
Nonadaptive Fluctuation in an Adaptive Sensory System:
Bacterial Chemoreceptor
Masatoshi Nishikawa1,2, Tatsuo Shibata1,2,3*

1 Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan, 2 CREST, Japan Science and Technology Agency, Suita,

Osaka, Japan, 3 PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan

Abstract

Background: Sensory systems often exhibit an adaptation or desensitization after a transient response, making the system
ready to receive a new signal over a wide range of backgrounds. Because of the strong influence of thermal stochastic
fluctuations on the biomolecules responsible for the adaptation, such as many membrane receptors and channels, their
response is inherently noisy, and the adaptive property is achieved as a statistical average.

Methodology/Principal Findings: Here, we study a simple kinetic model characterizing the essential aspects of these
adaptive molecular systems and show theoretically that, while such an adaptive sensory system exhibits a perfect
adaptation property on average, its temporal stochastic fluctuations are able to be sensitive to the environmental
conditions. Among the adaptive sensory systems, an extensively studied model system is the bacterial receptor responsible
for chemotaxis. The model exhibits a nonadaptive fluctuation sensitive to the environmental ligand concentration, while
perfect adaptation is achieved on average. Furthermore, we found that such nonadaptive fluctuation makes the bacterial
behavior dependent on the environmental chemoattractant concentrations, which enhances the chemotactic performance.

Conclusions/Significance: This result indicates that adaptive sensory systems can make use of such stochastic fluctuation to
carry environmental information, which is not possible by means of the average, while keeping responsive to the changing
stimulus.
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Introduction

Adaptation is a common mechanism for sensory and regulatory

systems to be responsive to a changing stimulus over a wide range

of background concentration [1]. When the sensory system is

exposed to changes in background stimulus, the system responds

by altering its activity, which is then followed by adaptation back

to its prestimulus level. This adaptive response is considered to

reset the system to be ready for a new signal and prevents

saturation of the response. However, because of this adaptation

property, the sensory system cannot carry any information about

the background. If the system could make use of such information,

yet remain responsive to the changing stimulus, it would be

advantageous.

A general and simple mechanism to achieve adaptive

response is the activity-dependent kinetics, in which a sensory

molecule is reversibly modified depending on its activity [2].

When an environmental condition changes, equilibrium be-

tween two functional states, active and inactive, immediately

shifts to generate a response in the activity of sensory molecules.

Then, the modification reaction takes place to counterbalance

the change in activity so that it returns to the prestimulus level

[3]. When the rates of modification and its reverse reactions

depend solely on its activity, the stationary activity level is

independent of the environmental conditions and exhibits

adaptation (Fig. 1). Bacterial chemotaxis is one such system in

which a methylation reaction is responsible for adaptation [2].

When a protein has two conformational states, which are

distinguishable from both active and inactive states, with the

rate of conformational change depending only on its activity,

the activity of the protein exhibits an adaptive response. Some

ion channels show such activity, having two functional states,

active and inactive, and an additional non-conducting confor-

mational state [4]. The internalization of some receptors, such

as G-protein-coupled receptors, is also responsible for the

adaptive response of the receptor activity [5].

Among sensory systems, bacterial chemotaxis is an extensively

studied system where the adaptive response plays an essential role.

The motion of a bacterium consists of a series of ‘‘runs’’, moving

smoothly, interrupted by ‘‘tumbles’’, changing its direction

randomly [6]. For a step increase in chemoattractant concentra-

tion, the tumbling frequency exhibits a transient decrease followed

by an increase up to the prestimulus level [7,8]. Such an adaptive

response is known to be generated by the bacterial chemoreceptor

complex [9]. For a sustained increase of ligand concentration with

time, the adaptive system generates a persistent shift of its activity
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from its adapted level, which suppresses the tumbling so that the

bacterium can climb the gradient [10]. In this way, the adaptive

response is essential for bacterial chemotaxis. In the biochemical

network of bacterial chemotaxis, the methylation and demethyl-

ation of chemoreceptors by enzymes CheR and CheB are

responsible for the adaptation. With a change of chemoattractant

concentration, the tumbling frequency is modulated. The covalent

modification compensates for the change in tumbling frequency. A

two-state model for the activity-dependent kinetics has been

proposed to account for the properties of this adaptive response

[2,11–14] (Figs. 1 and 2A).

Such a biochemical computation is operated by the stochastic

reactions of biomolecules, which makes signal transduction

inherently noisy [15–17]. The adaptation may be achieved on

average. However, the activity of the chemoreceptor will

inevitably exhibit temporal deviations from the adaptation level.

Korobkova et al. found that the tumbling frequency exhibited

large and relatively slow temporal fluctuations under the no

chemoattractant condition and the time duration of counterclock-

wise rotation of the flagellar motor showed a heavy-tailed

distribution away from exponential distribution [18]. Their

experimental data suggested that this large behavioral variability

was a result of the fluctuation generated in the chemoreceptor

adaptive response circuit. Emonet and Cluzel have discussed

theoretically the effect of stochastic fluctuation in the chemore-

ceptor process on the motile behavior of bacteria [19]. They

showed that under the absence of chemoattractant, the time

constant of the receptor activity increases with the increase in the

level of stochastic fluctuations, as in the case of the covalent

modification cycle [20]. They further showed that such an increase

in the time constant can contribute to increase in the velocity up

the chemoattractant gradient.

Since such a stochastic sensory system is working over a wide

range of background, the question can be asked whether the

fluctuation is an adaptive property in an adaptive sensory system,

and whether it can perform any role to sense changes in stimuli.

To answer these questions, here we first study a simple

prototypical model which unifies many adaptive systems. Based

on this model, we show theoretically that the fluctuation can be a

nonadaptive property, while the system carries out the adaptation

on average. We then perform a numerical simulation on the

detailed bacterial chemoreceptor model to verify our theoretical

result, which in fact exhibits the nonadaptive fluctuation. Such a

property of fluctuation makes the bacterial behavior dependent on

the chemoattractant ligand concentration. As a result, the

chemotactic performance can be improved.

