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Fertilization by multiple sperm leads to lethal chromosomal number abnormalities, failed
embryo development, and miscarriage. In some vertebrate and invertebrate eggs,
the so-called cortical reaction contributes to their activation and prevents polyspermy
during fertilization. This process involves biogenesis, redistribution, and subsequent
accumulation of cortical granules (CGs) at the female gamete cortex during oogenesis.
CGs are oocyte- and egg-specific secretory vesicles whose content is discharged
during fertilization to block polyspermy. Here, we summarize the molecular mechanisms
controlling critical aspects of CG biology prior to and after the gametes interaction.
This allows to block polyspermy and provide protection to the developing embryo. We
also examine how CGs form and are spatially redistributed during oogenesis. During
egg activation, CG exocytosis (CGE) and content release are triggered by increases in
intracellular calcium and relies on the function of maternally-loaded proteins. We also
discuss how mutations in these factors impact CG dynamics, providing unprecedented
models to investigate the genetic program executing fertilization. We further explore the
phylogenetic distribution of maternal proteins and signaling pathways contributing to
CGE and egg activation. We conclude that many important biological questions and
genotype–phenotype relationships during fertilization remain unresolved, and therefore,
novel molecular players of CG biology need to be discovered. Future functional and
image-based studies are expected to elucidate the identity of genetic candidates and
components of the molecular machinery involved in the egg activation. This, will open
new therapeutic avenues for treating infertility in humans.
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INTRODUCTION

Sexual reproduction requires the interaction of gametes, cells
highly specialized for fertilization. To this end, the egg controls
the male gamete entry to prevent genetic abnormalities caused
by supernumerary sperm (polyspermy), which results in failed
embryo development and miscarriage (Hassold et al., 1980;
Evans, 2020). Polyspermy can occur in mammalian eggs by
a low percentage, generally between 1 and 2% under in vivo
conditions (Rothschild, 1954). To ensure monospermy, the
female reproductive tract in mammals acts as an effective barrier
or selector to the sperm. This reduces the concentration and
number of viable male gametes that reach the egg (Bianchi
and Wright, 2016). If polyspermy occurs, the formed zygote
undergoes spontaneous abortion. Nonetheless, it has been
reported that triploid and tetraploid pregnancies can progress to
birth. In this case, the infants show a variety of malformations
including cardiac anomalies, syndactyly (fingers or toes that are
joined), hypotonia, among others (Uchida and Freeman, 1985;
Sherard et al., 1986; Shiono et al., 1988; Dean et al., 1997).

Another failure of gamete interaction is the inability of either
the sperm to fertilize the female gamete, or the egg to interact with
the sperm, causing infertility. The World Health Organization
(WHO) defines infertility as “A disease of the male or female
reproductive system defined by the failure to achieve a pregnancy
after 12 months or more of regular unprotected sexual intercourse”
(WHO-ICMART revised Glossary). In humans, the infertility
rate is around 15% worldwide, and near of 50% is caused by
male fecundity alterations (Cui, 2010). It is well established
that fertility decreases with age. Specifically, women’s fertility
starts to decline over 32 years old. However, such a decrease
becomes steep and critical after 37 years old (American College
of Obstetricians and Gynecologists Committee on Gynecologic
Practice and Practice Committee, 2014). On the other hand,
male fertility starts to decline after 35 years old (Mathieu et al.,
1995). In fact, several studies show that women, between 16 and
26 years old, show significantly higher pregnancy probabilities
than those of 35–40 years old. Concomitantly, women’s infertility
ratio increases with age: 15, 22–24, and 29% ranging in age
from 19–26, 27–34, and 35–39 years old, respectively (Dunson
et al., 2004). Currently, in vitro fertilization (IVF) is one of
several alternatives to treat infertility in humans. However, the
success of this technique relies on ovarian stimulation, complete
oocyte maturation, concentration of sperm, and the patient’s age
(van der Ven et al., 1985). Therefore, a better understanding of
how fertilization is regulated may facilitate the development of
diagnostic tools to assess gamete quality used in IVF practices,
and its improvement.

Following sperm-egg recognition and fusion, the egg has
evolved several activation mechanisms to avoid cytogenetic
defects. Thus, the event of egg activation provides prevention of
polyspermy, but also protection of the fertilized egg/embryo until
implantation or hatching. Also, and together with fertilization,
determines the transition from oogenesis to embryogenesis.

Monospermic fertilization involves the function of a primary
barrier given by the female tract, the cumulus cellular layer (jelly
coat or the egg jelly in marine invertebrates), an extracellular

glycoprotein matrix surrounding the egg known as zona
pellucida (ZP) in mammals (vitelline envelope in amphibians and
Drosophila, and chorion in fish), and the egg plasma membrane
(PM) (Claw and Swanson, 2012). However, in species with
external fertilization, polyspermy blockade referred to as the fast
and slow blocks, is critical (Rothschild and Swann, 1952). The fast
or electrical block to polyspermy involves changes to the egg PM
that have been well characterized in frogs and sea urchin (Jaffe
and Cross, 1984), but not well understood in other animals. In
most vertebrates, the slow or mechanical block to polyspermy is a
key event and involves the exocytosis of cortical granules (CGs).
After it is initiated, the subsequent elevation of the extracellular
coat or the modification of the ZP becomes unreceptive to the
sperm (Wessel et al., 2001).

The release of calcium (Ca2+) at fertilization results in a
cascade of events that includes exocytosis of CGs (Figure 1).
These secretory vesicles are egg-specific membrane-bound
organelles that, upon egg activation, fuse with the PM and
release their content into the extracellular space. This content
includes proteases, glycoproteins, and structural proteins (see
Section “Modification of ZP Proteins by the CG Content” for
more details) (Wessel et al., 2001). CG exocytosis (CGE) is
executed after fertilization and functions to prevent polyspermy,
and regulate the early embryo’s developmental progression. To
facilitate this immediate response, CGs become localized at the
PM during oocyte maturation. In several organisms studied, it
has been proposed that the Ca2+ signal is transduced to control
the activity of maternal determinants. These factors allow then
the exocytosis of CG content to the extracellular space (Matson
et al., 2006; Mei et al., 2009; Fuentes et al., 2020). Although
cytosolic Ca2+ increases during egg activation, the factors that
regulate CG biology, as well as the block to polyspermy, remain
largely unknown. Here, we discuss the significant progress made
in linking animal phenotypes and genetics (phenogenetics) to
elucidate the molecular identity and functionality of factors
regulating CGE and fertilization.

GENERAL MECHANISMS FOR
POLYSPERMY BLOCKADE

Polyspermy generates a non-diploid zygote and causes
embryonic lethality in most sexual species (Rothschild,
1954; Eisen et al., 1984; Evans, 2020). Initial studies in rats
and rabbits have shown that there is a time frame in which
the gametes can optimally interact. Accordingly, the incidence
of polyspermy sharply increases when fertilization is delayed
after ovulation (Austin and Braden, 1953). Mechanical and
molecular mechanisms have been described as regulators of
polyspermy avoiding in different species (Wessel et al., 2001).
However, the mechanisms leading to polyspermy blockade
in mammals have not been completely understood (Schuel,
1978; Wong and Wessel, 2006). Currently, they are few known
molecular factors regulating polyspermy prevention. These
have been described in animal species such as sea urchin and
frogs, as well as their function mediating fast and slow blockade
(Wozniak and Carlson, 2020).
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FIGURE 1 | Schematic representation of universal molecular regulators acting in intracellular calcium signaling at egg activation and fertilization. To promote CG
exocytosis, calcium signaling is triggered by the sperm at fertilization. Then, the generation of phosphatidylinositol 4,5-bisphosphate (PIP2), 1,2-diacylglycerol (DAG)
and inositol 1,4,5-triphosphate (IP3) is mediated by phospholipase C (PLC). Finally, IP3 through the binding to the IP3 receptor (IP3R) releases Ca2+ from intracellular
stores. Thus, calmodulin (Cam) binds Ca2+ to participate in egg activation progression, including meiosis resumption. In the mammalian egg, Ca2+-specific
channels mediate the ion influx from the extracellular space and modulate Ca2+ oscillations. CG, cortical granule.

