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Sulforaphane (SFN), a compound derived from cruciferous vegetables that has been shown to be safe and nontoxic, with minimal/
no side effects, has been extensively studied due to its numerous bioactivities, such as anticancer and antioxidant activities. SFN
exerts its anticancer effects by modulating key signaling pathways and genes involved in the induction of apoptosis, cell cycle
arrest, and inhibition of angiogenesis. SFN also upregulates a series of cytoprotective genes by activating nuclear factor
erythroid-2- (NF-E2-) related factor 2 (Nrf2), a critical transcription factor activated in response to oxidative stress; Nrf2
activation is also involved in the cancer-preventive effects of SFN. Accumulating evidence supports that epigenetic modification
is an important factor in carcinogenesis and cancer progression, as epigenetic alterations often contribute to the inhibition of
tumor-suppressor genes and the activation of oncogenes, which enables cells to acquire cancer-promoting properties. Studies on
the mechanisms underlying the anticancer effects of SFN have shown that SFN can reverse such epigenetic alterations in cancers
by targeting DNA methyltransferases (DNMTs), histone deacetyltransferases (HDACs), and noncoding RNAs. Therefore, in this
review, we will discuss the anticancer activities of SFN and its mechanisms, with a particular emphasis on epigenetic
modifications, including epigenetic reactivation of Nrf2.

1. Introduction

Numerous studies have suggested that high dietary intake of
cruciferous vegetables is correlated with a low risk of cancer
[1]. The anticancer activity of cruciferous vegetables has been
mainly attributed to isothiocyanates, which are a product of
myrosinase-mediated glucosinolate degradation. Sulforaph-
ane (SFN) is a naturally occurring isothiocyanate derived
from the consumption of cruciferous vegetables, such as
broccoli, cabbage, and kale. Because of its efficacy, safety,
nontoxicity, lack of side effects, and low cost, bioactive SFN
is widely recognized as a promising chemopreventive agent
with effects against many kinds of cancers, such as cervical
[2], breast [3], and bladder cancer [4]; renal cell carcinoma
(RCC) [5]; non-small-cell lung cancer (NSCLC) [6]; and
colon and prostate cancers [7]. SFN has also been reported

to improve the efficacy of low-dose cisplatin (CDDP), a
commonly used chemotherapeutic drug [8].

Studies on the mechanisms underlying the anticancer
activities of SFN indicate that its regulatory effects on the
tumor cell cycle, apoptosis, and angiogenesis are mediated
by modulation of the related signaling pathways and genes.
Cell cycle analysis showed that SFN caused G2/M phase
arrest leading to inhibition of tumor proliferation/growth,
which was associated with downregulation of cyclin B1 [2]
and cyclin D1 genes [9], as well as increased protein levels
of p21WAF1/CIP1 (an inhibitor of cyclin-dependent kinases)
[9]. SFN also increased the expression of the proapoptotic
protein Bax and decreased expression of the antiapoptotic
protein Bcl-x to induce apoptosis in cancer cells [10]. By
suppressing the expression and activity of hypoxia inducible
factor-1α (HIF-1α) and vascular endothelial growth factor
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(VEGF), SFN inhibited the angiogenesis and metastasis of
ovarian and colon cancers [11, 12].

SFN was also reported to be a strong activator of
nuclear factor erythroid-2 (NF-E2-) related factor 2
(Nrf2). It is well known that long-term exposure to oxida-
tive stress is an important carcinogenesis-promoting factor
that induces DNA damage, mutations, and inflammation
[13]. Nrf2 is a critical transcription factor in the antioxi-
dant stress response. Activation of Nrf2 by SFN induced
the expression of a battery of cytoprotective genes with
anticarcinogenesis activities [14–16]. Those Nrf2-mediated
cytoprotective genes include the antioxidants and phase
II enzymes, such as NAD(P)H:quinone oxidoreductase-1
(NQO1), heme oxygenase 1 (HO-1), catalase, glutamate-
cysteine ligase (GCL), glutathione S transferase (GST),
UDP-glucuronosyltransferases (UGT), epoxide hydrolase,
and superoxide dismutase (SOD). A number of studies
revealed that the effects of SFN on Nrf2 and its downstream
cytoprotective genes are through modification of Keap1
cysteine residues [17]; activation of mitogen-activated
protein kinase (MAPK), phosphatidylinositol 3-kinase
(PI3K), and protein kinase C (PKC) pathways; and epigenetic
modifications, which resulted in the phosphorylation,
nuclear accumulation, and increased transcription and
stability of Nrf2 [18–21].