Results and Discussion

A simple two state model of adaptive response
To study the essential properties of fluctuation in an adaptive

system and its underlying mechanism, we here study a simple two

state model that responds and adapts to a change in the

environmental conditions. In the present simplified two-state

model, each molecule is in one of the two states, active and

inactive, between which transition reactions take place. The rates

of the transition reactions are dependent on the environmental

ligand concentration. When the environmental ligand concentra-

tion is changed, the equilibrium between the two states is broken,

leading to a transient increase or decrease in the number of active

molecules, A. Such cases are often observed in sensory systems,

such as receptors, which are activated upon binding or unbinding

of ligands. For instance, in the case of bacterial chemotaxis, the

activation probability of the chemoreceptor decreases as the

increase of chemoattractant concentration. In the case of

chemotactic cells Dictyostelium, the activation probability of the

G-protein coupled receptor cAR1 (cAMP receptor) increases with

the cAMP concentration.

Adaptation occurs when modification of molecules can also

affect the equilibrium between the active and inactive states. After

a transient response to a change in stimulus, the modification or

demodification reactions occur, which shift the equilibrium

between two states to compensate for the transient response. As

a result, the number of active molecules, A, exhibits an adaptation.

The adaptation can be perfect, when the rates of modification and

demodification reactions are determined by A alone. Here, for

simplicity, we consider a single modification step. Thus, each

molecule is either modified or unmodified. The equilibrium

constant between active and inactive states is dependent on these

modification states. In the extreme case, the unmodified state,

denoted by IU, is always inactive. The modified state consists of an

active state A and inactive state IM, between which transition

reactions can take place. There are many possible kinetic schemes

for the adaptive response. Here, we consider the following simple

kinetic scheme (Fig. 1):

IM/?
ka(L)IM

ki (L)A

A

L(IU)9 ;C(A)

IU

ð1Þ

where A, IM, and IU are the number of molecules of A, IM and IU,

respectively, L is the ligand concentration, ka(L) and ki(L) are the

rate constants of the activation and deactivation reactions between

A and IM in the modified state, which are dependent on the ligand

concentration L, and L(IU) and C(A) are the rate constants of the

modification and demodification reactions, respectively. Here, for

the modification and demodification reactions, we consider the

enzymatic reaction described by the Michaelis-Menten equation,

given by L(IU)~l
IU

KmzIU

and C(A)~Vd
A

KdzA
, respectively.

Figure 1. Two-state adaptive sensory model. A schematic of the
two-state adaptive sensory model. The signaling molecule in the
modified state has active and inactive states. The transition rates
between them are dependent on ligand concentration. The activity A is
the number of active molecules, which is the output for downstream
systems. If the transition rates between the modified and unmodified
states are dependent solely on A, a perfect adaptation is achieved (see
text). In the case of a bacterial chemoreceptor, the signaling molecule is
a receptor, and the modification and demodification reactions are
catalyzed by enzymes CheR and CheB respectively.
doi:10.1371/journal.pone.0011224.g001
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We note that this mechanism requires that the system works far

from thermodynamic equilibrium.

At steady state, since the modification and demodification

reactions are balanced, we obtain C(A)~L(IU) from scheme 1.

To achieve a perfect adaptation of activity A, the modification

reaction should perform at a saturating level, IU&Km, giving

L(IU)~l [2]. As a result, the rate of modification and its reverse

reactions are dependent solely on the activity A. Under such a

Figure 2. Stochastic property of the two-state bacterial receptor model with the multiple methylation sites. A. Schematic of the two-
state bacterial chemoreceptor model. The state transitions between the active and inactive states take place with transition rates which are
dependent on the ligand concentration L. The ratio of the transition rates is also dependent on the methylation level. Inactive receptors are
methylated by CheR, whereas active receptors are demethylated by CheB. B. Stochastic response and adaptation of bacterial chemoreceptor activity.
The activity A as the number of active chemoreceptors (red) is plotted as a function of time. For step increase and decrease in chemoattractant
concentration (blue), the activity shows response and adaptation. All the rate constants used here are the same as in Ref. [24]. To perform a stochastic
simulation using Gillespie algorithm [31], we suppose the cell volume to be 0:16|10{14L so that 1nM is equivalent to one molecule per cell. C. The
dependence of activity fluctuation on the chemoattractant concentration. The relative fluctuation of activity A defined as the ratio between the
standard deviation and its mean plotted as a function of the chemoattractant concentration L.
doi:10.1371/journal.pone.0011224.g002
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condition, we obtain the equation C(A)~l at steady state. Notice

that no parameter dependent on L is included, indicating that the

steady state level of A obtained as a solution of this equation is

independent of L and the model exhibits a perfect adaptation

against changes in L.

Since the total concentration is conserved and the modification

reactions are working under the saturation condition L(IU)~l,

the reaction scheme can be reduced to

l
IM/?

kaIM

kiA

A
C(A)

ð2Þ

We consider the stochastic kinetics described by the chemical

Langevin equation [21], given by

dIM

dt
~l{kaIMzkiAz

ffiffiffi
l
p

j1(t)z
ffiffiffiffiffiffiffiffiffiffi
kaIM

p
j2(t)z

ffiffiffiffiffiffiffiffi
kiA

p
j3(t)

dA

dt
~kaIM{kiA{C(A){

ffiffiffiffiffiffiffiffiffiffi
kaIM

p
j2(t)

{
ffiffiffiffiffiffiffiffi
kiA

p
j3(t)z

ffiffiffiffiffiffiffiffiffiffi
C(A)

p
j4(t):

ð3Þ

The last three terms in each equation are noise terms because of

the stochastic occurrence of the reactions. Here, ji(t) (i~1,2,3) is

white Gaussian noise with zero mean and ji(t)jj(t’)~di,jd(t{t’).

