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Abstract: A novel nano/micro-structured pesticide detection card was developed by combining
electrospinning and hydrophilic modification, and its feasibility for detecting different pesticides
was investigated. Here, the plain and hydrophilic-modified poly(ε-caprolactone) (PCL) fiber mats
were used for the absorption of indolyl acetate and acetylcholinesterase (AChE), respectively. By
pre-treating the fiber mat with ethanol, its surface wettability was improved, thus, promoting the
hydrolysis of the PCL fiber mat. Furthermore, the absorption efficiency of AChE was improved by
almost two times due to the increased hydrophilicity of the modified fiber mat. Noteworthily, this
self-made detection card showed a 5-fold, 2-fold, and 1.5-fold reduction of the minimum detectable
concentration for carbofuran, malathion, and trichlorfon, respectively, compared to the national stan-
dard values. Additionally, it also exhibited good stability when stored at 4 ◦C and room temperature.
The food detection test showed that this nano/micro-based detection card had better detectability
than the commercial detection card. Therefore, this study offers new insights into the design of
pesticide detection cards, which also broadens the application of electrospinning technique.

Keywords: nano/micro-structure; pesticide detection card; electrospinning; hydrophilic modifica-
tion; sensitivity

1. Introduction

Pesticides are effective ingredients that have been extensively used to control agri-
cultural diseases. However, their excessive use poses a challenge to the sustainable de-
velopment of agriculture, and the administration of pesticide residues on the surface of
food is harmful to human health. For this reason, considerable progress has been made
recently in the determination of pesticides. Current approaches are mainly carried out
by laboratory-scale analytical methods, such as HPLC, MC, GC, etc. [1,2]. Nevertheless,
their inherent disadvantages, such as complicated pre-treatment, high costs, and time-
consuming procedures, generally limit their applications [3]. Therefore, research into
other effective, convenient, and reliable detection strategies has gained increasing attention
in recent years [4–6]. Specifically, rapid detection based on enzyme acetylcholinesterase
(AChE) inhibition has become widely accepted for pesticide residue analysis, ascribing
to its simple principle and visual evaluation [7]. In this regard, the rapid detection card,
generally made of glass fiber, qualitative filter paper, or absorbent paper, has been identified
as the preferred and direct method for determining pesticides. Nevertheless, the challenge
associated with these cards is the discrepancy between the sensitivity of the analysis and
the increased awareness of food safety, making it imperative to seek new types of carriers
for the production of detection cards.

Recently, extensive evidence has demonstrated the great potential of nano/micromaterials
in the field of catalysis, owing to their unique structure and surface properties [8,9]. Herein,
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we try to further improve the conventional detection card’s performance by supplying
the nano/micromaterials as the immobilization carrier for the enzyme and substrate.
Electrospinning—a mild, convenient, versatile, and cost-effective technique for developing
micro-/nano-structured vehicles—is associated with a broad range of applications in
pharmacy, tissue engineering, food packaging, etc. [10]. Specifically, the superiority of
electrospun fibers as the carrier for chemical biosensors and immobilization has been
highlighted in recent years due to their desirable properties, such as a high surface area to
volume ratio, porous structure, and tunable porosity [11,12]. However, electrospun fibers
used as the detection card matrix for the pesticide detection card have been less explored,
except for in our previous research study [13]. It is known that the electrospun fiber mat
could not only be used as the encapsulation vehicle but also the absorption carrier [14]. Our
published work has already designed a novel detection card by encapsulating the enzyme
(AChE) and substrate (indolyl acetate, IA) into the electrospun nanofibers and we also
demonstrated their proper role for determining pesticides more sensitively. Unfortunately,
the deformation problem of this card, stemming from its hydrophilic feature, calls for
the exploration of hydrophobic materials. Additionally, it is also interesting to determine
the pesticide detection performance of the card by using the electrospun fiber mat as the
absorption matrix for the enzyme and substrate.