In recent years, the epigenetic mechanisms underlying
the anticancer effects of SFN have received increasing atten-
tion [22]. Epigenetic modification refers to the heritable
changes in gene expression that do not affect the DNA
sequence itself. In mammals, epigenetic modifications
mainly include DNA methylation, histone modifications
(acetylation, phosphorylation, and methylation), and non-
coding RNA regulation. Epigenetic changes are reversible
and can readily respond to natural bioactive dietary com-
pounds [23], such as SFN. SFN was shown to regulate the
gene activation or silencing involved in cancer through
epigenetic modifications [22]. Therefore, in this review, we
present the anticancer activities of SFN and its epigenetic
mechanisms, including epigenetic reactivation of Nrf2. This
information will help facilitate the discovery and develop-
ment of novel anticancer drugs.

2. Epigenetics and Cancer

In the classic view, cancer results from genetic alterations
including mutations, insertions, deletions, copy number
gains, recombination, genomic instability, and single-
nucleotide polymorphisms (SNPs) [24, 25]. The mutations
of tumor suppressor genes and/or oncogenes contribute to
the loss of normal function or gain of abnormal expression
in cancers. For example, mutations of tumor suppressors of
P53 and PTEN (phosphatase and tensin homolog deleted
on chromosome ten) or BRCA 1/2 (crucial proteins involved
in homologous recombination) were associated with colorec-
tal [26–28], breast, and ovarian cancer [29, 30]. In addition,
TP53 and CTNNB1 (encoding β-catenin) exhibited point
mutations and small deletions in hepatocellular carcinoma
[31]. However, emerging evidence indicates that cancer can
occur without a change in the nucleotide sequence, through

so-called epigenetic alterations. In fact, a combinational
crosstalk between genetic and epigenetic alterations has been
observed in cancer development, progression, and recurrence
[32]. Both gene mutations and epigenetic alterations can be
caused by exposure to various environmental factors, such
as dietary components, smoke, and chemicals.

Epigenetic dysregulation, such as increased activity of
histone deacetyltransferases (HDACs) and DNA methyl-
transferases (DNMTs) and changes in noncoding RNA
expression, may lead to alterations in the transcription
and expression of genes involved in the regulation of cell
proliferation and differentiation, cell cycle, and apoptosis
[32–37]. The present studies indicated that the level of
HDAC5 expression was increased in human glioma and
hepatocellular carcinoma, which promoted the proliferation
of tumor cells via upregulating Six 1 (Sineoculis homeobox
homolog 1) and Notch 1, respectively [38, 39]. A combina-
tion of HDAC and DNMT inhibitors contributed to cell cycle
arrest in the G2/M phase and suppressed the growth of endo-
metrial cancer through downregulation of Bcl-2 [37]. There
are also multiple studies on miRNAs involved in regulating
cell activities. For example, the upregulation of miR-96 and
miR-153 promoted proliferation and colony formation of
human prostate cancer cells [35, 36]. Evidence suggests that
half of the tumor-suppressor genes are often inactivated via
epigenetic, rather than genetic, mechanisms in sporadic
cancers [23]. In addition, alterations in epigenetic processes
mostly activate oncogenes, which enable cells to acquire
cancer-promoting properties, such as uncontrolled prolifera-
tion, escape from apoptosis, and invasiveness. Accumulating
evidence has suggested that targeting epigenetic modifica-
tions is a potent strategy for cancer prevention [23].