Stochastic fluctuations of activity in adaptive systems is
not adaptive

To study whether the property of stochastic fluctuation in the

activity A is adaptive or not, we calculate the variance of A by

solving the chemical Langevin equation shown in Eq. (3), adopting

the linear noise approximation. In a steady state, the fluctuation

intensity sA
2 is given approximately by

s2
A~

k(L)zf

k(L)z1
A ð4Þ

with k(L)~ki(L)=(ka(L)zc), f~
l

cA
§1, and c~

dC(A)

dA
(see

Materials and Methods for details). Here, f is a constant, and is

regarded as a measure of the non-first order (nonlinear) degree of

the demodification reaction, given by, f~
C(A)

A
=

dC(A)

dA
§1.

Thus, from Eq.4 the fluctuation intensity sA can be dependent

on the absolute concentration L through k(L), and it is a

nonadaptive property of adaptive sensory systems. Since reactions

specific to a particular system are restricted to the form of ka and

ki, this nonadaptive property in the stochastic fluctuation is

considered as a property common to the class of models

considered here.

What property of our model makes the fluctuation of activity A
dependent on the ligand concentration L? When the demodifica-

tion reaction performs as a first order reaction, f is unity. In such a

case, according to Eq. (4), the fluctuation s2
A becomes s2

A=A~1
and is independent of L. When the inactivation reaction is not

present, k(L) vanishes and the fluctuation s2
A becomes

s2
A=A~f§1, which is also insensitive to L. Therefore, to have

nonadaptive fluctuation these two depletion pathways for the

active form A, both the inactivation and demodification reactions,

are necessary, where at least one of them should be a non-first

order reaction. As we shall see later, the major reaction to deplete

A changes from the demodification reaction to the inactivation

one with the increase of L.

Nonadaptive fluctuations in reduced activity dependent
kinetics

When the transition between active and inactive states is faster

than the modification and demodification reactions as is often

supposed, the present model can be further simplified. In the case

of a bacterial chemoreceptor, the methylation and demethylation

reactions are usually supposed to be much slower than the

activation and inactivation reactions. In the case of ion channels,

the transition between conducting and non-conducting states

involves a conformational change, which is expected to be much

slower than the transition between open and closed states. The

internalization of receptors is also a slow process compared with

the activation and inactivation reactions. In the present model, the

modified state M, which consists of active state A and inactive

modified state IM, is produced and depleted according to the

following reaction scheme,

l
M

C Að Þ
ð5Þ

When the state transition between A and IM is much faster than

the modification and demodification reactions, it can be regarded

as in equilibrium. Then the number of A is determined by the

reaction,

IM/?
kaIM

kiA

A ð6Þ

Thus, the number of A is expected to follow the binomial

distribution conditional on a given number of the molecules in

modified state M, M~IMzA. Thus, the present two state model

can be described by the chemical Langevin equation for modified

level M, given by

dM

dt
~l{C(A)zj(t) ð7Þ

with

A~
ka

kazki

Mzg(t): ð8Þ

where j(t) is the Gaussian white noise with j(t)~0 and

j(t)2~lzC(A), and g(t) is a random number of the normal

distribution with zero mean and the variance given by

kaki

(kazki)
2

M. We notice that Eqs.(7) and (8) are considered an

extension of the system level approach to an adaptive system

proposed in Ref. [22] to include the effect of stochastic

fluctuations.

By solving the chemical Langevin equation (7) with the linear noise

approximation, we obtain the variance of M as
l

c

ka

kazki

(see

Materials and Methods for details). Thus, by adding the variance of

the binomial distribution, the variance of the activity A, s2
A, is given by

s2
A~

l

c

ka

kazki

z
kaki

(kazki)
2

M

~

ki

ka
z

l

cA

ki

ka

z1

A:

ð9Þ
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Since ka and ki are dependent on the ligand concentration L, the

relative noise intensity sA=A is dependent on the absolute ligand

concentration L, indicating again that it is a nonadaptive property of

adaptive sensory systems. We note that the expression in Eq.(9) can be

obtained from Eq. (4) by assuming that the activation reaction is much

faster than the demodification reaction, i.e., ka&c.

Stochastic fluctuation is not an adaptive property of
bacterial chemoreceptor system

In the case of bacterial chemoreceptors, the modification and

demodification reactions are performed by methyltransferases

CheR and CheB, respectively. The unmethylated state is usually

assumed to be inactive [23]. For simplicity, we consider first the

case with a single methylation step. For the methylated receptors,

the forms of activation and inactivation reaction rates ka(L) and

ki(L) in scheme 2 are chosen so as to satisfy bacterial chemotaxis

where the tumbling rate decreases (increases) when the ligand

concentration increases (decreases). Thus, ka and ki are respec-

tively decreasing and increasing functions of L. We adopt

simplest forms given by ka(L)~Va(KLzxL)=(KLzL), and

ki(L)~Vi(Lzd)=(KLzL), where, Va and Vi are the maximum

velocities, KL is the dissociation constant of the ligand, and x and d
are constants with xv1 and dvKL. Even under the no

chemoattractant condition, the activation and inactivation rates

are respectively given by Va and Vid=KK , which makes A and IM

able to reach equilibrium even without the methylation and

demethylation reactions. The steady state level of A is obtained as

A~Kdl=(Vd{l), which is independent of L showing a perfect

adaptation.

We performed a stochastic simulation of scheme 2 for the case

of bacterial chemoreceptor as shown in Fig. 3A (see Materials and

Methods for the detail of the simulation method). The time course

shows that the increase (decrease) of L results in a transient

decrease (increase) of activity A and thus the tumbling frequency.