Herein, a biocompatible and biodegradable polymer, Poly(ε-caprolactone) (PCL), was
applied to prepare the detection card. To improve enzyme absorption on the fiber mat,
hydrophilic modification of the hydrophobic PCL fiber mat was performed, and the related
properties were investigated systematically. Subsequently, the plain and modified PCL
fiber mat were employed to absorb IA and AChE, respectively. Furthermore, the key
factors including the concentration of the enzyme and substrate, inhibition time, and color
development time were optimized to improve the performance of the detection card. The
detection ability of this card for different pesticides was examined and compared with the
corresponding values specified by the Standardization Administration of China (SAC).
Lastly, the feasibility of this card for detecting pesticide residues in real foods was studied
by comparison with the commercial card. This study offers new access for the sensitive
and convenient detection of pesticide residues, which is expected to inspire the further
application of electrospinning in the field of food and agriculture.

2. Materials and Methods
2.1. Materials

Poly(ε-caprolactone) (PCL) was purchased from Sinopharm Chemical Reagent Co.,
Ltd. (Beijing, China). AChE (200 U/g, from head of fly) and IA were purchased from
ShanghaiYuanye Bio-Technology Co., Ltd. (Shanghai, China). Trichlorfon and carbaryl
were purchased from Aladdin (Shanghai, China). Malathion and carbofuran were pur-
chased from the National Information Center for Certified Reference Materials (Beijing,
China). The commercial rapid detection card was obtained from Dayuan Oasis Food Safety
Technology Co., Ltd. (Guangzhou, China). Analytical pesticide standards (100 µg/mL)
were stored at 4 ◦C and spiked to the desired concentrations. Samples of cabbage and
apples were purchased from a local market (Guangzhou, China).

2.2. Preparation of the Detection Card Matrix

PCL solutions in the concentration range of 100–150 g/L were prepared by dissolving
certain amounts of PCL into a mixed solvent of methanol and chloroform at different
volume ratios (0, 1:9, 3:7, 5:5). Then, the sealed solution was placed on a magnetic stirrer
and stirred at room temperature in the dark for more than one hour to obtain the stable
solution. The conductivity and viscosity of different spinning solutions were measured by
Brookfield digital viscometer (Model DV-II t Pro, Brookfield Engineering, Inc., Middleboro,
MA, USA) and conductivity meter (DDS-11A, Shanghai Leici Chuangyi Instrument Co.,
Ltd., Jiading, Shanghai, China), respectively. Then, electrospinning was conducted by
putting the solution into a plastic syringe (5 mL) with a 20-gauge steel needle which was
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connected to a high voltage power supply. The voltage and the distance between the needle
tip and collector were set in the range of 11–17 kV and 11–15 cm, respectively. The injection
rate was controlled by a syringe pump (NE-300, New Era Pump Systems Inc., Farmingdale,
NY, USA) in the range of 1.5 to 3.5 mL/h. The fiber mat was fabricated at 24 ± 2 ◦C and
under 55 ± 5% relative humidity for a period of time.

2.3. Hydrophilic Modification of the Matrix

Here, the PCL fiber mat was modified by one step or two steps of treatment. For
the one-step modification, the PCL fiber mat was immersed in the NaOH solution with
different concentrations (1 M, 2 M, 4 M, and 6 M) for a certain period of time, while the
two-step modification was performed by initially infiltrating in the 70% ethanol for 15 min
before the same NaOH immersion process. Then, the fiber mat was washed with deionized
water and dried in a vacuum drying oven.

2.4. Characterization of the Matrix

The morphologies of the original and modified PCL fiber were observed by scanning
electron microscopy (SEM, S-3700N, Hitachi High-Tech Ltd., Chiyoda-ku, Japan). Before
the observation, the electrospun fiber mat was sputter-coated under vacuum conditions
and observed at 15 kV. Then, the obtained SEM image was processed by the Nano Measure
1.2 software, and the distribution of the fibers was further calculated by analyzing around
50 fibers. The thickness of the fiber mat was measured by a digital thickness gauge (Syntek,
Deqing Shengtai Electronic Technology Co., Ltd., Deqing, China).

The changes that occurred in the polymer molecules were examined by employing
attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) (VERTEX
70, Bruker Co., Ettlingen, Germany). All the spectra were recorded in the frequency region
of 500–4000 cm−1 at a spectral resolution of 4 cm−1.

To characterize the surface wettability of the fiber mat, the surface contact angle tester
(OCA40, DataPhysics Instruments GmbH, Filderstadt, Germany) was used to determine the
contact angles of different samples. Briefly, the measurement was conducted by dropping
2 µL of deionized water onto the surface of the fiber mat with a drop rate of 2 µL/s. After
10 s, the contact angle of the fiber mat was measured by taking a screenshot. Each sample
was tested 3 times, and the average value was calculated.