3. Epigenetic Mechanisms Underlying the
Preventive Effects of SFN on Cancer

3.1. Histone Acetylation and Phosphorylation.Histone acetyl-
transferase (HAT) acetylates histones by adding acetyl
groups to lysine residues in the N-terminal tail; this facilitates
gene transcription by relaxing the chromatin structure to
allow the transcription machinery to access the DNA.
Conversely, HDACs repress transcription by removing acetyl
groups. Many malignant neoplasms are characterized by
increased expression and activity of HDACs. HDAC overex-
pression and overactivity are closely associated with tran-
scriptional repression of the tumor-suppressor genes that
are responsible for dysregulation of cell cycle, proliferation,
differentiation, and apoptosis in malignances [23, 40, 41].

The food-based compound SFN, which is considered to
be a HDAC inhibitor, has been shown to exert cancer pre-
ventive effects [22, 40, 41]. Treatment of various cancers,
such as prostate [42], colon [43], and lung cancer [44], with
SFN attenuated cell growth through inhibition of HDACs,
accompanied by an increase in global or local histone
acetylation. Moreover, SFN-mediated inhibition of HDACs
contributed to reactivation of the tumor suppressor gene
p21 and the proapoptotic protein Bax. In the LnCaP and
PC-3 prostate cancer cell lines, 15μM SFN treatment caused
reexpression of p21WAF1/CIP1 due to reduced expression of
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class I and II HDACs and subsequent increases in acetylated
histone H3 and H4 levels at the p21WAF1/CIP1 promoter,
which resulted in cell cycle arrest [42]. Interestingly, SFN also
upregulated transcription of the Bax gene to induce apopto-
sis in prostate cancer cells by accelerating acetylation of
histone H4 at the Bax promoter [45]. Similar changes in
p21 and Bax reactivation, resulting from inhibition of
HDACs and upregulation of acetylated histone H3 and H4,
were observed in SFN-treated lung cancer cell lines and
tumor tissues [44]. Ultimately, SFN with different concentra-
tions (in vitro 15μM, in vivo 9mM/mice/day) suppressed
lung cancer growth in vitro and in vivo [44].

Additionally, HDACs can affect DNA damage and repair
by altering the acetylation status of c-terminal-binding
protein interacting protein (CtIP), a critical DNA repair pro-
tein [46]. In human colon cancer cells, coincident with inhi-
bition of HDAC3 activity, SFN induced DNA damage and
cell apoptosis via upregulation of CtIP acetylation and its
subsequent degradation [43]. However, evidence for a direct
interaction between HDACs and CtIP is lacking.

Inhibitory effects of SFN on HDACs were also observed
in vivo [44, 47, 48]. In these studies, ingestion of SFN reduced
the volume of prostate, breast, and lung tumors, accompa-
nied by enhanced global histone acetylation and reduced
HDAC activity [44, 47]. In human subjects, consumption of
SFN-rich broccoli sprouts induced acetylation of histone
H3 and H4, which was mainly attributed to inhibition of
HDAC activity in circulating peripheral blood mononuclear
cells (PBMCs) [48, 49].