After the transient response, the stochastic time course of A
exhibits a perfect adaptation (Fig. 3A) over a range of more than

six orders of ligand concentration (Fig. 3B). The most probable

value of A perfectly adapts to the background ligand concentra-

tion. The ensemble average of A, A, deviates slightly from the

stationary value under low background, because the distribution of

A is skewed to the right (Fig. 3C inset). The modification level

M~IMzA increases with the increase of L, which is consistently

observed in the experiments of bacterial chemoreceptor reported

previously [23].

Fig. 3C shows the relative fluctuation sA=A, which is not a

constant but a decreasing function of L. As L decreases to zero,

sA=A approaches a saturation level, while sA=A is decreasing to a

lower bound level with increasing L. Thus, while the mean level of

activity is an adaptive property, the stochastic fluctuation is a

nonadaptive property sensitive to the ligand concentration.

Therefore, the stochastic activity can still bear information of the

chemoattractant ligand concentration.

In Fig. 3C, the theoretical result of stochastic fluctuation in the

two state model given by Eq.(4) is applied to the case of bacteria,

exhibiting a good agreement with the numerical result. For this

case, k(L)~Vi(Lzd)=f(Va(KLzxL)zc(KLzL)g is an increas-

ing function of L. According to Eq. (4), when the ligand

concentration L is sufficiently small, s2
A is given by

sA

�
�AA~f§1. As L increases, s2

A decreases approximately in

proportion to 1=L. Then, as L increases further, s2
A approaches

sA
2=�AA~1.

Such a decrease of the fluctuation sA with the increase of L is due

to the shift of effective depletion pathway of A from the

demodification reaction to the inactivation reaction. As the ligand

concentration decreases to L~0, the rate of the inactivation reaction

is reduced. Since in such a case the time constant of IM, given by k{1
a ,

is much smaller than that of A, given by c{1, the fluctuation in IM is

effectively averaged out and has no significant effect on the fluctuation

of A. Thus, IM can be replaced by its average. Therefore, the reaction

of the active state A is effectively reduced to be,

kaIM
A

C(A)
ð10Þ

which consists of the production reaction with the constant reaction

rate kaIM and the depletion reaction with rate C(A). According to

Ref. [16], the fluctuation strength of A at L~0 is given by s2
A~gaA,

where ga is the gain of A for the increase of the rate constant ka, i.e.,

ga~
d log A

d log ka

. For scheme 10, the gain ga is given by the nonlinear

degree f, i.e. ga~f. Thus, the fluctuation strength s2
A can be

rewritten as s2
A=A~fw1, showing that the large fluctuation at L~0

is due to the large gain ga, which is a result of the demethylation

reaction with nonlinear rate C. This scheme indicates the effective

pathways with the strongest flux under the wild type condition. We

should note that this reduced scheme does not necessarily mean that

the chemoreceptor does not undergo reversible transitions between

active and inactive states and not obey the detailed balance in the

CheB and CheR deleted mutant cells without methylation and

demethylation reactions.

For sufficiently large L, both the activation and inactivation

reaction rates, kaIM and kiA, are much larger than the

demethylation reaction rate C(A), i.e., kaIM,kiA&C(A). Thus,

in this range of L, the demethylation reaction can be neglected.

The number IM increases as the increase of L, since the

modification level increases as mentioned before. This indicates

that for sufficiently large L the fluctuation of IM relative to its

mean can be neglected due to its large concentration. It follows

that the activation reaction rate is effectively constant. Therefore,

the reaction of active state A is reduced to be:

/?
kaIM

kiA

A ð11Þ

where the distribution of A follows a Poisson distribution, which

gives sA
2~A. We also note that since the gain ga is unity for this

scheme, the fluctuation intensity is given by s2
A=A~ga~1. Thus,

the decrease of the nonlinear demodification reaction rate relative

to the activation and inactivation reaction rates is essential for the

decrease of the fluctuation intensity of A as the ligand

concentration increases.

We should notice that the present result of nonadaptive

fluctuation does not depend strongly on the several parameter

values. As shown in Fig. 3D, even when the maximum rates Va

and Vi of activation and inativation reactions were increased or

decreased ten times, the dependence of fluctuation on the ligand

concentration was almost unchanged. Therefore, our result is

applicable to the case when the transitions between active and

inactive states are not fast processes and are considered to be away

from equilibrium.

Note that the transition rates should be fast enough, otherwise s2
A

cannot decrease when the ligand concentration is high (Fig. 3D red

line). We also studied the dependence of the nonadaptive property in

the activity fluctuation on the ligand-independent inactivation

reaction, which is characterized by d in ki(L). Such a ligand-

independent inactivation reaction is expected for the case of bacterial

Nonadaption in Adaptive System
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chemotaxis. To obtain sufficiently strong response and to satisfy the

bacterial chemotaxis (see below), d should be much smaller than KL

in ki(L). In the present case, we set KL~1. Thus, we have d%1. As

shown in Fig. 3E, the nonadaptive property in the activity fluctuation

is not strongly dependent on the parameter d.

In the present case, the variance s2
A is a decreasing function of L

since k(L) is an increasing function. This property of k(L) is

required to satisfy the bacterial chemotaxis where the tumbling

rate decreases when the ligand concentration increases. If k(L) is a

decreasing function of L, which is expected for a chemorepellent

[8], the variance s2
A can be an increasing function. Therefore, the

behavioral fluctuation of bacterial chemotaxis is dependent on the

properties of the biochemical network.

The same result can be obtained in the detailed bacterial

chemoreceptor model, in which multiple methylation sites are

considered [24] (Fig. 2A). As shown in Fig. 2B, the stochastic time

course of activity exhibits adaptive responses to the steplike changes in

the chemoattractant concentration. However, the fluctuation inten-

sity shown in Fig. 2C indicates clearly its ligand dependence, which is

a decreasing function of the ligand concentration as is obtained in the

simple two state model. Moreover, the parameter dependence of the

fluctuation property is essentially the same in both models. From Eq.