Changes in membrane potential associated with the fast
blockade of the polyspermy, were initially described in
echinoderms and amphibians (Jaffe and Cross, 1986). Early
studies in Strongylocentrotus purpuratus (pacific sea urchin)
indicate that this mechanism involved changes in the PM
potential, leading to a depolarization that electrically prevents
further fertilization from other sperm (Jaffe, 1976). This
mechanism is mediated by Ca2+ influx, through voltage-gated
Ca2+ channels, and Ca2+-dependent changes in membrane
potential (Chambers and de Armendi, 1979; Swann et al., 1992;
McCulloh et al., 2000). In amphibian, Ca2+- activated chloride
channels, mediates the fast blockade of polyspermy (Cross
and Elinson, 1980). These channels were recently identified
as TMEM16A in Xenopus laevis oocytes (Wozniak et al.,
2018). Given that echinoderms and amphibians are part of
the deuterostome taxonomic group and are closely related to
humans, it was rational to test whether the “fast polyspermy
blockade” strategy is present in mammalian eggs.

Electrophysiological measurements of the PM potential in
ZP-free hamster eggs show short hyperpolarization transients
at fertilization. These, depending on the number of events,
were associated with single-entry sperm or continuous series
without any long pause when polyspermy occurs (Miyazaki
and Igusa, 1981). In rabbit eggs with or without ZP, changes
in the PM potential were recorded after insemination. The
fertilization responses included a slow depolarization and
additional “insemination potentials” were observed. Also, these
are transients composed of short hyperpolarizations followed by
slow depolarizations. These changes were detected only in eggs
where sperms were added in the culture media, and were too
slow and small to account for a PM block (McCulloh et al., 1983).
Mouse eggs do not show an electrical response when fertilized
(Igusa et al., 1983; Jaffe et al., 1983).

The slow or mechanical blockade of the polyspermy
has been related to the cortical reaction, which includes
CGE and subsequently, the extracellular coat remodeling
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(Fahrenkamp et al., 2020). It has been reported the presence of
CG close to the PM in the cytosol of a variety of species, including
sea urchin eggs (Anderson, 1968). These eggs are surrounded
by an external coat known as a vitelline layer, which mediates a
specific fertilization acting as a barrier to exogenous sperm from
other species (Summers and Hylander, 1975).

Both CGs and the vitelline layer are critical structures
participating in the polyspermy blockade. First, in sea urchins, the
initial contact of the sperm with the egg triggers the formation
of the “fertilization membrane,” creating an area between this
membrane and the egg. This area is called perivitelline space.
Second, the content of CGs is released to the perivitelline
space, and just before the completion of the cortical reaction,
the gametes fuse. Third, the egg forms the “fertilization cone.”
Finally, and after ∼8 min of the initiation of the CG release,
the hyaline layer is formed and become thicker as the fertilized
egg matures. At that time, ∼14 min after insemination, the
fertilization membrane is referred as chorion (Anderson, 1968).

Similar sequence of events have been observed in other
invertebrate species such as starfish (Chambers, 1930; Holland,
1980; Schroeder and Stricker, 1983; Longo et al., 1995).
Structurally, the extracellular coats of vertebrate eggs are
composed of long, interconnected filaments that are made up
of highly conserved proteins (Litscher and Wassarman, 2007).
The most extensively characterized extracellular coat is the
mammalian ZP, and its general characteristics have been revised
in Section “Modification of ZP Proteins by the CG Content.”

As mentioned above, the exocytosis of CGs depends on the rise
of intracellular Ca2+ ([Ca2+]i) (Figure 1) (see Section “Dynamics
of the Ca2+ Levels in Animal Eggs”). The increase of ([Ca2+]i as
periodic oscillations, or as a single transient, is the first signal of
fertilization in all species studied so far (Kashir et al., 2013). The
link between the increase of [Ca2+]i and CG biology has not been
fully studied. In Section “Cortical Granule Exocytosis (CGE) in
Eggs: Models for a Calcium-Driven Factors Release Determining
Monospermic Fertilization,” we will focus on the CGE-Ca2+

signaling link as the main cellular association ensuring successful
fertilization in animals.

Oocytes are surrounded by granulosa cells, which provide
essential metabolites and molecules (Eppig, 1979). Granulosa
cells extend thin processes that penetrate the ZP to reach
the oocyte, called transzonal projections (TZPs). The tip of
these projections exhibits a foot-like structure that increases
the contact area (Macaulay et al., 2014). TZPs are actin- and
microtubule-rich structures contacting the oocyte (Albertini and
Rider, 1994) through gap junctions (Anderson and Albertini,
1976), and transport essential molecules participating in oocyte
maturation (Eppig, 1979; Norris et al., 2009; Macaulay et al.,
2016). Furthermore, the number of these structures diminishes
throughout oocyte maturation by TZPs retraction (Liu et al.,
2020). It has been shown that there is a relationship between
TZP integrity and the perivitelline space size (Yuan et al., 2017).
Notably, the perivitelline space size is related to polyspermy
prevention (Yoshida and Niimura, 2011). It has been shown that
TZPs are involved in polyspermy blockade since an abnormal
TZP retraction allows polyspermy. Liu et al. (2020) proposed that
the expantion of the perivitelline space is necessary to sever the

TZP, close the pores of ZP and prevent sperm penetration on the
ZP. Thus, avoiding polyspermy (Liu et al., 2020).

CORTICAL GRANULE BIOLOGY

CG Biosynthesis
Cortical granules were first described in sea urchin eggs 112 years
ago (Harvey, 1909). In mammals, C. R. Austin was the first
researcher characterizing them in hamster oocytes using phase-
contrast microscopy (Austin, 1956). These secretory vesicles can
be visualized as soon as the early stages of oocyte development
(Gulyas, 1980). The formation of CGs in rat and hamster
oocytes occurs in association with several small Golgi complexes,
showing a similar morphology and size, ranging from 0.2
to 0.6 µm (Austin, 1956; Gulyas, 1980; Cherr et al., 1988).
During the early stages of oogenesis, Golgi units hypertrophy
and proliferate. At this stage, the formation of CGs from
the Golgi complexes can be observed for the first time,
migrating toward the subcortical region of the oocytes (Gulyas,
1980). From hypertrophied Golgi, small vesicles are synthesized
and fused into larger ones, thus forming mature CGs that
eventually separate from the Golgi complexes, and migrate to
the surface or clump together in small groups (Gulyas, 1980; Liu,
2011).

In mice, the total number quantification of CGs per oocyte
is higher in mature oocytes than in activated oocytes, but
lower than the germinal vesicle (GV) oocytes (Figure 2). This
number decreases from 8,000 to ∼4,000 CGs at Metaphase of
Meiosis II (MII), when the oocyte completes its maturation
(Ducibella et al., 1988b, 1990). The greater number of CGs
in GV compared to mature oocytes (MII) is due to their loss
through the first polar body extrusion, premature exocytosis,
and biochemical modifications (Nicosia et al., 1977; Ducibella
et al., 1988a). Also, by the activity of factors that have not been
identified yet. However, a constant increase in peripheral CG
density following oocyte maturation has been reported in mouse
oocytes (Ducibella et al., 1988a, 1994). In contrast, in in vitro
matured pig oocytes, it has been shown that the mean value
of the peripheral density of CGs during mid-oogenesis was less
than in early oocytes (Kulus et al., 2020). This suggests that the
acquisition of meiotic competence and progression correlates
with a decrease in the number of CGs per 100 µm2 of the
ooplasmic cortex (Figure 2).