The discrepancy in the concentration-effect relationship
from in vitro to in vivo is a significant problem in the studies
of natural phytochemicals, like SFN. To achieve the effective
inhibition of HDAC activity, it was reported that the concen-
tration of SFN used in vitro experiments was from 3 to
15μM, a single oral dose of 10μmol in mice, and 68 g broc-
coli sprouts in human [50]. An important factor determining
the discrepancies is the conversion of glucosinolate to SFN by
myrosinase-mediated hydrolysis. Isothiocyanate SFN was
stored in broccoli sprouts as the precursor parent compound
of glucosinolate, which was hydrolyzed to isothiocyanate by
myrosinases released from the plants when raw vegetables
were chopped, cut, or chewed, or by other myrosinase
enzymes present in our gut [51, 52]. Therefore, mammalian
tissues and cells in vitro cannot convert glucosinolate to
SFN due to loss of endogenous myrosinase activity. However,
glucosinolate is indeed converted to SFN by the myrosinases
existing in gut microbial flora of animals and humans
in vivo. Moreover, the bioavailability of SFN was about
six times more than glucosinolates, which indicated the
minimal conversion [53]. As an example, SFN at a concen-
tration around 10μM effectively inhibited HDAC activity
in mouse colonic mucosa in vivo, and humans would con-
sume about 106 g/day of broccoli sprouts to achieve similar
plasma levels [54]. Altogether, the content of myrosinase in
plants and variability of gut microbial flora are key factors
of determining the discrepancies in the bioavailability of
SFN from in vitro to in vivo.

In addition to acetylation modification, histones also
undergo phosphorylation. A previous study demonstrated

that increased phosphorylation of histone H1 is positively
correlated with bladder cancer carcinogenesis and pro-
gression [55]. SFN reduced histone H1 phosphorylation
by enhancing protein phosphatase 1β and 2A (PP1β
and PP2A).

Collectively, these findings suggest that SFNmay exert its
anticancer effects through inhibition of HDACs and
enhancement of phosphatases.

3.2. DNA Methylation. DNA methylation is an important
epigenetic modification, mainly occurring within CPG
islands in gene promoter regions. The establishment and
maintenance of DNAmethylation patterns requires the func-
tion of several DNA methyltransferases (DNMTs), which
catalyze DNA methylation reactions, including DNMT1,
which maintains methylation, and DNMT3a and DNMT3b,
which catalyze de novo methylation [56]. Aberrant DNA
methylation, such as promoter hypermethylation or hypo-
methylation, can lead to inactivation or activation of
specific genes involved in tumorigenesis or progression,
respectively. Aberrant DNA methylation is a reversible
process and is often caused by the overexpression of
DNMTs [57]. Therefore, DNMTs have become attractive
targets for cancer chemoprevention.

Growing evidence indicates that SFN is a potential
modulator of DNA methylation in cancer development and
progression [22, 23, 40, 41]. As previously described, the
expression levels of DNMTs, primarily DNMT1, 3a, and
3b, are decreased in SFN-treated breast, prostate, and cervical
cancer cells [58–60]. Furthermore, the inhibitory effects of
SFN on DNMTs can restore the expression and activation
of silenced or repressed genes in cancer cells via promoter
demethylation. Silencing of the cell cycle regulatory gene
cyclin D2 by promoter hypermethylation was reported to
be positively correlated with prostate cancer progression,
and restoration of cyclin D2 expression induced cancer cell
death [59]. An experiment with LNCap prostate cancer cells
showed that SFN treatment reduced the expression of
DNMT1 and 3b, resulting in a decrease in the global DNA
methylation profile and cyclin D2 promoter methylation
[59]. In addition, exposure of breast cancer cells to 10μM
SFN reduced DNMT1 expression, which was accompanied
by elevated expression of P21, the tumor suppressor phos-
phatase and tensin homologue (PTEN), and retinoic acid
receptor beta 2 (RARbeta2) due to promoter demethylation
[61]. Importantly, combining anticancer drugs, such as clo-
farabine (ClF) and withaferin A (WA), with SFN enhanced
their anticancer effects, as reflected in the stronger growth
arrest and apoptosis of cancer cells [61, 62]. Another study,
using the same breast cancer cells, aimed at assessing the
effects of SFN on human telomerase reverse transcriptase
(hTERT), the catalytic regulatory subunit of telomerase.
The results showed that SFN, at a dosage of 10μM, induced
inhibition of DNMT1 and DNMT3a causing site-specific
CpG demethylation in the first exon of the hTERT gene,
thereby facilitating binding of the CTCF transcription
repressor and hTERT repression [58]. This downregulation
of hTERT expression promoted apoptosis in the breast
cancer cells [58].
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In the human cervical cancer cell line HeLa, SFN
concentration significantly upregulated the expression of
the tumor suppressor genes RARβ, CDH1, DAPK1, and
GSTP1, as well as the expression of the proapoptosis pro-
tein Bax through inhibition of DNMT3b activity in a time-
dependent manner, leading to the induction of cell cycle
arrest and apoptosis [60].