4, the increase of Vd results in a decrease of the fluctuation intensity

when L%1 as shown in Fig. 4A. Since Vd is the maximum reaction

rate constant of the demodification reaction, it is equivalent to the

increase of CheB concentration. Fig. 4B shows the ligand dependence

of the fluctuation intensity in the detailed model. One finding, that an

increase of CheB concentration results in a decrease of the ligand

dependence and the reduction of the fluctuation intensity, shows

good agreement with our theoretical result. Note that a five-fold

increase of CheB concentration is sufficient for the fluctuation

intensity to approach the Poissonian fluctuation, s2
A=A~1. There-

fore, our analysis extracts an essential feature of adaptive sensory

systems, irrespective of the detailed aspects of the chemoreceptor

reactions.

Behavioral variability is dependent on ligand
concentration

The above result indicates that bacterial behavior can exhibit a

ligand dependence in its behavioral fluctuation, which is

compatible with the property of adaptation. We study first the

dependence of bacterial behavior on the chemoattractant

concentration under spatially homogeneous conditions.

Figure 3. Stochastic property of the two-state bacterial sensory model. A. Stochastic response and adaptation obtained by scheme 2. The
activity A is plotted as a function of time. For step increase and decrease in ligand concentration (blue line), the activity shows the response and
adaptation. The time series obtained by the corresponding kinetic equation without the noise term is shown by the green line. B. Adaptation of
activity A. The ensemble average of A, A(|), and the most probable value of A(z), obtained by the stochastic simulation are plotted as functions of
the ligand concentration. The activity A� obtained by the kinetic equation without the noise term (green line) is also depicted. The deviation between
A and A� is due to the nonlinearity of the demodification reaction. The theoretical result including the nonlinear effect is also shown (red line, see
Materials and Methods). C. The dependence of activity fluctuation on the ligand concentration. The relative fluctuations of activity A, sA=A, obtained
by stochastic simulation are plotted as functions of chemoattractant concentration L for scheme 2(z), without the inactivation reaction with
ki~0(|), and without the nonlinear effect in which C(A)~A( � ). The respective theoretical lines are also plotted. Inset: The distributions of activity
A for several ligand concentrations. D. The effect of the activation and inactivation reaction rates, Va and Vi , on the nonadaptive fluctuation. The
fluctuation strength s2

A is calculated according to Eq. (4) for each Va and Vi . The other parameter values are the same as indicated in Materials and
Methods. E. The effect of the ligand independent inactivation reaction, d, on the nonadaptive fluctuation. For each value of d as indicated in the
figure, the fluctuation strength s2

A is calculated according to Eq. (4).
doi:10.1371/journal.pone.0011224.g003
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Following the previous studies [25,26], we extended our model

to include motile machinery, the flagellar motor, which stochas-

tically switches between the two states, ‘‘run’’ and ‘‘tumble’’ with

transition rates kT (t)~k0
T exp aT dA(t)ð Þ from run to tumble and

kR(t)~k0
R exp aRdA(t)ð Þ from tumble to run (see Materials and

Methods). Here, dA(t) denotes the deviation of A from the steady

state value, and k0
T , k0

R, aT and aR are constant parameters. Thus,

the transition rates can be time-dependent. If the fluctuation of

activity is small enough to be ignored, the transition rates kT and

kR are constants and the run and tumble durations follow

exponential distributions. This simple model can reproduce the

switching behavior of the mutant cell, which expresses the

constitutive active form of CheY [18]. For this mutant cell, the

switching rates of rotation were decoupled from the receptor

activity, showing that CCW duration, which is equivalent to the

‘‘run’’ state, was exponentially distributed. However, large

fluctuations generated in the adaptation reaction can propagate

to the motile machinery with ultrasensitivity [27], where it is

amplified. Such fluctuations may affect the run and tumble

duration distributions. In fact, when the chemoattractant is absent,

the run duration exhibits a heavy-tailed distribution, where the

probability to have a longer run duration is not bounded by an

exponential distribution (Fig. 5 0) [18,26]. Correlated with the

decrease in the fluctuation of activity as the ligand concentration

increases (Fig. 3C), such behavioral fluctuation is reduced and

approaches an exponential distribution at high chemoattractant

concentration (Fig. 5 + and œ). Thus, the run duration is changed

from a heavy-tailed distribution to an exponential one as the

chemoattractant concentration increases.

The distribution of durations of counterclockwise (CCW) and

clockwise (CW) rotations has been measured in the absence of

chemoattractant [18]. The CCW and CW rotations correspond to

run and tumble, respectively. The duration of CCW rotation was

found to obey the heavy-tailed distribution, whereas CW duration

was distributed exponentially. This experiment suggested that the

temporal fluctuation generated at the chemoreceptor propagates

to the motor, leading to the run duration being distorted from an

exponential distribution. We also note that the earlier experiment

by Block et al. demonstrated that in the presence of chemoat-

tractant, the CCW duration was distributed exponentially [10].

The amount of ligand in their experiment was comparable to the

dissociation constant of chemoreceptor. Our result above could

consistently explain the apparent discrepancy between the two

experiments, by considering the dependences of fluctuation on the

ligand concentration.

Chemotactic performance can be enhanced by
fluctuations

Such dependence of the run length distribution on the ligand

concentration would enable the bacterial motility to depend on the

chemoattractant level, even though the sensory system exhibits the

property of perfect adaptation.