2.5. Optimization of the Immobilization and Determination Conditions

In this study, two fiber mats, namely the enzyme (AChE) fiber mat (AFM) and substrate
(IA) fiber mat (IFM), were used for the preparation of the nano/micro-structured detection
card. For optimizing the suitable AChE concentration for the preparation of AFM, the IFM
was prepared by immersing the fiber mat in 5 mg/mL IA solution, and the cards were
then dried in a vacuum oven. Similarly, the fiber mat was treated with 8 mg/mL of AChE
solution when the optimal IA solution was investigated. Here, PBS (pH 7.4) and 1 mg/L of
malathion were selected as control and positive sample, respectively. On the other hand,
the absorption efficiencies of the fiber mat and other commonly used absorption materials
(qualitative and quantitative filter paper) were examined by determining the amount of
released enzyme from the carrier materials according to the Bradford method. Before doing
this, the carrier materials were immersed into 5 mg/mL of AChE solution for 24 h and
dried in a vacuum drying oven.

The principle of this detection method is that AChE can catalyze the hydrolysis of
colorless IA to produce indoxyl, as depicted in Figure 1, which then becomes blue due
to the rapid oxidation by air. The blue color of indigo can be well distinguished with
the naked eye. Hence, the existence of pesticides can be analyzed according to the color
change as a consequence of the inhibition of the pesticide on AChE activity. On the
basis of understanding the principle of this determination method, inhibition and color
development time were two critical factors that significantly influenced the result. Herein,
the inhibition time was optimized in the range of 5–15 min, where the color development
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time was set at 15 min. Similarly, the inhibition time was set at 10 min for exploring the
appropriate color development time (5–25 min). PBS (pH 7.4) and 0.5 mg/L malathion
were applied as control and positive samples, respectively.

Figure 1. The reaction of indoxyl acetate hydrolysis, catalyzed by AChE.

2.6. Performance of the Detection Card and Its Real-Life Application

To evaluate the efficacy of this detection card, a series of concentrations of these two
classical pesticides, including organophosphorus (OP) (omethoate and malathion) and
carbamate (CM) (carbaryl and carbofuran), were determined and compared with their
corresponding low limit of detection values reported in SAC. In brief, the pesticides were
diluted to a series of concentrations by PBS. An aliquot (50 µL) of sample solution was
dropped on the AFM for analysis, and PBS served as the control group. All the detection
procedures were performed according to the conditions optimized in the above section.

The storage stabilities of the detection card under 4 ◦C and room temperature (RT)
were evaluated for 60 days. Malathion and PBS were served as the positive and control
group to examine its detection efficacy periodically.

To further verify the determination performance of this card, organic cabbage and car-
rots were tested as samples with different concentrations of malathion (0, 5, 10, 20 µg/mL).
Different volumes of malathion were sprayed on sample surfaces based on the sample
weight (1 mL/g) and stored at room temperature for 24 h. Subsequently, 5 g of the samples
were immersed in 10 mL PBS and then shaken by hand. After the stabilization for 2 min,
the supernatant was analyzed using self-made and commercial rapid detection cards.

2.7. Statistical Analysis

Statistical analysis was performed using one-way analysis of variance (ANOVA). A
value of p ≤ 0.05 was considered statistically significant.

3. Results and Discussion
3.1. Preparation of the Nano/Micro-Structured Immobilization Matrix

Recently, the improved attention on food safety and pursuit of the sustainable develop-
ment of the agricultural industry has promoted the exploration of efficient and convenient
pesticide detection approaches. Specifically, our group has creatively investigated the po-
tent application of electrospinning in designing rapid detection cards to determine different
pesticides. The detection card was composed of two electrospun PVA fiber mats, in which
the enzyme and substrate were encapsulated. Furthermore, it was found to be able to effi-
ciently and sensitively detect different pesticides. However, the high hydrophilicity of PVA
made the fiber mat easier to deform, which would impede its application to some extent.
Given this situation, it is meaningful to investigate the performance of the detection card,
taking a hydrophobic material as the card matrix. Additionally, electrospinning was also
supposed as a proper absorption matrix in the field of analysis [15]. However, knowledge
of its capability for use as a detection card is lacking. Therefore, as shown in Figure 2,
this study offered another novel route for the preparation of pesticide detection card by
electrospinning, where the electrospun fiber mats were employed as the immobilization
matrix for the absorption of the enzyme (AChE) and substrate (AI) and the corresponding
detection principle was depicted in Figure 2.
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Figure 2. Preparation process and pesticide determination principle of the nano/micro-structured
detection card.