Cortical granule release has also been described in human
oocytes. It was demonstrated that CG exocytosis increases in
oocytes that acquired meiotic competence and their content
released to the perivitelline space (Rousseau et al., 1977). Using
eggs that were not fertilized during IVF procedures, Ducibella
et al. (1995) demonstrated that these unfertilized eggs showed CG
loss and a biochemically modified ZP (Ducibella et al., 1995). It
was also shown that human eggs have two populations of CG with
different diameter and density, G1 and G2. The G2 population is
secreted during all stages of oocyte maturation (Hinduja et al.,
1990). Additionally, CGE occurs following Intracytoplasmic
sperm injection (ICSI) in fertilized and activated eggs (Ghetler
et al., 1998). As shown in other species, human oocytes
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FIGURE 2 | Schematic representation of cortical granule spatial localization and number reduction during oogenesis. Colored CGs (green) are shown. In the early
oocyte, their biogenesis takes place and accumulate around the nucleus (N). Then, CGs move away of the germinal vesicle (GV) and translocate to oocyte periphery
during mid oogenesis. In the late oocyte, CGs anchor to the cortex until their exocytosis soon after fertilization or egg activation. The null accumulation of cortical
granules to one pole of the oocyte establishes the CG free domain (CGFD), present in some animal species. After CG biogenesis begins, their number decay
exponentially as oogenesis proceeds. Thus, CGs number display an about 2-fold decrease at the end of oogenesis. CG, cortical granule.

also undergo cytoplasmic rearrangements during maturation,
including CG migration to the cortex (Trebichalska et al., 2021).

Modification of ZP Proteins by the CG
Content
The initiation of fertilization relies on the binding of the sperm to
the ZP, a glycoprotein matrix that surrounds the oocyte. In mice,
it was first observed in primary follicles growing during oocyte
maturation (Odor and Blandau, 1969). The ZP is composed
of three highly conserved proteins: ZP1 (180 kDa), ZP2 (120–
140 kDa), and ZP3 (83 kDa). These factors represent 36, 47,
and 17% of the mouse ZP proteins, respectively (Bleil and
Wassarman, 1980a; Wassarman, 1988). Expression of ZP genes
is tightly regulated by the FIGα gene, which has functional
homologs in humans and zebrafish (Huntriss et al., 2002; Zhao
et al., 2008; Wang et al., 2009; Qin et al., 2018). Mice lacking
FIGα do not express ZP genes and are sterile (Soyal et al., 2000).
A fourth ZP protein, ZP4, has been reported in humans (Lefievre
et al., 2004) and rabbits (Stetson et al., 2012), but it is considered
a pseudogene in mice (Spargo and Hope, 2003). Female rabbits
lacking ZP4 showed a reduction in litter size, as well as a
disorganized and thinner ZP (Lamas-Toranzo et al., 2019).

The ZP proteins are synthesized as precursors in the oocyte,
which are then glycosylated to be secreted into the perivitelline
space (Bleil and Wassarman, 1980b; Epifano et al., 1995;
Boja et al., 2003). Structurally, ZP2 and ZP3 proteins consist
of an N-terminal secretory signal peptide, a conserved ZP
domain comprised of ∼260 amino acids, highly glycosylated

since contains highly conserved cysteines, and a C-terminal
propeptide with a single-spanning transmembrane domain (Bork
and Sander, 1992). The extracellular coat is referred to as the
chorion or vitelline envelope in fish and amphibians, respectively.
Phylogenetically, the extracellular coat proteins of these species
are similar to those in mammals, suggesting high evolutionary
conservation (Monne et al., 2006). Although it has been shown
that polyspermy prevention relies mostly on CGE, there are still
additional mechanisms that needs to be better investigated (i.e.,
electrical polyspermy blockade in mammals, specific recognition
between the sperm and egg that can certainly affect the
polyspermy blockade, among others). Additionally, less is known
about how the contents of CGs modify the extracellular coat and
interact with ZP-proteins to ensure a definitive sperm blocking.

The content of CGs in mammals is estimated to be
∼100–350 picograms of proteins (Green, 1997). Several
studies have demonstrated the presence of glycosylated
components, proteinases, ovoperoxidase, calreticulin,
N-acetylglucosaminidase, p32, and peptidylarginine deiminase
(Hoodbhoy and Talbot, 1994; Liu, 2011). The release of the
CG content promotes the modification of the ZP by chemically
modifying its proteinaceous components. A key component
of the CG content is ovastacin (Figure 3), an oocyte-specific
zinc metalloendopeptidase encoded by the mouse Astl gene
(Burkart et al., 2012). This protein is initially stored in the CGs
and then exocytosed to the perivitelline space after fertilization.
The target glycoprotein of ovastacin function is the ZP2,
particularly the domain ZP251−149, which is essential for both
gamete binding and female fertility (Avella et al., 2014). Once
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the sperm binds to ZP2, it triggers the acrosome reaction. The
migration of CGs to the cortex is critical for posterior CGE.
Next, the gametes fuse, and the CGs exocytose their content
(Wessel et al., 2001; Ducibella et al., 2002; Wong and Wessel,
2006; Vogt et al., 2019). Ovastacin cleaves ZP2 and mutants
lacking its activity show that the sperm binds to the ZP even
in a 2-cell stage embryo (Hinsch and Hinsch, 1999; Gahlay
et al., 2010; Burkart et al., 2012). These results highlight the
importance of CG-derived factors for successful ZP remodeling
and monospermic fertilization.

CG Transport and Cortex Accumulation
In mammals, CGs are constantly formed during early oogenesis,
but their spatial localization changes as meiosis progresses (Liu,
2011). In zebrafish, CG localization at the PM is thought to
be due to displacement by yolk proteins accumulating in the
center of the oocyte (Selman et al., 1993; Fernandez et al., 2006).
In frog and mouse, CG localization depends on their transport
along actin filaments, but independent of the microtubule
cytoskeleton, as occurs in mammals and sea urchin oocytes
(Wessel et al., 2001, 2002).

In pigs, CGs are distributed in the center of the early oocyte.
Yet, during mid-oogenesis, a concentration twice higher of these
secretory vesicles can be found at the cell periphery, suggesting
their translocation from the central region toward the cortex.
Moreover, CG translocation to the cortical area is associated with
a high meiotic competence (Kulus et al., 2020). By analyzing
fixed mouse oocytes, it has been shown that CG transport to the
PM is a microfilament-dependent process (Connors et al., 1998;
Wessel et al., 2002). In both mouse and sea urchin oocytes, it
has been suggested that CGs bind to the actin cytoskeleton at
the beginning of meiotic maturation. Then, they migrate through
the oocyte without a microtubule-based contribution (Wessel
et al., 2002; Cheeseman et al., 2016). In this context, CGs move
along a cytoplasmic actin network in a process regulated by
Rab27a, whose function allows their translocation to the PM
(Figure 3). Additionally, Rab27a mutants have shown an increase
in polyspermy due to a total absence of CG recruitment to
the oocyte cortex (Cheeseman et al., 2016). It has also been
shown that CG transport to the PM is controlled by Rab11a. It
transiently binds to CGs and increases their translocation speed
toward the cortex in a myosin Vb-dependent manner (Schuh,
2011; Cheeseman et al., 2016). On the other hand, the CG anchor
in the egg cortex has been associated with the maternal gene
MATER (Figure 3). Thus, MATER, located at the subcortical
maternal complex (SCMC), determines their docking at the egg
cortex and controls the cortical actin clearance promoting CGE
(Vogt et al., 2019).

The distribution of CGs at the egg cortex varies between
species. For example, areas where CGs are not present (CG
free domain, CGFD) have been described in hamster (Szollosi,
1967; Okada et al., 1986), mouse (Ducibella et al., 1990), and
rat oocytes (Szollosi, 1967) (Figure 2). In mice, the formation of
distinct CGFD was associated with metaphase I and metaphase
II chromosomes (Connors et al., 1998). Apparently, this region
was first described as exclusive in rodents, since oocytes from
felines, equines, bovines, pigs, and humans lack this domain

(Liu, 2011). However, zebrafish eggs also lack CGs at the so-
called animal pole, which gives rise to the developing embryo
(Nelsen, 1953). Rab6a is one of the proteins functioning in
CGFD formation. In fact, Rab6a knock-down mice exhibit a 50%
reduction of CGFD formation (Ma et al., 2016). This indicates
that the formation of a well-defined CG-free cytoplasmic domain
is a conserved and Rab proteins-mediated mechanism of oocyte
behavior for fertilization preparation. It has been hypothesized
that the function of CGFD is to protect the maternal chromatin.
This hypothesis is supported by the fact that sperm-egg fusion
occurs in a low frequency in this area (Johnson et al., 1975).
However, the CGFD physiological significance and its function
at fertilization remain elusive.