In particular, the heavy-tailed distribution of run length could

give rise to a motility spreading in an area larger than the motion

of an ordinary random walk. Thus, higher mobility would be

Figure 4. The fluctuation strength of the activity in our simple two-state model and the detailed model shown in Fig. 2. A: In our
simple two-state model, the fluctuation strength of the activity and its ligand dependence decrease with the increase of Vd . B: In the detailed model,
an increase of CheB concentration results in a decrease of the fluctuation intensity of the activity and its ligand dependence.
doi:10.1371/journal.pone.0011224.g004

Figure 5. Probability distribution of run duration under the
uniform background ligand concentrations. Run durations are
measured for L~0(0), 10(+), and 1000(œ). Inset: Logarithmic view of
the identical plot.
doi:10.1371/journal.pone.0011224.g005
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expected when the environmental ligand concentration is low. The

mobility of bacteria in a uniform chemoattractant concentration

can be characterized by the mean square displacement (MSD)

(Fig. 6), calculated as s2
r (t)~D~rr(t){~rr(0)D2, where~rr(t) is the position

at time t. The MSD s2
r (t) is the variance of the distribution of

bacteria at time t starting from the same position at t~0, which

increases linearly for sufficiently long time scales tw100 as

s2
r (t)~4Dt, where D is the effective diffusion constant. The result

shows that D is larger in the absence of ligand and decreases as L
increases. Such a dependence of motility on the ligand

concentration is a consequence of the fluctuation in the adaptation

reaction that is dependent on the chemoattractant concentration.

Considering a ‘‘noiseless cell’’ in which the activity A does not

contain intrinsic fluctuations, the effective diffusion constant D of

such a noiseless cell is constant without dependence on L. The

high motility of the wild-type cells in a low concentration regime is

also seen in the directional persistence of cell migration, P, defined

as the ratio between the net displacement equivalent to sr(t) and

the total length of the motional trajectory in an interval t. The

persistence P is a decreasing function of time t. As shown in Fig. 6

inset, the more ligand concentration increases, the faster

persistence P falls with time. Therefore, for low ligand

concentrations, the bacteria can spread into a wider area within

a short time scale.

Under the chemoattractant gradient a bacterium exhibits a

directional motion, which can be quantified by the net velocity V
for relatively short periods of time [28,29] (see Materials and

Methods). V shows a linear dependence on the steepness of

chemoattractant gradient (Fig. 7A). For low background concen-

tration, the velocity of the wild-type cell Vwt is larger than that of

the noiseless cell, Vnoiseless, indicating that the fluctuation improves

the chemotactic performance. For a high background concentra-

tion, Vwt is smaller than Vnoiseless. The ratio Rv~Vwt=Vnoiseless

shown in Fig. 7B indicates that the enhancement of chemotactic

performance is prominent when the background concentration is

low and the gradient is shallow. While the fluctuation in the

sensory apparatus may disturb the ability of gradient sensing as

noise, our result reveals the opposite role in chemotaxis.

Particularly in the low concentration regime, bacteria search for

a chemoattractant in a wider area. Once they reach a shallow

gradient, they climb up quickly.

To clarify the reason for this increase, we investigated several

mutants. We first studied mutant I, which has the modification

and demodification rates, l and Vd , that are 10 times faster than

those rates of the wild-type cell. The activity A of this mutant

has a correlation time of fluctuation that is faster than that of the

wild-type cell. In mutant I, the fluctuation intensities of the

switching rates of the motility, kR and kT , become smaller,

resulting in the disappearance of the tail in the run length

distribution despite the large activity fluctuation. To study the

effect of the stochastic fluctuation of activity, we also

investigated the noiseless cell of the mutant I. In Fig. 8A, we

plot the ratio between the velocity VI of the mutant I and the

velocity VI,noiseless of its noiseless cell, i.e., Rv~VI=VI,noiseless. The

ratio is less than unity, indicating that the performance is not

improved by the stochastic fluctuation of A in mutant I. Next

we studied another mutant II, in which the inactivation

pathway is deleted (see Fig. 3C green). Mutant II shows a large

fluctuation and a heavy-tailed distribution of run length

irrespective of the environmental ligand concentration. We also

investigated the corresponding noiseless mutant. As shown in

Fig. 8B, the ratio between the velocities of mutant II,

Rv~VII=VII,noiseless, is larger than that of the wild-type cell for

any background concentration of Ls unless the ligand gradient is

quite steep +L~0:1. These results indicate that the increase in

the velocity V is mainly the consequence of the heavy-tailed

distribution of run length.

Bacteria spread with time, even from a source of chemoat-

tractant, because of the biased random walk. To quantify the

degree of spreading with time, we measured the temporal change

of s2
r (t) for the bacterial population put on the tip of the

exponential gradient for various value of steepness and concen-

trations at the tip. To compare s2
r (t) of the wild-type, s2

r,WT, with

that of the noiseless cell, s2
r,noiseless, we introduce their time

averaged ratio Rs~s2
r,WT=s2

r,noiseless. As shown in Fig. 9B, Rs is a

decreasing function of the background concentration. Therefore,

whereas the fluctuation of the adaptation reaction enhances the

spread of bacteria from an area of low chemoattractant

concentration, in a high concentration area the spreading to

weaken aggregation is not increased.

The above results indicate that the stochastic fluctuation of

the sensory system does not reduce the chemotactic perfor-

mance in most situations. In particular, under the low

background concentration, the large fluctuation of the sensory

system leads to increasing the cell motility and chemotactic

speed. We should note that to study the increase of the

chemotactic performance, the cell with stochastic sensory system

(wild type) was compared with the cell with the sensory system

without stochasticity (noseless cell). The time constants and the

response sensitivity are the same between these two types of

cells. Thus, the increase in the chemotactic performance is

purely the consequence of the effect of noise, but is not the effect

of the increase in time constant as in the case of Emonet and

Cluzel [19]. When reaching a high concentration area, bacteria

suppress spreading by decreasing the stochastic fluctuations of

the chemoreceptor circuit. Consequently, a bacterial population

achieves higher aggregation performance toward the chemoat-

tractant by switching its behavior depending on the chemoat-

tractant concentration.