Here, an environmentally friendly material, PCL, was utilized to fabricate the detec-
tion card matrix, owing to its proper biodegradable and hydrophobic properties [16]. To
successfully obtain the electrospun fiber mat, the appropriate solvent for PCL electrospin-
ning should be initially investigated. It is known that solvents with low boiling points
are more suitable for electrospinning [17]. Hence, a commonly used solvent, chloroform
(CHCl3), was selected for hydrophobic PCL electrospinning, and methanol (CH3OH) was
further blended with it to decrease the fast evaporation of the solvent during the electro-
spinning process because of the lower boiling point of the CHCl3 [18]. Furthermore, as
shown in Table S1, the conductivity and viscosity of the solution were increased with the
increase in the ratio of the CH3OH, which was similar to a previous study [19]. The fiber
with a good morphology was obtained at the volume ratio of 3:7 (CH3OH: CHCl3) (Figure
S1). Then, the suitable concentration of PCL for electrospinning was examined, and it was
found that smooth fibers were obtained when the concentration was 125 g/L (Figure S2).
The balance between the conductivity and viscosity, which was one key factor that would
significantly influence the electrospinnability, was disrupted when the PCL concentration
was 100 or 150 g/L, resulting in the beaded fiber morphology [20]. Thereby, 125 g/L of
PCL concentration prepared in a blended solvent (CH3OH: CHCl3 = 3:7, v/v) was adopted
for the preparation of the card matrix.

Additionally, the influence of different electrospinning parameters, including spinning
voltage, distance, and injection rate, on the fiber morphology was studied. The SEM
images of the fibers prepared under different parameters and their relevant fiber diameter
distributions are shown in Figures S3–S5. It can be seen that smooth and uniform fibers
were produced when the voltage was 13 kV. Lower voltages result in the accumulation of
the electrospinning solution at the tip of the needle due to the weak electrical force [21].
While a high applied voltage increases the rate at which a polymer filament is drawn out of
the Taylor cone, resulting in greater fiber elongation and a reduced fiber diameter [22,23].
In addition, fiber morphology was improved with the increase in the flow rate, but further
increases in the flow rate could obtain thicker fibers. The reason behind this phenomenon
was that the flow rate generally determined the amount of electrospinning solution at
the tip of the needle and a higher flow rate would produce larger droplets and result in
a lower charge density required for electrostatic repulsive forces to overcome the surface
tension of the solution and the extra solution cannot be stretched during the electrospinning
process [24]. Similarly, good fiber morphology was achieved when the distance was 13 cm.
Higher or lower than this value would change the electric field distribution, disturbing
the balance between the electrical force and surface tension [25]. Overall, the appropriate
parameters for preparing of the PCL fiber mat were a spinning voltage of 13 kV, distance of
13 cm, and injection rate of 2.5 mL/h. The average diameter of the fibers fabricated under
this condition was 1.07 µm.
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3.2. Hydrophilic Modification of the Matrix and Its Characterization