The above results show that SFN functions as a cancer
chemopreventive agent by modulating the expression of
tumor-related genes through DNA methylation modifica-
tion. Further studies in animal models of cancer are
required to confirm and enhance the understanding of
SFN on DNA methylation.

3.3. Regulation of Noncoding RNAs. A noncoding RNA
(ncRNA) is an RNA molecule that functions without being
translated into a protein. Abundant and functionally impor-
tant ncRNAs include transfer RNAs and ribosomal RNAs, as
well as small RNAs, such as microRNAs (miRNAs) and long
ncRNAs (lncRNAs).

miRNAs are approximately 22 nucleotides in length
and bind to complementary sites in the 3′-UTR of target
messenger RNAs (mRNAs), leading to posttranscriptional
repression or degradation [63]. miRNAs are negative regu-
lators of target genes, and several miRNAs have been
shown to be involved in the regulation of tumor cell
proliferation, apoptosis, invasion, and metastasis. In addi-
tion, miRNA dysregulation has been shown to play an
essential role in the development and progression of
various cancers [64].

Several miRNAs, such as miR200c, miR-616-5p, and
microRNA-21 (miR-21), have been shown to be targets of
SFN in some human cancers [6, 65–67]. It is noteworthy that
cancer stem cells (CSCs) are considered to be the driving
force of carcinogenesis in oral squamous cell carcinoma
(OSCC). In one study, miR200c targeting of Bmi1 was shown
to be involved in the regulation of cancer stemness in OSCC-
CSCs, including their self-renewal and tumor initiation prop-
erties [65]. SFN treatment (20μM) impaired cancer stemness
by inducing the tumor-suppressive miRNA miR200c, which
subsequently inhibited the migration, invasion, and clono-
genicity of OSCC-CSCs in mouse models [65]. In addition
to its effect on CSCs, SFN enhanced temozolomide-induced
glioblastoma cell apoptosis [67] and reduced the viability
and induced apoptosis of colon cancer cells [66] through
downregulation of miR-21. In addition, SFN may specifically
target miR616-5p to suppress the metastasis of non-small-
cell lung cancer (NSCLC) cells [6]. Another study showed
that miR-616-5p levels were increased in tissue samples of
late-stage NSCLC, as well as three human NSCLC cell lines
(H1299, 95C, and 95D) [6]. SFN downregulated miR-616-
5p levels, which was accompanied by inactivation of the
GSK3β/β-catenin pathway and inhibition of EMT to prevent
NSCLC recurrence and metastasis [6].

lncRNAs are transcripts longer than 200 nucleotides that
function as crucial regulators of gene transcription through
their association with chromatin remodeling complexes
[68]. Their aberrant expression endows cells with tumor ini-
tiation, high proliferation, and metastasis abilities [68].

Studies on the effects of SFN on lncRNAs are limited.
However, a recent study showed that the lncRNA
LINC01116 was upregulated in the human prostate cancer
cell lines LNCaP and PC-3, and this upregulation was
decreased by SFN (15μM), which was accompanied by inhi-
bition of proliferation [69].

These studies suggest SFN as a promising chemopre-
ventive agent and demonstrate that its anticancer effects
partially involve epigenetic mechanisms, which are sum-
marized in Table 1.