CORTICAL GRANULE EXOCYTOSIS
(CGE) IN EGGS: MODELS FOR A
CALCIUM-DRIVEN FACTORS RELEASE
DETERMINING MONOSPERMIC
FERTILIZATION

Overview of the Role of Ca2+ Signaling in
Egg Activation
In sexual reproductive organisms, the fusion of female and male
gametes is a critical step to trigger a series of events that will lead
to embryo development. These occur during a developmental
frame window known as egg activation, and are characterized
by several sequential steps, including two main events: CGE and
cytoplasmic reorganization (Fuentes et al., 2018, 2020; Wakai
et al., 2019). The egg, in response to fertilization, displays several
transient elevations of [Ca2+]i, known as calcium oscillations,
which promote CGE and cytoplasmic movements. Calcium
oscillations are accompanied by synthesis and posttranslational
modifications of new proteins (Potireddy et al., 2006; Roux et al.,
2006), maternal mRNAs degradation, de novo transcription of
zygotic RNAs (Hamatani et al., 2004), among other key events
necessaries for early pre-implantation development [for review
(Krauchunas and Wolfner, 2013)]. Moreover, the number of
sperm-heads that fuse at fertilization determines the frequency
of Ca2+ oscillations, increasing with the number of sperms
fertilizing. Thus, in polyspermic eggs Ca2+ starts oscillating
earlier than in monospermic ones (Faure et al., 1999).

It is well-established that a rise in [Ca2+]i is universally
required for egg activation. Thus, in all animals, it appears
that the rise in [Ca2+]i release involves activation of the
phosphoinositide (PI) pathway, which results in the production
of inositol 1,4,5-triphosphate (IP3) and 1,2-diacylglycerol (DAG)
(Figure 1). IP3 then binds to its receptor (IP3R) on the ER,
promoting the release of Ca2+ (Miyazaki et al., 1992; Xu et al.,
1994; Sharma and Kinsey, 2008). An important downstream
effector of this Ca2+ signaling is Ca2+/calmodulin-dependent
kinase II (CaMKII), which also controls egg activation in most of
the organisms studied up to date (Markoulaki et al., 2003; Knott
et al., 2006; Backs et al., 2010).

Genetically, the study of Ca2+ signaling and its role in
egg activation has revealed that CGE relies on maternally
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FIGURE 3 | Schematic representation of major steps and molecular regulators for cortical granule biogenesis, translocation, and exocytosis in the zebrafish (A) and
mouse (B). In the early oocyte, CGs are formed from the Golgi as immature secretory vesicles. In zebrafish, their maturation is regulated by Suf/Spastizin. During mid
and late oogenesis, mature CGs are recruited and translocated to the oocyte cortex. This process is coordinated by an actin-based network and several maternal
factors including Rab27a and Rab11a. Ultimately, MATER functions to anchor CGs at the cell cortex. By egg activation/fertilization, their content is exocytosed. This
process is regulated by maternally-loaded molecules such as Brb/HnRNP I, Ybx1, Dachsous 1b, Aura/Mid1p1l in the zebrafish egg, and Rab3a, Rabphilin 3A,
Rab6a, and the SNARE complex in the mouse egg. Notice that shaded proteins represent those maternally-loaded molecules that could also be present in the
zebrafish female gamete. CG, cortical granule; SCMC, subcortical maternal complex.

inherited molecules [reviewed in Fuentes et al. (2018)]. However,
the identity of most of the Ca2+-dependent regulators and
mechanisms orchestrating egg activation in animals remains
unknown. We will discuss current knowledge of maternal factors
implicated in CGE in Section “Genetic Regulation of CG Biology
During the Oocyte-to-Embryo Transition: Lessons From Mouse
and Zebrafish Model Systems.”

Dynamics of the Ca2+ Levels in Animal
Eggs
In sea urchin and Xenopus, fertilization triggers several key
events that promote the egg-to-embryo transition. The sperm
contribution does not consist of DNA only, since it also delivers
phospholipase Cγ (PLCγ) to the haploid egg (Lee and Shen, 1998;
Carroll et al., 1999; McDougall et al., 2000; Sato et al., 2006; Bates
et al., 2014). This enzyme converts the phosphatidylinositol 4,5-
bisphosphate (PIP2) present in the PM into IP3 (Ciapa et al., 1992;
Snow et al., 1996). The rise of IP3 concentration induces Ca2+

release from the ER through the activation of IP3 receptor (IP3R);
thus, increasing the [Ca2+]i (Steinhardt et al., 1977; Kubota et al.,

1987; Runft et al., 1999). Microinjection of heparin, an IP3R
antagonist, decreases the rate of increase in [Ca2+]i and the
propagation speed throughout the fertilized egg in sea urchin
(McDougall et al., 2000). Ryanodine receptor (RyR), a Ca2+

channel sensitive to Ca2+ ions and caffeine, is also involved
in its release from the ER during fertilization in these eggs.
Ruthenium red, another and unspecific RyR antagonist does
not entirely block Ca2+ release from the ER. However, when
ruthenium red and heparin are co-administered into sea urchin
eggs, the increase of Ca2+ is completely blocked (Galione et al.,
1993). In sea urchin, the Ca2+ wave initiates and propagates
throughout the cell in ∼20–30 s after the sperm-egg interaction
(McDougall et al., 2000). The elevation of [Ca2+]i consists of
a single peak that propagates across the cell and lasts for ∼2–
3 min (Steinhardt et al., 1977). This increase in the [Ca2+]i
is sufficient to resume the cell cycle (Steinhardt and Epel,
1974). This signaling mechanism is also conserved in X. laevis
eggs (Larabell and Nuccitelli, 1992; Nuccitelli et al., 1993;
Runft et al., 1999).

The increase of [Ca2+]i in response to fertilization in Xenopus
eggs involves Ca2+ release from the ER mediated by the
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activation of the IP3R. Furthermore, in this vertebrate organism,
microinjection of IP3 is sufficient to induce the Ca2+ waves
throughout the egg cortex (Busa et al., 1985). The Ca2+ wave in
X. laevis is not homogeneously distributed throughout the egg,
showing lower Ca2+ concentration in the cytoplasm compared
to the cortex. Moreover, the speed Ca2+ propagation also
varies. Thus, the cortical wave travels faster (8.9 µm/s) than
the cytoplasmic (5.7 µm/s) Ca2+ wave to the center of the
egg (Fontanilla and Nuccitelli, 1998). In addition to the Ca2+

dynamics, a protein kinase C (PKC) wave has also been detected
during Xenopus egg activation (Larabell et al., 2004). This wave
is triggered by the production of DAG as a product of PIP2
hydrolysis. DAG activates PKC, producing a wave that follows the
Ca2+ one, which propagates at the same speed and it is critical to
CGE (Larabell et al., 2004).

In zebrafish, the released Ca2+ is necessary and sufficient for
many egg activation events, including CGE (Mei et al., 2009;
Fuentes et al., 2018). There are two regionalized Ca2+ waves that
originate at the point of sperm-egg interaction, or animal pole,
and culminate at the vegetal pole (Sharma and Kinsey, 2008).
Also, the formation of well-defined cytoplasmic domains during
oogenesis spatially restricts signaling components such as Src
family kinases (SFKs) and PLCγ. These molecules participate in
providing the molecular basis of egg activation in this species
(Sharma and Kinsey, 2006; Fuentes et al., 2018). Ultimately, the
study of genetic models (i.e., maternal-effect mutants; see Section
“Insights Into the Maternally Regulated Mechanism of ZP and
Perivitelline Space Formation”) has revealed egg components
regulating its activation, Ca2+ dynamics, and CG biology (Mei
et al., 2009; Kanagaraj et al., 2014; Li-Villarreal et al., 2015; Eno
et al., 2016).

Monitoring of Ca2+ in real-time with luminescence and
either fluorescent probes or tagged associated proteins has been
a valuable approach for the study of egg activation in vivo.
These tools have revealed how [Ca2+]i behaves in a given
developmental period during early embryogenesis (Miyazaki
et al., 1986; Whitaker, 2006; Sharma and Kinsey, 2008). [Ca2+]i
waves can last over as short as seconds, or more sustained
signals as hours (Kashir et al., 2013). Spatially, these can either
be visualized cortically or invading the central region of the
zebrafish egg (Sharma and Kinsey, 2008). Such behavior might
be possible thanks to internal Ca2+ release, mainly from the ER
(Mei et al., 2009; Machaty et al., 2017), although it is known that
the maintenance of the Ca2+ oscillations in mouse oocytes is
depending on extracellular Ca2+ (Kline and Kline, 1992).