In this study, the detection card consisted of an enzyme (AChE) loaded fiber mat
(AFM) and a substrate (IA) loaded fiber mat (IFM). The AFM was fabricated through the
absorption of the AChE onto the fiber mat. Unfortunately, the absorption efficacy was low
because of the hydrophobic property of the electrospun PCL fiber mat. A previous study
indicated that the absorption efficiency of the enzyme could be remarkably enhanced with
an increase in hydrophilicity [26,27]. Therefore, hydrophilic modification of the PCL fiber
mat might be a proper way to improve the detection performance of the designed detection
card. To our knowledge, there were different approaches for the hydrophilic modification
of PCL materials [28–30]. Nevertheless, alkaline hydrolysis was considered here on account
of its simple and efficient features and two corresponding hydrophilic modification models,
shown in Figure 3, were systemically investigated in this part. It was found that the contact
angle changed from 133.1◦ to 129.0◦, demonstrating that the hydrophilicity of the fiber
mat was improved by direct treatment with the NaOH solution. This result could be
attributed to the breaking of the easter linkages along the polymer backbone when the PCL
fiber mat was immersed in the NaOH solution, leading to hydroxyl and carboxylic acid
groups being exposed at the polymer surface [31,32]. Similar hydrophilicity modifications
through the hydrolysis by alkaline have been conducted for other hydrophobic polymer
membranes [33–35]. Noteworthily, as depicted in Model 2, the contact angle of the PCL fiber
mat changed dramatically from 131.1◦ to 0◦ when it was presoaked with ethanol, which
indicated that the surface of the fiber mat suffered a transformation from hydrophobicity to
hydrophilicity. This phenomenon can be ascribed to the fact that the ethanol pretreatment
can improve the surface wettability of the fiber mat, as described in a previous study [36].
If the NaOH solution was directly applied for the modification, the interaction between
the NaOH solution and the PCL fiber would be limited because of its hydrophobic surface.
However, the fiber mat can be pre-infiltrated when it was treated with ethanol, which was
more conducive to the interaction between the PCL molecule and NaOH. Additionally,
it is noteworthy that the size of the fiber also decreased from the microfiber to nanofiber
scale after modification, while maintaining overall fiber structure. This structure change is
favorable in the immobilization of the enzyme. Hence, Model 2 was utilized to modify the
hydrophobic fiber mat. The influence of the NaOH concentration and the related hydrolysis
time on the properties of the fiber mat were subsequently investigated.

To further illustrate the hydrolysis behaviors of the PCL fiber mat through two dif-
ferent modification models, ATR-FTIR was employed to characterize the interactions that
occurred in the PCL molecule by observing the changes of the specific peaks. The spectra of
different fiber mats are displayed in Figure 4. The intense peaks at 1723 cm−1 that appeared
in different samples represented the presence of the ester carbonyl group (-CO stretching)
in PCL polymer. Additionally, peaks at 2865 and 2942 cm−1 were related to the asymmetric
and symmetric CH2 stretching. Apart from these characteristic peaks, there were two
extra bands in the spectrum of modified fiber mat (model 2), one was at the wavenumber
range of 1500–1700 cm−1 (C=O group) and the other was at the wavenumber range of
3250–3750 cm−1 (OH stretching vibrations). This can be explained that the presence of -OH
(hydroxyl) functional group and -COOH (carboxyl) group in the PCL membrane after the
hydrolysis of the ester carbonyl group [37]. Furthermore, it was concluded that Model 2
was more beneficial for the modification of the PCL fiber mat.
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Figure 3. Two models used for the hydrophilic modification of PCL fiber mat and the properties of
plain and modified fiber mat (n = 50).

Figure 4. ATR–FTIR spectra of different samples.
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From the hydrolysis results displayed in Figure 5, it is clear that the thickness of
the fiber mat decreased after treatment with NaOH, and the surface of the fiber mat
could successfully be changed from hydrophobic to hydrophilic when the concentration
of the NaOH solution was above 2 M. During the modification process, the fiber surface
suffered different degrees of hydrolysis. The higher the NaOH concentration, the higher
the degree of fiber hydrolysis. During the hydrolysis procession, the contact angle was
decreased, probably due to the increase in surface free energy [38]. When the specific
surface free energy of the fiber mat was increased to a critical value, the droplets dripping
onto the surface of the fiber mat could easily penetrate into the fiber mat. However, further
improving the concentration of the NaOH solution, the thickness of the fiber mat was
seriously decreased and became fragile. Herein, 2 M and 4 M were determined as the
suitable modification concentration to obtain the hydrophilic matrix.

Figure 5. Effect of NaOH concentration on the thickness and contact angle of fiber mat before and
after modification (nd, not determined, n = 3).