4. The Keap1/Nrf2 Antioxidant Pathway and Its
Epigenetic Modification

4.1. The Keap1/Nrf2 Antioxidant Pathway and Cancer. Car-
cinogenesis is often associated with long-term exposure to
oxidative stress resulting from the overproduction of high
reactive oxygen species (ROS) and/or the impairment of the
antioxidation system [70]. Nuclear factor erythroid-2- (NF-
E2-) related factor 2 (Nrf2) is best known as a key transcrip-
tion factor regulating the expression of antioxidant and
detoxification genes, such as heme oxygenase-1 (HO-1),
NAD(P)H:quinone oxidoreductase-1 (NQO1), and glutathi-
one S-transferases (GST) [70]. A proposed model of Keap1-
Nrf2 interaction is as follows: Under basal conditions, Nrf2
binds to its repressor Keap1 in the cytoplasm and subse-
quently undergoes proteasomal degradation via ubiquitina-
tion. Under oxidative stress, Nrf2 dissociates from Keap1
and then translocates to the nucleus. Intranuclear Nrf2 binds
with the small protein Maf to antioxidant response element
(ARE) sequences on target gene promoters, which drives
the transcription of cytoprotective genes and provides pro-
tection against oxidative stress [71] (Figure 1).

Nrf2 has been traditionally regarded as a tumor suppres-
sor. Low expression of cytoprotective genes, due to inactiva-
tion of Nrf2, has been shown to be related to tumor
formation and progression. For example, Nrf2-deficient mice
showed dramatically increased susceptibility to carcinogens
and elevated lung metastasis, which was accompanied by
increased ROS levels [72, 73]. The incidence, multiplicity,
and size of colorectal tumors were increased in Nrf2-knock-
out mice [74]. Moreover, there are multiple studies describ-
ing the beneficial effects of Nrf2 activation in cancer
chemoprevention [75]. These results suggest that activation
of Nrf2 may be an important strategy in cancer prevention.

However, recent studies demonstrate that Nrf2 protects
the survival of normal as well as cancer cells. The constitutive
activation of Nrf2 creates an advantageous environment that
favors the survival of malignant cells by preventing them
from oxidative stress, chemotherapeutic drugs, and radio-
therapy. This phenomenon has been called the “dark side
of Nrf2.” The elevated Nrf2 expression induced by Keap1
mutation has been found in lung, gallbladder, liver [76],
and prostate cancers [77], as well as malignant melanoma
[78]. Moreover, the overexpression of Nrf2 contributed to
clinical drug resistance and tumor growth, which was associ-
ated with poor prognosis of patients with cancer [77–80].
Additionally, inhibition of Nrf2 sensitized DU-145 prostate
cancer cells to chemotherapeutic drugs, such as cisplatin
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and etoposide, and enhanced radiotherapy responsiveness
[77]. These findings suggest that Nrf2 has a dual role in can-
cer development and therapy. Based on a body of studies, it
seems that transient activation of Nrf2 in normal cells (where
the Nrf2-Keap1 axis is intact) is protective; however, consti-
tutive activation of Nrf2 (mutation of Keap1) promotes the
survival and progression of malignant cells.

4.2. Epigenetic Modification of Nrf2 in Cancer Prevention. It
has been shown that SFN induces Nrf2 to upregulate expres-
sion of its target genes, including antioxidant genes and

phase II detoxification enzymes, to prevent carcinogenesis
[14]. SFN not only modifies Keap1 cysteine residues, result-
ing in Nrf2 activation, but also restores Nrf2 expression
through epigenetic mechanisms, including inhibition of
DNMTs and HDACs [17, 20, 21]. In TRAMP C1 prostate
cancer cells, it was reported that Nrf2 and its target gene
NQO1 were significantly decreased, resulting in extensive
oxidative stress and DNA damage. SFN treatment upregu-
lated the expression of Nrf2 and NQO1 by inhibiting
DNMTs (DNMT1 and DNMT3a) and HDACs (HDAC1,
HDAC4, HDAC5, and HDAC7) [20], which reduced the

Table 1: The epigenetic regulation of sulforaphane (SFN) in cancer.