Figure 6. Mean Square Displacements for the bacterial motility.
MSDs are plotted as functions of time t for L~0(0), 10(+), and 1000(œ).
At the long time scale, tw100, bacterial motion is regarded as a random
walk, with linear dependence on time. Inset: Persistence of the bacterial
motion plotted as functions of time t. The persistence is unity for a short
time, indicating that the motion is ballistic, then, it decays in proportion
to t{0:5 . The broken line is proportional to t{0:5 .
doi:10.1371/journal.pone.0011224.g006

Nonadaption in Adaptive System

PLoS ONE | www.plosone.org 8 June 2010 | Volume 5 | Issue 6 | e11224



Conclusion
In the present paper, we studied the stochastic nature of the

adaptive sensory systems, such as ion channels, and membrane

receptors. While the activity shows adaptation on average, its

temporal fluctuation is a nonadaptive property, which is sensitive

to the environmental ligand concentration. The ligand depen-

dence is revealed when there exist two depletion pathway of the

activity, one of which exhibits a non-first order property (Fig. 10).

Since our analysis is performed in a simple prototypic model, the

nonadaptive fluctuation is a property common to the adaptive

systems studied here. In the present paper, we further analyzed

the bacterial chemoreceptor, which is the best studied adaptive

sensory system. We have shown that the nonadaptive fluctuation

influences the motile property through the switching reaction of

the flagellar motor, resulting in the behavioral fluctuation being

dependent on the background ligand concentration. The ligand

dependence of bacterial behavior influences cell motility under

uniform environment, which increases the chemotactic perfor-

mance. Therefore, the nonadaptive fluctuation can carry

information of the environmental ligand concentration. By

altering the behavior depending on the fluctuation intensity of

the sensory system, the cell can adaptively change its behavior to

suit the environmental conditions. Our result indicates a possible

function of stochastic fluctuation in that it can transmit

information downstream, even though this cannot be done by

its average.

Figure 7. Short term velocity along the chemical gradient. A. Relationship between short term velocity and the gradient. Open circles
represent Vwt for the wild-type, and closed circles for the noiseless cell, Vnoiseless. V is measured for Ls~0:01 (red) and 10 (blue). B. Rv , the normalized
velocity of Vwt by Vnoiseless, is plotted against the Ls, the ligand concentration at the starting point.
doi:10.1371/journal.pone.0011224.g007

Figure 8. The ratio Rv between the velocities of mutant I (A) and mutant II (B) and their noiseless cells plotted as functions of ligand
concentration L.
doi:10.1371/journal.pone.0011224.g008
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Materials and Methods

Derivation of fluctuation strength in the two state model
To derive Eq. (4), we consider the chemical Langevin equation

for scheme 2, given by Eq. (3). The concentrations IM and A can

be written as

A~A�za(t) ð12Þ

IM~I�MziM(t) ð13Þ

where A� and I�M are the steady state solution without noise, and

a(t) and iM(t) are the time dependent deviations about A� and I�M.

To obtain the variance s2
a of A, we performed the linear noise

approximation, which gives the equation,

d

dt
~xx~K~xxz~jj(t), ð14Þ

where ~xx~t iM tð Þ,a tð Þð Þ, K is the linear regression matrix given by

K~
{ka ki

ka {c{ki

� �
, with c~

dC(A�)

dA
, ð15Þ

and~jj(t)~t(ji(t),ja(t)) is the white Gaussian noise with zero mean

and t~jj(t)~jj(t’)~Dd(t{t’) with

D~
lzkaI�MzkiA

� {kaI�M{kiA
�

{kaI�M{kiA
� kaI�MzkiA

�z C(A�)

� �
: ð16Þ

Using the relation Ks2zt(Ks2)zD~0 with the covariance

matrix s2~t~xx:~xx, we obtain

i2
M

a2

a:iM

0
BB@

1
CCA~

1

c(kazkizc)

c(lzkiA
�)(kazc)zkil(kizc)f g=ka

kicA�zl(kazc)

ki(l{cA�)

0
BB@

1
CCA

ð17Þ

Figure 9. Mobility from the chemoattractant source. A: The mean square displacement, s2
r , in the presence of the chemical gradient,

L(x)~L0exp({x=dc). s2
r,WT are shown by solid lines, and s2

r,noiseless by broken lines. The individual bacterium starts to swim in a one dimensional field
from the higher end of the gradient, x~0. B: Time averaged ratio Rs against the background concentration for various value of steepness. MSDs are
averaged for 0vTv1000, which is long enough to capture the bacterial long term behavior.
doi:10.1371/journal.pone.0011224.g009

Figure 10. Schematic diagram of the adaptation motif with
nonadaptive fluctuations. The motif consists of a set of chemical
species. In the figure, only molecule A is shown. All the reaction paths
are drawn in thick line. The output is the number of molecules of A,
which is activity of the motif. The input signal modulates the activity
through the activation and inactivation reaction rates. The influx is the
supply reaction for the motif, whereas the efflux is the depletion
reactions from it. The efflux reaction is typically the enzymatic reaction,
which generate a larger fluctuation. When the efflux is dependent only
on the activity, and both the influx and efflux are independent of other
molecules, the activity exhibits a perfect adaptation at steady state. For
the nonadaptive fluctuation, at least two depletion pathways are
necessary for molecule A. One pathway in the motif should be
dependent on the input, and one must be a nonlinear reaction.
doi:10.1371/journal.pone.0011224.g010
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Introducing new variables, k~
ki

kazc
and f~

l

cA�
, we obtain Eq.

(4).