Finally, in mammals, [Ca2+]i oscillations are fundamental for
three critical processes taking place during egg activation. First,
initial Ca2+ oscillations are responsible for the resumption of
the cell cycle. Specifically, the egg finishes meiosis II, inhibiting
the Maturation or M-Phase promoting factor (MPF) through a
CamK II process. MPF is a protein complex form by the cyclin
B-Cdk1 dimer (Arion et al., 1988; Dunphy et al., 1988; Gautier
et al., 1988; Draetta et al., 1989; Labbe et al., 1989; Meijer et al.,
1989; Gautier et al., 1990) and great wall kinase (Gwl) (Hara et al.,
2012). Second, Ca2+ oscillations are involved in the pronucleus
formation by reducing the activity of mitogen-activated protein
kinase (MAPK). After the pronucleus formation during the

first interphase, Ca2+ oscillations cease. Third, Ca2+ oscillations
induce the release of CG. The CGE is finished between the first
hour after sperm-egg fusion (Stewart-Savage and Bavister, 1991;
Tahara et al., 1996).

During the fusion of gametes, mammalian sperm releases
PLCζ (Saunders et al., 2002; Kouchi et al., 2004). This protein
hydrolyzes phosphatidylinositol 4,5-biphosphate (PIP2) to IP3
and DAG. The incorporation of PLCζ into the oocyte triggers
the production of IP3 and the release of Ca2+ from the ER
through the activation of the IP3R (Miyazaki et al., 1993;
Saunders et al., 2002; Kurokawa et al., 2004) (Figure 1). Thus,
sperms displaying a down-regulated PLCζ expression exhibit
a reduction or an absence of Ca2+ oscillations (Knott et al.,
2005). Interestingly, mice lacking PLCζ produces sperms that are
not able to trigger Ca2+ oscillations, showed severely reduced
fertility. However, they are not completely infertile, suggesting an
additional mechanism(s) to ensure fertility. Fertilized eggs with
null-PLCζ showed a higher rate of polyspermy, confirming the
role of Ca2+ oscillations in monospermic fertilization (Hachem
et al., 2017; Nozawa et al., 2018). Ca2+ oscillations last for
hours (Cuthbertson and Cobbold, 1985; Miyazaki et al., 1986);
however, to be maintained, Ca2+ influx from the extracellular
media is needed (Kline and Kline, 1992; Wakai et al., 2011).
Ca2+-permeable channels are expressed in the oocyte during the
maturation process, and at the MII stage (Carvacho et al., 2018).
These channels are responsible for replenishing the intracellular
ER stores during oocyte maturation and would contribute to the
Ca2+ influx during egg activation (Miao et al., 2012; Carvacho
et al., 2013, 2016, 2018; Bernhardt et al., 2018) (Figure 1).

Dynamics of Ca2+-Dependent Proteins
During CGE in Animal Eggs
Spatiotemporal organization of maternally-inherited molecules
and Ca2+-dependent protein functions are fundamental to
orchestrate egg activation. Several mutant and knock-down
animals, displaying abnormal phenotypes during the oocyte and
egg development, have flourished our knowledge of the factors
regulating this process (Mei et al., 2009; Kanagaraj et al., 2014;
de Paola et al., 2015; Li-Villarreal et al., 2015; Cheeseman et al.,
2016; Eno et al., 2016; Vogt et al., 2019). Also, as spatially
restricted molecular profiles are also perturbed in maternal-
effect mutants, it is possible to dissect functional relevance
and genotype–phenotype associations during the oocyte-to-
egg transition, including those associated with CG behavior
(Figure 3). To study them, a combination of imaging and
pharmacological tools has been pivotal to decipher Ca2+-
dependent mechanisms during egg activation (Mei et al., 2009;
Kanagaraj et al., 2014; Li-Villarreal et al., 2015; Eno et al., 2016).
These approaches are expediting the description of cellular,
molecular, and physiological phenotypes during CG biology in
animal species.

In sea urchin eggs, CGE is controlled by a protein complex
sensitive to Ca2+ called SNARE (Soluble N-ethylmaleimide
sensitive-factor attachment protein receptor). This complex is
composed of proteins attached to the membrane enclosing the
secretory vesicle (vSNARE), and present in the target membrane
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such as the PM (tSNARE). To allow a rapid release of the CG
content after fertilization, these vesicles are docked to the PM
through the interaction of vSNARE with tSNARE proteins. The
vSNARE protein expressed in sea urchin eggs is synaptobrevin
(also called VAMP) (Avery et al., 1997). The tSNARE proteins
expressed in these eggs are syntaxin and SNAP-25 (Avery et al.,
1997; Conner et al., 1997; Coorssen et al., 2002).

Another critical protein for CGE present into CGs is
synaptotagmin-1 (syt1) (also known as p65) (Leguia et al., 2006).
Syt1 contains two motifs that are sensitive to Ca2+ ions, C2A
and C2B, that are important for exocytosis (Perin et al., 1990,
1991). Also, synaptobrevin, syntaxin, and SNAP-25 interact to
form a molecular zipper allowing CG docking to the PM (Gao
et al., 2012; Yoon and Munson, 2018). This conformation forms
a trans-SNARE complex and when [Ca2+]i increases, the ions
bind to the C2 domain of syt1. This binding favors the association
of this protein to the SNARE complex (Leguia et al., 2006). This
interaction also induces conformational changes that trigger the
zippering of the SNARE complex; thus, promoting the fusion of
CGs with the PM (Gao et al., 2012). In addition, the sec1 and
munc18 proteins (also known as SM proteins) also regulate CG
fusion with the PM through the binding to syntaxin (Leguia and
Wessel, 2004). This molecular contact stabilizes syntaxin in the
SNARE complex (Dulubova et al., 1999).

On the other hand, Xenopus eggs exocytose CGs in a Ca2+-
independent manner to block polyspermy. In fact, the activation
of the isoform η of the protein kinase C (PKCη) is crucial
to initiate CGE (Bement and Capco, 1989; Gundersen et al.,
2002). Thus, the inhibition of PKCη by retinoid acid blocks
egg activation in frogs. In addition, it has been shown that
myosin 1e is expressed in Xenopus oocytes and eggs, and upon
CGE stimulation, it relocalizes and associates with the vesicles.
Functionally, disruption of this motor protein inhibits CGE
(Schietroma et al., 2007).

In zebrafish, the spatial and temporal localization of
maternally-deposited Ca2+ effectors within the egg would be
critical for its activation progression (Mei et al., 2009; Kanagaraj
et al., 2014; Li-Villarreal et al., 2015; Eno et al., 2016). These
factors are spatially restricted and functioning into cortical and
central cytoplasmic domains (Fuentes et al., 2018; Fuentes et al.,
2020) (Figure 3A). As in mammals, a cortical Ca2+ wave triggers
the exocytosis of CGs in zebrafish, while the central wave
promotes the actin-dependent reorganization of the cytoplasm
(Fuentes and Fernandez, 2010; Ajduk et al., 2011; Fuentes et al.,
2018; Shamipour et al., 2019). Additionally, the organization
and function of the actin cytoskeleton has also been studied in
the zebrafish egg, where it plays a critical role in CGE (Becker
and Hart, 1999; Mei et al., 2009). Whether an actin network
participates in CG translocation during zebrafish oogenesis has
to be demonstrated.

In mammalian MII eggs, one of the tSNARE proteins
expressed is syntaxin 4, which is localized in the PM together
with the CGs (Iwahashi et al., 2003). Nonetheless, its participation
in CGE has not been shown. Ikebuchi et al. (1998) showed
that SNAP-25 critically functions in CGE in mouse eggs, since
its cleavage by botulinum neurotoxin A blocks this process
(Ikebuchi et al., 1998). In contrast, Mehlmann et al. (2019)

showed that SNAP-23, but not SNAP-25, is expressed in mouse
MII eggs (Mehlmann et al., 2019). This group also found that
SNAP-23 plays a role in CGE at the PM. In addition, incubation
of eggs with a specific antibody against this protein inhibits
its function and prevents CGE (Mehlmann et al., 2019). The
unspecificity of the antibodies used by Ikebuchi et al. (1998) could
explain the discrepancy between these studies (Ikebuchi et al.,
1998) (Figure 3B).