Epigenetic mechanisms Cancer types Epigenetic functions
Target genes/

proteins
Anticancer
effects

References

Histone acetylation

Prostate cancer cells
(LnCaP and PC-3) and
PC-3 cell xenografts

Inhibition of class I
and II HDACs

Reactivation of
p21 and Bax

Cell cycle arrest and
apoptosis↑

[42, 45, 49]

Colon cancer cells
(HCT116)

Inhibition of HDAC3

CtIP: a critical DNA
repair protein DNA damage and

apoptosis↑
[43]

Acetylation of CtIP
and its degradation

Lung cancer cells
(A549 and H1299) and
A549 cell xenografts

Inhibition of HDAC
activity

Reactivation of
p21 and Bax

Cell growth↓
[44]

Apoptosis↑

Histone phosphorylation

Bladder cancer cells
(RT4, J82, and UMUC3)

and UMUC3 cell
xenografts

Inhibition of histone
H1 phosphorylation

Increased
PP1β and

PP2A phosphatase

Carcinogenesis
and progression↓

[55]

DNA methylation

Prostate cancer cells
(LNCap)

Decreased expression of
DNMT1 and 3b

Restoration of
cyclin D2

Cancer cell death↑ [59]

Human breast cancer
cells (MCF-7 and
MDA-MB-231)

Inhibition of
DNMT1 expression

Restoration of
P21, PTEN, and

RARbeta2

Cell growth arrest
and apoptosis↑

[61]

Human breast cancer
cells (MCF-7 and
MDA-MB-231)

Decrease in DNMT1
and 3a expression and

activity

Downregulation of
hTERT expression

Apoptosis↑ [58]

Cervical cancer
cells (HeLa)

Inhibition of
DNMT3b activity

Upregulation of
RARβ, CDH1,
DAPK1 and Bax

Cell cycle arrest
and apoptosis↑

[60]

Noncoding RNA
regulation

Oral squamous
carcinoma cells

(SAS and GNM); cancer
stem cell xenografts
(SAS and GNM)

Induction of
miR-200c

Suppression of
Bmi1

Cell migration,
invasiveness, and

growth↓
[65]

95D and H1299 cells and
in vivo xenografts

Downregulation of
miR-616-5p

Inactivation of the
GSK3β/β-catenin

pathway

EMT and
metastasis↓

[6]

Human glioma cell lines
(H4, SNB19, LN229, and
U251) and colorectal

cancer cells

Downregulation of
miR 21

Inhibition of the
Wnt/β-catenin

pathway

Apoptosis↑

[66, 67]
Cell viability↓

Prostate cancer cells
(LNCaP and PC-3)

Decreased expression of
the lncRNA LINC01116

Cell proliferation↓ [69]

CPG demethylation and
histone acetylation at the
Nrf2 promoter

Mouse skin epidermal
JB6 (JB6 P+) cells and

prostate cancer
(TRAMP C1) cells

Inhibition of DNMT1,
3a, and 3b and

HDAC1–5 and HDAC7

The reactivation of
Nrf2

Cell transformation
and development↓

[20, 21]

5Oxidative Medicine and Cellular Longevity



methylation level of CpGs and increased histone 3 acetyla-
tion at the Nrf2 promoter. It was also observed that
reactivation of Nrf2 and its target genes by SFN, via
downregulation of CpG methylation at Nrf2, significantly
inhibited TPA-induced JB6 P+ cellular transformation, with
concomitant attenuation of the expression of DNMTs
(DNMT1, DNMT3a, and DNMT3b) and HDACs (HDAC1,
HDAC2, HDAC3, and HDAC4) [21] (Figure 1 and Table 1).