Apart from the concentration, the effect of the treatment time on the properties of
the modification fiber mat was examined. As displayed in Figure 6, 39.4◦ and 73.2◦ of
reduction in the contact angle of the fiber mats occurred when the fiber mat was treated
with 2 M and 4 M NaOH solution for 0.5 h, respectively, and the obtained fiber mats were
still hydrophobic. Meanwhile, a considerable change in the wettability occurred when
the hydrolysis time was longer than 0.5 h and the contact angles of these two modified
fiber mats were both 0◦, which led to an understanding that the improvement of the
hydrophilicity of the modified fiber mat could be achieved by postponing the hydrolysis
time. As the degree of fiber hydrolysis increased, the polar group hydroxyl and carboxyl
content on the surface gradually increased. Additionally, many dips appeared on the
fiber surface, which was in accordance with another similar study [39]. The increase in
surface roughness may contribute to the hydrophilic property of the fiber mat [40]. Hence,
appropriate modification was performed with the 2 M NaOH solution for 1 h.
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Figure 6. Effect of NaOH concentration and hydrolysis time on the thickness and contact angle of fiber mat before and after
modification ((A), 2 M NaOH; (B), 4 M NaOH; n = 3).

3.3. Fabrication and Measurement Conditions of the Detection Card

The rationale for this detection card is based on the hydrolysis of the substrate (IA)
by the acetylcholinesterase (AChE) to produce indole phenol, which then becomes blue
indigo due to the oxidization. In contrast, the card will be colorless if the AFM is treated
with a positive sample (pesticide) as the enzyme activity can be inhibited by the pesticide.
Here, to obtain a reliable detection approach, it is essential to investigate the influence
of the two vital factors (absorption time and enzyme/substrate concentration) on the
detection performance of this card and eventually to figure out the appropriate synthesis
conditions. Here, the detection result could be obtained by simply distinguishing the
color of the detection card with the naked eye. As shown in Figure 7, it appeared that the
suitable immobilization time and concentration for the AChE were 24 h and 5 mg/mL,
respectively. Less immobilization time or a lower concentration of AChE would result
in a false-positive result. Likewise, 12 h and 5 mg/mL were found to be the proper time
and concentration for the immobilization of IA to obtain a reliable detection result. On the
other hand, considering the absorption efficiency of the AFM, the absorption amount of
AChE for the commercial filter papers, plain and modified PCL fiber mats were determined
and compared. As shown in Figure 8, the modified fiber mats showed a significantly
higher absorption efficiency than the other two commercial applied filter papers (n = 3,
p < 0.05), which may be attributable to the fact that the special nano-structure was more
beneficial for the immobilization of the enzymes. More importantly, the fiber mat exhibited
an improved absorption efficiency after the hydrophilicity modification, and a nearly
2-fold enhancement of the absorption amount was achieved. The probable reason was
that the hydrophobicity property could hamper the interaction between the enzyme and
the matrix. Moreover, the fiber morphology changing from microfiber to nanofiber after
the modification might be another vital contributor to the improved loading efficiency of
the enzyme. Furthermore, the pits on the surface of the modified fiber would naturally
increase the specific area, thus, promoting the immobilization of the enzyme.
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Figure 7. Color development of the detection card prepared under different conditions (A), AChE
concentration 5 mg/mL, IA concentration 8 mg/mL, IA immobilization time 24 h; (B), AChE immobi-
lization time 24 h, IA concentration 8 mg/mL, IA immobilization time 24 h; (C), AChE concentration
5 mg/mL, AChE immobilization time 24 h, IA concentration 8 mg/mL; AChE immobilization time
24 h; (D), AChE concentration 5 mg/mL, AChE immobilization time 24 h, IA immobilization time
12 h).

Figure 8. Absorption amounts of AChE for different matrixes and the surface morphology of
modified fibers (n = 3, **, p < 0.01).

In addition to the card matrix preparation, the measurement parameters, mainly
including enzyme inhibition time and color development time, are particularly important
for the precise determination of the pesticides. It was known that the substrate IA could be
decomposed into indole phenol by the catalysis of AChE, and then blue indigo would be
formed after oxidization. In contrast, the inhibition of AChE activity by the pesticide would
result in the colorless appearance of the detection card. The inhibition time, referred to as
the reaction time between the sample and AFM and the color development time, indicated
the time that AFM with IFM. Generally, the inhibition time has a considerable influence on
color development. If the inhibition time was too short, the enzyme could not react with the
sample sufficiently, leading to a negative result. Nevertheless, if the inhibition time was too
long, it would be time-consuming and decrease productivity. On the other hand, time was
required for AFM to react with IFM in order to develop the distinct blue color. Similarly,
a shorter or longer color development time would limit the real-life application of the
detection card. For this reason, the exploration work of these two factors was conducted,
and the related results were displayed in Figure 9. The suiFireaction condition was found
to be an inhibition time 10 min and a color development time 10 min, which was superior
to the commercial detection card.
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Figure 9. Color development of the detection card prepared under different conditions (A), color
development time 20 min; (B), AChE inhibition time 10 min).