VAMP is also expressed in GV and MII mouse
oocytes and eggs. Particularly, VAMP1 and VAMP3
mRNAs are present and translated into proteins in
MII eggs. Both isoforms, but not VAMP2, are critical
for CGE since microinjection of the light chain
of tetanus toxin or anti-VAMP1 and anti-VAMP3
antibodies impairs this process (de Paola et al., 2021)
(Figure 3B).

The protein complex that determines CG docking in the
egg cortex senses the increase in the [Ca2+]i that triggers their
exocytosis (Zhu et al., 2019). However, most of the molecular
aspects of the signal transduction regulating this process remain
to be discovered. Mammalian syt1 plays an important role in
the exocytosis pathway. Syt1 has been described as associated
with synaptic vesicles of neurons (Geppert et al., 1994) and
chromaffin granules (Schonn et al., 2008). As in sea urchin
eggs, syt1 also interacts with SNARE proteins; thus allowing the
fusion of the CG membrane with the egg’s PM. In addition,
it has been shown that knocking down Syt1 in mice results in
both the inhibition of [Ca2+]i and CGE impairment (Zhu et al.,
2019) (Figure 3B).

Another important factor regulating CG biology is the
GTPase Rab3A. This GTPase colocalizes with CG in mouse
oocytes and is not expressed peripherally after their exocytosis.
The injection of an antibody against Rab3A blocks CGE in
a concentration-dependent manner, indicating a critical role
of this factor in this process (Bello et al., 2016). Rabphilin-
3A, a Rab3A interactor partner, is also expressed in mouse
oocytes. Rabphilin-3A has within its structural features, C2
domains homologous to the synaptotagmin C2 domains. These
domains specifically bind Ca2+ (Shirataki et al., 1993), as
well as Rab3A-GTP, alpha-actinin, and ß-adducin (Yamaguchi
et al., 1993; Miyazaki et al., 1994; Kato et al., 1996). It has
also been shown that Raphilin-3A spatially localizes at the
cortical region of the oocyte and is involved in Ca2+-dependent
CGE. This is believed since the injection of either the N- or
C-terminal region of Rabphilin-3A into mouse oocytes inhibits
the exocytosis pathway (Masumoto et al., 1996) (Figure 3B).
Rab3a is also expressed in sea urchin eggs (Avery et al., 1997).
In fact, microinjection of the effector peptide of this factor
into these cells prevent CGE. Co-microinjection of the effector
peptide with IP3 also blocked CGE, suggesting that Rab3a
functions after the docking of the CGs to the PM (Conner
and Wessel, 1998). Once CGs undergo exocytosis and release
their content, the complex turns into a cis-SNARE configuration
(Stein et al., 2009).

It has been shown that α-SNAP, γ-SNAP, and NSF are
expressed in mouse GV and MII oocytes. However, only α-
SNAP and NSF are essential for CGE since the microinjection of
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either antibodies against them or their mouse mutant versions,
impairs this process (de Paola et al., 2015). Whether other factors
regulating SNARE function participate in CGE is still unknown,
and remains to be explored.

GENETIC REGULATION OF CG BIOLOGY
DURING THE OOCYTE-TO-EMBRYO
TRANSITION: LESSONS FROM MOUSE
AND ZEBRAFISH MODEL SYSTEMS

Overview of the Maternally Controlled
Egg Activation
One of the first steps in animal development is the transition
from the oocyte to a developmentally active and totipotent early
embryo –the oocyte to embryo transition (Whitaker, 2006). This
critical developmental window relies on the expression of the
maternal genome in the oocyte and the function of its gene
products in the developing embryo. Thus, maternally-provided
factors contribute to executing dramatic changes at the molecular
level in the fertilized/activated egg and zygote, and by doing so, it
conducts essential activities by the early embryo. These include
the correct regulation of the cell cycle, synchronic cleavage
divisions, axis patterning, and ultimately, dramatic changes in the
zygotic genome structure organization (Fuentes et al., 2020).

The oocyte is a highly differentiated and transcriptional silent
cell type and, prior to the initiation of maturation, it is arrested
at the prophase of meiosis I. Following release from arrest,
the oocyte resumes meiosis I and begins meiosis II. Then it
is arrested again at metaphase II until fertilization. With the
multitude of functions that regulate mRNAs and proteins prior
to gametes interaction to form a zygote, the maternal genetic
program also triggers the initiation of complex and spatially
distributed cellular responses in preparation for egg activation
(Clift and Schuh, 2013).

The egg activation events, such as cortical reaction and
cytoplasmic reorganization, are largely driven by the function
of maternal gene products. These functions underlie the
importance of the exact timing and the amount of their
production during oogenesis and prior fertilization to control
this process (Fuentes et al., 2020). However, knowledge of
the molecular identity of most of these maternal factors
remains incomplete. Also, the post-translational regulation,
action, and functional significance of these maternal factors in
determining egg activation and embryogenesis progression are
poorly understood.

In this section, we discuss why the zebrafish and mouse
emerge as phenogenetic model systems to study maternal
gene function during the oocyte-to-embryo transition.
Additionally, maternal-effect mutants represent a unique
tool to understand how fundamental aspects of egg activation
are regulated and coordinated. This maternal control of
egg activation is critical for the onset of zygote formation
and proper embryogenesis. Further gene discovery by using
these tools will be pivotal to understand the evolutionary
conservation of the mechanisms governing egg activation. It

will also provide new insights into egg activation failures, and
help to understand human infertility from a molecular and
phenotypic perspective.

Insights Into the Maternally Regulated
Mechanism of ZP and Perivitelline Space
Formation
As we discussed earlier, the ovulated mammalian egg is
surrounded by an extracellular coat called the ZP, known as the
chorion in fish species. For the egg to be fertilized, sperm first
penetrate the corona radiata (or granulosa cells). Then, it binds
to the ZP (Avella et al., 2014) and is specifically recognized by the
egg receptor Juno (Bianchi et al., 2014). The acrosomal reaction
allows the sperm to penetrate the cumular cells and the ZP, and
finally, fuse with the egg’s PM (Kim et al., 2008).

In most teleost species, such as zebrafish, sperm lack an
acrosome and enter the egg through a funnel-shaped structure
called the micropyle (Hart and Yu, 1980; Wong and Wessel,
2006; Yanagimachi et al., 2017). As a result, the sperm does
not need to bind directly to the ZP, and it is proposed that ZP
proteins in zebrafish are purely structural (Wang and Gong, 1999;
Onichtchouk et al., 2003; Aagaard et al., 2006). The study of
maternal-effect mutants suggests that gene expression products
modulate the separation of the chorion from the egg’s PM to form
the perivitelline space or chamber (Mei et al., 2009; Kanagaraj
et al., 2014; Eno et al., 2016; Hau et al., 2020). These molecules
are supplied by the mother during oogenesis. Genetic screens
in zebrafish have identified a small set of mutant genes acting
in CG biology (Mei et al., 2009; Kanagaraj et al., 2014; Li-
Villarreal et al., 2015; Eno et al., 2016; Sun et al., 2018). For
instance, maternal-effect brom bones (brb)/heterogeneous nuclear
ribonucleoprotein I (hnRNP I) mutants are ventralized, and
display CGE and a chorion elevation defect. It indicates that this
gene is required for egg activation (Mei et al., 2009). Remarkably,
activated mutant eggs have disrupted the ER IP3-dependent Ca2+

release. Also, increases in [Ca2+]i at fertilization are required for
CGE and actin remodeling. These findings suggest an additional
role for brb/hnRNP I, as a regulator of the actin cytoskeleton-
based kinetics of CGE in a Ca2+-dependent manner (Mei et al.,
2009). The association between actin filaments function and
CGE pathway has also been demonstrated by studying additional
mutant phenotypes such as dachsous1b and aura/mid1ip1l
(Figure 3A) (Li-Villarreal et al., 2015; Eno et al., 2016).