In addition, other natural phytochemicals of Nrf2
agonist, such as curcumin, 3,3′-diindolylmethane (DIM), Z-
Ligustilide, apigenin, or Tanshinone IIA, have displayed the
anticancer effect through epigenetic modification of Nrf2
[81–85]. For instance, curcumin, DIM, or Z-Ligustilide
demethylated the CpGs in the Nrf2 promoter and reactivated
Nrf2 in the prostate of TRAMPmice and TRAMP C1 cells by
the inhibition of DNMTs. Moreover, the hypermethylation
of the Nrf2 promoter could be reduced by apigenin or
Tanshinone IIA in mouse skin epidermal JB6 P+ cells. Addi-
tionally, human prostate cancer cells treated with 5-aza/TSA
(DNMT/HDAC inhibitor) restored the expression of Nrf2
[86]. These findings suggest that epigenetic restoration of
Nrf2 may be an important strategy in cancer prevention.

5. The Clinical Studies and Future Perspectives

Human clinical studies have supported the chemopreventive
effects of SFN on carcinogenesis. Firstly, several clinical trials
evaluated the safety and tolerance of SFN at the doses

employed. Two clinical phase I studies showed that broccoli
sprout extracts containing SFN were well tolerated and
caused no significant adverse effects (toxicities) when admin-
istered orally by healthy volunteers at a dose of 15μM for 7
days or women with breast cancer received 200μmol of on
average 50min prior to the surgery [87, 88]. A recent phase
II clinical study on men with recurrent prostate cancer also
confirms the safety of SFN [89]. In addition, another study
assessed the clinical effectiveness of SFN in the patients with
advanced pancreatic ductal adenocarcinoma (PDA). The
data indicated that 90mg/day of active SFN effectively inhib-
ited tumor growth and increased the sensitivity of cancer
cells to chemotherapeutics [90]. In human subjects, con-
sumption of SFN-rich broccoli sprouts significantly inhibited
HDAC activity in PBMCs [48, 49]. These clinical studies
further suggest SFN as a promising anticancer agent and its
potential epigenetic mechanisms.

Based on the above-mentioned studies, it is clear that the
dietary compound SFN, which has little or no adverse side
effects, exerts anticancer activities through multiple mecha-
nisms, including epigenetic regulation. Thus, daily consump-
tion of cruciferous vegetables rich in SFN is not only a
healthy diet choice but also an effective chemopreventive
strategy. SFN, as an inducer of Nrf2, shows the capacity to
reactivate Nrf2 expression and its target cytoprotective genes
to prevent carcinogenesis through epigenetic mechanisms,
namely, CPG demethylation and histone acetylation of the
Nrf2 promoter, via inhibition of DNMTs and HDACs. These
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Figure 1: The Keap1/Nrf2 pathway and its epigenetic modification by SFN. Under basal conditions, Keap1 binds to Nrf2 in the cytoplasm,
which promotes its proteasomal degradation via ubiquitination. Under oxidative stress, Nrf2 dissociates from Keap1 and then translocates
into the nucleus and binds with the small protein Maf at ARE sequences in the promoter regions of target genes. This drives the
expression of several cytoprotective genes, such as HO-1, NQO1, and SOD. In TRAMP C1 prostate cancer cells, SFN can inhibit the
expression and activity of enzymes involved in epigenetic regulation, including DNMT1 and 3a, as well as HDAC1, 4, 5, and 7. Significant
inhibition of DNMT1, DNMT3a/b, and HDAC1, 2, 3, and 4 has also been observed in TPA-induced mouse skin JB6 P+ cells treated by
SFN, which reduces the CpG methylation and elevates histone acetylation of the Nrf2 promoter. Ultimately, epigenetic regulation by SFN
promotes the transcription of Nrf2 and its subsequent nuclear translocation and activation.
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studies have prompted us to propose epigenetic restoration
of Nrf2 by SFN as an important strategy against oxidative
damage-related diseases, including cancer, which may
provide new research directions and preventive approaches
for oxidative damage-related diseases.
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