a model to a user baseline is somewhat limited, due to inconsistencies 
across human users. As in our case, some humans can be “learned” very well (H), while others are very hard to 
learn (F). The user “baseline” is therefore a spectrum which is not surprising, since there is no clear definition 
of what foci are. One solution is the use of standardized datasets and performance measures that the scientific 
community generally lacks. We are aiming at developing a more extensive dataset for SGs and P-bodies, as well 
as other cellular structures amenable to contour-based identification, in the future. The presented dataset (and 
others) is freely available already at https://​github.​com/​lnilya/​harley.

While our model readily learns some users the performance for others is poor, which is likely due to the 
noisiness of their classification. If a user can reproduce their own result only to a 60–80% correlation, arguably 
any generalizing model will not learn to more than this precision. While reproducibility and model performance 
show a correlation (green bars and gray area in Fig. 4a) more data is needed to estimate the variability distribution 
for a user and dataset and derive an upper bound for model performance, to thoroughly test this hypothesis. The 
results so far indicate that users should assess their own performance to determine the quality of their quantifica-
tion reproducibility, to estimate how well their trained model is expected to perform.

As previously noted, HARLEY can be readily applied to quantification of other cell types as well as other 
organelles/foci that are approximately convex in nature and do not overlap extensively. Regarding cell types, 
HARLEY can be used “as is” on other cell type, so long as the cells are elliptical in shape and their brightfield 
images resemble those in our demo images datasets (link available at https://​github.​com/​lnilya/​harley); specifi-
cally, cell edges should be detectable by the Frangi edge filter19. However, it is possible to detect cells with other 
software (or manually), and exporting the result as a binary mask image, which will allow a user to bypass the cell 
detection pipeline. As for foci detection, this is readily possible so long as the foci are quite distinct and are not 
excessively merged. Indeed, besides stress granules and P-bodies, we have readily quantified other types of foci 
in yeast, including eIF2B bodies, microtubules, nucleoli and spindle pole bodies (example files of all present in 
demo dataset at link above). In cases of high signal/low noise foci, and objects present in all cells, our threshold 
pipeline, which bypasses SVM training, should be used (Supplementary Videos S4). Future goals for HARLEY 
are to develop new types of cell and foci detection (e.g., for “clumped” shapes such as mitochondria or vacuoles) 
that we can integrate into the existing pipeline framework. In this way, we hope to maximize HARLEY usability 
amongst users as an intuitive platform for biologists working with yeast microscopy data.

Finally, since HARLEY is based on a problem agnostic pipeline-based framework that we are developing 
separately, interested researchers are strongly encouraged to reach out and participate in the development of a 
new platform for delivering simple, intuitive UIs to any algorithms that would be too complex or unwieldy as 
a plugin to existing software. The nascent platform is named SAMMIE (Scientific Algorithms Modelling and 
Mixing Interface Engine) and is also accessible via Github (https://​github.​com/​lnilya/​sammie). Since HARLEY 
is based on ReactJS, the usability, ease of development and cross platform compatibility are among its greatest 
strengths. We encourage the community to build or retrofit their algorithms into beautiful easy to understand 
tools using this framework, thus benefiting the scientific community.

Data availability
HARLEY is freely available on our Github repository(https://​github.​com/​lnilya/​harley). Standardized demon-
stration datasets of stress granules, P-bodies and other types of cellular foci (see discussion) are also available 
here. The raw unscaled images of stress granules in individual yeast cells, which were used in our human foci 
calling variability study, along with anonymized data responses of users, and the brightness distribution of this 

https://github.com/lnilya/harley
https://github.com/lnilya/harley
https://github.com/lnilya/sammie
https://github.com/lnilya/harley
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dataset, is publicly available at https://​drive.​google.​com/​file/d/​12okQ6_​vgtCL​kNKki​2zUJY​3wqqV​6psQDG/​view?​
usp=​shari​ng Extensive statistical processing and coding was conducted to generate the figures. This code, while 
requiring extensive coding expertise, is available upon request, as is the software used to gather the raw human 
variability in foci calling data.
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