Another maternal factor, Souffle (Suf), is also required for
controlling CG function during egg activation (Kanagaraj et al.,
2014). In suf mutant oocytes, CGs are smaller and do not
exocytose in the egg. Interestingly, mutant eggs also display
defects in the perivitelline space formation and remodeling
of the egg surface, likely due to alterations of the rate of
actin polymerization (Kanagaraj et al., 2014). The mutant
gene encodes the Spastizin protein, which modulates secretory
granule maturation and it is implicated in Hereditary Spastic
Paraplegia disease in humans (Hanein et al., 2008; Slabicki et al.,
2010; Hirst et al., 2013). Therefore, Suf/Spastizin functions to
form CGs from immature secretory granules and to control
their fusogenic activity during oogenesis and egg activation,
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respectively (Figure 3A) (Kanagaraj et al., 2014). Recently, it
was found that maternal ybx1 crispant oocytes fail to mature.
In addition, mutant eggs display severe CG accumulation, thus
exhibiting a penetrant chorion elevation defect phenotype (Sun
et al., 2018). These findings have revealed a new factor acting in
vertebrate oocyte maturation and egg activation. Ybx1 regulates
protein translation, therefore, further analyses of the maternal-
effect ybx1 mutant would shed light into the translational
state of proteins orchestrating CGE and chorion elevation after
fertilization (Figure 3A).

In mammals, the ZP is important for species-specific sperm-
egg binding (Bianchi and Wright, 2020). A low percentage of
immature oocytes from ZP1-null mice, show ectopic granulosa
cells in the perivitelline space, which is accentuated in MII
eggs likely due to the lack of ZP integrity. Interestingly, female
mice showed only decreased fertility (Rankin et al., 1999). The
ZP of ZP2-null mice is thinner compared to a wild-type egg,
since it fails to form and stabilize the matrix generating a
complete lack of the ZP. The females are infertile and do not
produce early embryos and live birth mice (Rankin et al., 2001).
Additionally, it has been demonstrated that ZP2 mediates sperm
binding to the egg (Avella et al., 2014). This protein is the direct
substrate of ovastacin factor that cleaves the N-termini domain
of ZP2 (Gahlay et al., 2010; Burkart et al., 2012; Avella et al.,
2014; Tokuhiro and Dean, 2018). Intriguingly, ovastacin-null
mice (Astlnull) are subfertile, suggesting still unknown additional
mechanisms regulating polyspermy blockade in mammals.

Mice lacking the Zp3 gene do not show a zona matrix and are
sterile (Liu et al., 1996; Rankin et al., 1996). ZP3-null females can
ovulate a low percentage of eggs without ZP, but early embryos do
not develop (Rankin et al., 1996). Loss-of-function experiments
show that ZP2 and ZP3 are necessary molecules for ZP and the
perivitelline space formation, allowing normal fertilization and
early embryo development (Liu et al., 1996; Rankin et al., 1996).

ZP proteins are heavily glycosylated (Bork and Sander, 1992).
Initially, it was suggested that sperm attaches to the ZP3 through
O-glycosylation sites (Florman and Wassarman, 1985). However,
it was shown that O-glycans are not required for neither
sperm binding nor fertilization (Williams et al., 2007). In fact,
using ZP mutants, it was shown that CGE, modification of the
ZP2 and polyspermy prevention are glycan-independent gamete
recognition processes (Tokuhiro and Dean, 2018).

On the other hand, N-glycosylation emerges as a critical post-
translational modification for embryo development (Yonezawa
et al., 1995; Nakano et al., 1996; Shi et al., 2004). To
date, there is only one known regulator of N-glycosylation
during vertebrate oogenesis, the Mgat1 factor (Shi et al.,
2004). It functions in the medial Golgi to modify the target
polypeptide chain by adding glycans (Kumar et al., 1990).
When Mgat1 is deleted in mammalian ovaries, it causes
a lack of complex or hybrid N-glycans, thinner ZP, and
reduced perivitelline space. Furthermore, female mutants have
decreased fertility and a percentage of the embryos showed
a retarded embryonic development (Shi et al., 2004). These
altered phenotypes suggest that N-linked glycosylation acts as
a regulatory mechanism during oogenesis. Whether Mgat1-
mediated post-translational regulation controls CG biology and

the function of associated factors during the oocyte-to-embryo
transition, remains still unresolved.

As we mentioned earlier, during meiotic maturation and prior
to fertilization, there is an early release of a small number
of CGs (Nicosia et al., 1977; Ducibella et al., 1988a). The
ovastacin-mediated premature cleavage of ZP2 hardens the ZP
and prevents sperm binding to the egg (Burkart et al., 2012).
Nonetheless, this proteolytic activity is inhibited by micromolar
concentrations of the liver-derived plasma protein Fetuin-b. This
highly specific inhibitor of ovastacin prevents the ZP hardening
before fertilization (Dietzel et al., 2013; Korschgen et al., 2017;
Karmilin et al., 2019). Fetuin-b is a member of the cystatin
superfamily encoded by the FETUB gene in humans and mice,
sharing 61% homology (Olivier et al., 2000). Fetuin-b is produced
by the liver and is secreted to the peripheral tissues through
the circulatory system (Denecke et al., 2003). Fetuin-b-null mice
are infertile due to the premature cleavage of ZP2 (Dietzel
et al., 2013). Thus, when fertilization occurs, CGs release a
large amount of ovastacin that overcomes inhibition by fetuin-
b and promotes the ZP hardening, and subsequent polyspermy
blockade (Dietzel et al., 2013; Stocker et al., 2014) (Figure 3B).

Insights Into the Maternally Regulated
Mechanism of Ca2+-Influx and CGE
Several Ca2+-permeable channels are expressed in mouse eggs.
One of them is the voltage-gated Ca2+ channel 3.2 (Cav3.2)
that belongs to the T-type family (Ramirez et al., 2017). It
exhibits low-threshold voltage activation and it has been shown
to be expressed in the mouse egg (Peres, 1987; Bernhardt
et al., 2015). Cav3.2 channels contribute to the accumulation
of Ca2+ in the ER during maturation (Bernhardt et al., 2015).
Alternatively, the TRPV3 channel, a Ca2+ channel that belongs
to the vanilloid subfamily of the Transient Receptor Potential
(TRP) channel family, is differentially expressed during mouse
oocyte maturation, reaching its higher PM expression prior
to fertilization (Carvacho et al., 2013; Lee et al., 2016). The
activation of TRPV3 can trigger massive Ca2+ influx leading to
parthenogenetic activation (Carvacho et al., 2013). Additionally,
TRPM7, a TRP channel that belongs to the melastatin subfamily,
has been identified in mouse oocytes, eggs, and also in 2-cell
stage embryos (Carvacho et al., 2016). TRPM7 activity can be
regulated by voltage, pH, magnesium, spermine (Kozak et al.,
2002, 2005), and PIP2 (Runnels et al., 2002). In addition, it has
been shown that TRPM7 promotes Ca2+ influx, contributing
to replenishing the ER stores and modulating Ca2+ oscillations
during fertilization (Bernhardt et al., 2018). Finally, Cav3.2 and
TRPV3 double KO have shown decreased fertility, altered oocyte
ER Ca2+ dynamics (fill and re-fill), and severely impaired Ca2+

oscillations in response to fertilization (Mehregan et al., 2021).
As discussed above, [Ca2+]i dynamics are also important

to regulate actin cytoskeleton remodeling, which promotes CG
movement toward the PM to release their content. The release
of Ca2+ from the ER triggers the increase in the [Ca2+]i and
the binding of Ca2+ to calmodulin (Cam). It is a 17 kDa protein
involved in multiple biological processes, including egg activation
(Figure 1). In fact, Cam inhibitors induce a delay in meiosis

Frontiers in Cell and Developmental Biology | www.frontiersin.org 11 September 2021 | Volume 9 | Article 704867

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-704867 August 28, 2021 Time: 12:16 # 12

Rojas et al. Cortical Granule Biology in Animal Species

resumption (Xu et al., 1996). One of the targets of Cam is myosin
light chain kinase (MLCK) (Blumenthal et al., 1985). This kinase
phosphorylates Myosin II, targeting either amino acids Ser19
or Ser19/Thr18 of its light chain (Colburn et al., 1988; Singer,
1990). Therefore, it promotes the binding of myosin II to actin
filaments and CG translocation and spindle rotation (Matson
et al., 2006). Ultimately, the inhibition of MLCK by ML-7 blocks
CGE in mouse and human eggs (Lee et al., 2020). Another target
of Cam is CamKII (Johnson et al., 1998; Tatone et al., 2002;
Markoulaki et al., 2003). The activity of this kinase during egg
activation oscillates following the periodicity of [Ca2+]i increases
(Markoulaki et al., 2004). The role of CamKII is important in CG
traffic since eggs exposed to KN-93, an antagonist of this protein
that inhibits CG release (Tatone et al., 1999).