3.4. Detection Performance of the Detection Card and Its Real-Life Application

Nowadays, consumers would like to select foods with fewer pesticides. Pesticide
detection with high sensitivity seems to be the preferred strategy and would have great
application potential in the food and agricultural industry. To check the detectability of
this card, four pesticides representing two main types of pesticide, organophosphorus and
carbamate, were selected to be tested. Additionally, the minimum detectable concentration
of this card for each pesticide was compared with its corresponding limit of detection (LOD)
value specified by SAC [41]. Results depicted in Table 1 elucidated that this nano/micro-
structured detection card exhibited a comparative value with the corresponding LOD
values. It is noteworthy that 5-fold, 2-fold, and 1.5-fold reductions in the detectable
concentrations of the rapid detection card for carbofuran, malathion, and trichlorfon were
obtained compared to the national standard value, suggesting that this developed card
could be able to detect these types of pesticides.

Table 1. The minimum detectable concentrations (MDC) of the card for different pesticides and the
corresponding limit of detection (LOD) values specified by Standardization Administration of China
(SAC).

Pesticide LOD
(mg/L)

MDC
(mg/L) Color Development

Organophosphorus

Trichlorfon 0.3 0.2
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The shelf life of the as-prepared detection card is another important factor that in-
fluences its real-life applications. In this study, the storage stability of this detection card
under 4 ◦C and RT were investigated. As shown in Figure 10, all the detection cards in
PBS groups had a blue color, while other detection cards were colorless, demonstrating
that this detection card had good stability. It could effectively detect the pesticide even
though they were stored for 60 days. Hence, this desirable property of the self-made card
also contributes to its real-life application.

Figure 10. Storage stability of the detection card under 4 ◦C and room temperature (RT).

To verify the real-life performance and practicability of this self-made detection card,
pesticide residues on cabbage and carrot were measured according to the above-mentioned
conditions, and comparisons were also performed with the commercial detection card. As
shown in Table 2, the commercial card cannot detect the malathion even at its concentration
of 20 µg/mL, since the control group still showed a blue color. However, the obtained
detection card could accurately detect 5 µg/mL malathion, indicating the existence of
pesticide on the cabbage. Similarly, the detection results for the carrot also revealed that
this self-made detection card had a better detectability than the commercial card. The card
with a nano/micro-structure could determine pesticides on the real vegetables accurately
and efficiently. Therefore, this study opens up a new way to develop the pesticide rapid
detection vehicle, promoting the sustainable development of the agricultural and food
industry.

Table 2. Color development results for real-life food detection.

Sample Detection Card
Spraying Concentration of Malathion (µg/mL)

0 5 10 20

Cabbage

Commercial
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4. Conclusions

To satisfy the improved requirement of safety food, a novel nano/micro-structured
pesticide detection card was creatively fabricated by taking the electrospun fiber mat as the
card matrix. This detection card has good storage stability and a low minimum detectable
concentration, the application of which involves a short reaction time, simple operation,
and minimum use of human and material resources as compared to the traditional detection
approaches. In addition, experiments with real samples also demonstrated its feasibility
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and superiority on pesticide detection over the commercial card. More importantly, this
detection method can even be performed by nonprofessional individuals, making it more
in line with the market requirement. Therefore, the present study offers a new route for
designing a rapid detection card for pesticides, which could promote the application of the
electrospinning technique and nano/micro material in the agricultural and food industry.
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Figure S3: SEM images and fiber diameter distributions of PCL fibers under different electrospinning
voltages (the electrospinning conditions were: flow rate of 2.5 mL/h and distance of 13cm); Figure
S4: SEM images and fiber diameter distributions of electrospun PCL fibers under different flow rates
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fiber diameter distributions of electrospun PCL fibers under different distances (the electrospinning
conditions were: voltage of 13 kV and flow rate of 2.5 mL/h); Table S1: Effect of PCL concentration
and volume ratio of CHCl3 to CH3OH on the properties of electrospinning solution.
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