Fluctuation strength in the reduced activity dependent
kinetic model

The linearized equation of Eq. (7) with linear noise approx-

imation is

dm

dt
~{caz

ffiffiffiffiffi
2l
p

jm ð18Þ

where, m~M{M�. Under the equilibrium condition between A

and IM, the fluctuation strength of m, s2
M , is given,

s2
M~

l

c

kazki

ka

: ð19Þ

With Eq. (8), we have Eq. (9).

Simulation of the receptor sensory reactions
The stochastic simulation of scheme 2 is performed by t-leap

algorithm [30], which approximately simulates the stochastic

dynamics of the chemical reactions in discrete time steps. For the

numerical simulation of noiseless cell, we calculated the ordinary

differential equations, where the noise terms are omitted in Eq. (3),

with the Euler method.

The response and adaptation times of the sensory system of

bacterial chemotaxis are respectively *0:1 s and *10 s for a

small step increase of chemoattractant [8]. We determined the

reaction parameters to reproduce these time constants. In the

model given by scheme 2, the response time tr and adaptation

time ta are approximately given by

tr~
2

kazkizcz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(kazkizc)2{4kac

q ð20Þ

ta~
2

kazkizc{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(kazkizc)2{4kac

q : ð21Þ

In the case of Vd~110,l~100,Kd~10,Va~Vi~10,d~x~0,

and KL~1, we obtained tr&0:1s and ta&10s for the low

background Lv1, which is consistent with the above time

constants.

The effect of nonlinearity on average activity
We notice that the statistical average �AA is larger than the

solution of the kinetic equation without the noise term, A�,
particularly for a low background ligand concentration, as shown

in Fig. 3B. The deviation is also found in the fluctuation intensity

as shown in Fig. 3C, where the estimated variance given in Eq. (4)

is smaller than the variance obtained by numerical simulations.

These deviations are due to the nonlinearity of the demodification

reaction. From Eq. (12), the statistical average of A at steady state

is given by �AA~A�z�aa with A�~
Kdl

Vd{l
. The average �AA can be

obtained by solving the equation,

l~V (Kd=Az1){1: ð22Þ

By performing a Taylor expansion at A~A� up to the second

order of a, we have

l

V
~

1

Kd=A�z1
z

Kd=A�

(Kd=A�z1)2
A�{1�aa{

Kd=A�

(Kd=A�z1)3
A�{2a2: ð23Þ

Note that a2 increases in proportion to the increase of A�. Thus,

we expand �aa and a2 as a series of A� as �aa~A�
1=2

�aa0z�aa1z � � � and

a2~A�a2
0za2

1z � � �. By equating the terms in each power of A�

in Eq. (23), we have �aa0~0, and �aa1~
a2

0

Kd=A�z1
. Thus, the steady

state value up to the zeroth order of A� is given by,

�AA~A�z
1

Kd=A�z1

kzf

kz1
, ð24Þ

which shows good agreement with the numerical result shown in

Fig. 3B.

Model of bacterial motility
The motion of a bacterium consists of ‘‘run’’ and ‘‘tumble’’.

Between these two states, we consider stochastic transitions as

Run (CCW)/?
kT (A)

kR(A)

Tumble (CW): ð25Þ

where kT (A) and kR(A) are the activity-dependent switching rates

as shown in the text [25,26]. The parameter values that we used in

the simulation were k0
T~0:7{1½s{1�, k0

R~0:3{1½s{1�, aT~0:08,

and aR~{0:08=7. The combination of aT and aR determines the

dependence of the fraction of CW state in time on the activity A.

The parameter values of aT and aR were chosen to reproduce the

reported experimental result [27]. The value of aR was chosen to

have an exponential distribution for the tumbling duration even in

the absence of ligand, as was reported in Ref. [18]. For each state

of ‘‘run’’ and ‘‘tumble’’ motions, bacteria are considered to show a

rotational Brownian motion with respective constant speeds, vR

and vT . The direction of motion in a two dimensional space, h(t),

follows a stochastic differential equation given by
dh(t)

dt
~sw(t)j(t),

where j(t) is a white Gaussian noise with j(t)~0 and

j(t)j(t)~d(t{t’), and sw(t) is the strength of noise with w(t)

indicating the state of motion, i.e., w(t)~ ‘‘r’’ and ‘‘t’’ for ‘‘run’’

and ‘‘tumble’’ motions, respectively. In the present paper, we use

vr~10, vt~0, sr~
p

6
½rad:s{0:5�, and st~

ffiffiffiffiffi
10
p

p

2
½rad:s{0:5�. For

the stochastic simulation of bacterial motility, we used the t-leap

algorithm for the receptor reactions and motor switching, and the

Euler-Maruyama method for the bacterial movement in the same

discrete time step.

Measurement of chemotactic performance
The short term velocity, V, under the chemoattractant gradient

[28] is given by

V~�ttu{�ttd

�ttuz�ttd

V ð26Þ

where �ttu represents the mean duration of successive run and

tumble intervals for upward motion, starting at a given position

and �ttd for downward motion. Multiplying by the swimming
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velocity V , V represents the averaged upward velocity along the

chemical gradient between two tumbling motions. V is measured

in the presence of the linear gradient, L(x)~+LxzLs, where +L,

x and Ls denote the chemical gradient, the position of a

bacterium, and the ligand concentration at starting point, x~0.

At t~0, cells are adapted to the ligand concentration, L0, and

start to move along or against the gradient.

To obtain s2
r (t) in the presence of the chemical gradient, the

bacterial population is placed at the top of the gradient. As the

initial condition, the receptor activity reaches the steady state at

the concentration of the top of the gradient. s2
r (t) is calculated

from the bacterial population, which consists of 105 cells. There

exists a reflective wall at x~0, prohibiting the bacterium from

going across the boundary x~0. This boundary condition is

equivalent to the ligand distribution spreading exponentially on

both positive and negative sides of x~0.
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