In addition to unanchored CG from the actin cytoskeleton, it
is necessary to control the rate of actin filaments polymerization
to allow CGs to be prepared for exocytosis. It has been shown
that MATER factor is critical in this step since there is no actin
clearance in this protein null eggs (Figure 3B). In addition,
the activity of myosin IIA is also required to depolymerize
actin filaments before CGE (Vogt et al., 2019). Furthermore,
stabilization of actin cytoskeleton by jasplakinolide prevents CG
content release (Terada et al., 2000). These findings show and
confirm that CGE is an actin remodeling-dependent process.

PHYLOGENETIC DISTRIBUTION OF
FACTORS REGULATING CGE DURING
EGG ACTIVATION IN ANIMALS

Currently, the use of animal models follows easy experimental
protocols to isolate and manipulate the oocyte and egg.
This represents an important tool to identify molecular
factors involved in egg activation. In the previous sections,
we have highlighted the function of a handful of these
molecules, and indicated their roles in regulating CGE. From an
evolutionary perspective, no information on the presence of these
factors throughout animal phylogeny is reported. However, the
availability of free access genome data from the main taxonomic
groups of vertebrates and beyond (Dunn and Ryan, 2015), allows
a survey to determine the phylogenetic distribution of these
factors in animals (Figure 4).

This survey indicates that several molecular factors are well
conserved across animal taxa. For instance, Rab proteins, which
are known to play critical roles underlying cellular transport
of vesicles (Martinez and Goud, 1998), are present in most
species. Equivalently, SNARE complex proteins (i.e., SNAPs
and synaptobrevin); a large protein superfamily comprising
more than 60 members, can be found in several species
(Figure 4) (Ungar and Hughson, 2003; Han et al., 2017).
Additional molecular factors distributed widely in different
taxa are Synaptotagmin-1 and Spastizin. The first, is a Ca2+

sensor located at the pre-synaptic axon terminal and responsible
for triggering rapid exocytosis (Chapman, 2008). The latter is
essential for the proper establishment of the motor neuron axonal
network and CG maturation (Martin et al., 2012; Kanagaraj et al.,
2014). In addition, hnRNAP I is also present in most animal

species. It appears that some of the regulatory mechanisms
underlying CGE during egg activation are shared in vertebrate
and non-vertebrate species. However, this assertion needs to be
further investigated because these proteins participate in a myriad
of biological processes and in a variety of cell types.

Nonetheless, there are other molecular factors with a
phylogenetic restricted distribution: Ovastacin, MATER, Feutin-
b, and Ybx1 (Figure 4). This uneven distribution suggests
that there are species-specific mechanisms underpinning the
regulation of CGE in animals. Feutin-b and Ovastacin have a
function in CG biology restricted to eutherians or placental
mammals, indicating a possible co-evolution between these two
proteins. Yet, their evolutionary history remains uninvestigated.
Similarly, MATER is present in placental mammals, but also
in marsupials, which suggests a possible conserved role of this
protein across therian species. On the other hand, Ybx1 is
restricted only to teleost species, with a putative role in CG
accumulation (Sun et al., 2018). This species-specific distribution
might be related to the evolutionary innovation of a chorion, the
egg envelope in teleost species (Murata et al., 2014).

The phylogenetic distribution of molecular factors shown
here (Figure 4) corresponds to a brief representation of the
known group of proteins underpinning CGE in animal species.
However, their actual contribution needs to be expanded
in future investigations. Emerging molecular, physiology and
phenogenomic tools are greatly impacting our understanding
of reproductive biology. Therefore, we foresee that embracing
the species comparative approach will answer long-standing
questions about the evolution and fate of critical maternal factors
and genetic control of CG biology.

DISCUSSION

The biogenesis and re-organization of the cellular organelles
during the oocyte-to-embryo transition, including CGs, rely
on the function of maternal factors and complex protein
interactions. In this scenario, it is not surprising that the same
cellular, molecular, and physiological principles controlling
secretory vesicles biology are replicated in animal oocytes
and eggs. Additionally, the use and combination of available
experimental systems to study CG behavior, allows systematic
multi-scale analysis of phenogenetic associations during
oogenesis, egg activation, and fertility defects.

Egg activation triggers increase in [Ca2+]i in all species
studied to date (Kashir et al., 2013). CGE is Ca2+-dependent
process and it is critical for polyspermy blockade in several
animal species. Despite several years of investigations of these
processes, surprisingly, little is known about the molecular actors
orchestrating [Ca2+]i rise.

Early events in development also involve other critical divalent
ions. Interestingly, another ion that contributes to the ZP
hardening is zinc (Zn2+). This cation is incorporated into
the granules of the oocyte during its maturation (Que et al.,
2015). These Zn2+-containing granules are located near the
PM, and exocytosed after fertilization (Que et al., 2015). The
release of this ion to the extracellular media is known as “Zn2+
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FIGURE 4 | Phylogenetic distribution of molecular factors involved in cortical granule biology in animals. Protein presence or absence are indicated by black and
white circles, respectively. Whilst proteins present in some, but not all, species surveyed are depicted by half-filled circles. Main taxonomy groups are indicated by
red circles in the cladogram. The cladogram to the left represents the currently accepted phylogenetic relationships among animal taxa, focusing on vertebrate
species. CGE, cortical granule exocytosis.

sparks” and follows the Ca2+ oscillation patterns (Kim et al.,
2011). For instance, Que et al. (2017) demonstrated that after
fertilization, the Zn2+ concentration in the ZP increases by
300% and modulates its structure by augmenting its density.
Moreover, when the ZP is exposed to this metal, the number
of sperms interacting with the egg is reduced, indicating that
ZP’s structural change caused by Zn2+ exposure is part of
the polyspermy blockade mechanism (Que et al., 2017). These
findings demonstrate a potential interplay between Ca2+ and
Zn2+ to regulate secretory vesicle exocytosis and ZP hardening
in the mammal egg.

TRPM7 also localizes in intracellular vesicles regulating
Zn2+ release in somatic cells (Abiria et al., 2017). On the
other hand, Mg2+ has been identified to be critical during
early development, and TRPM7 channel is indicated to be
critical player in Mg2+ homeostasis (Komiya et al., 2014).
Moreover, conditional Trpm7-intestine deficient pups display
high mortality by P10. Mutants are deficient in uptaking divalent

cations, demonstrating the importance of these ions in early
development. Dietary Zn2+ supplementation in Trpm7-intestine
deficient mothers increases the survival curve of KO pups during
pregnancy and breastfeeding (Mittermeier et al., 2019). Further,
extracellular Mg2+ determines the frequency of Ca2+ oscillations
during fertilization, most likely mediated by TRPM7 expression
(Bernhardt et al., 2018). Future functional experiments in other
vertebrate organisms will allow deciphering whether Zn2+,
Mg2+, and other cations, physiologically control CG biology
during egg activation and fertilization. This, will represent a
significant advance in the knowledge of how to prepare the female
gamete to start embryogenesis.

Maternally-loaded factors function in the transport, docking,
and fusion. Such a function has also been described in other
cell types. For example, the SNARE complex is critical for
docking and fusion of neurotransmitters containing vesicles
in neurons. At the cellular level, Spastizin is involved in
intracellular trafficking and secretory vesicle maturation in the
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oocyte (Kanagaraj et al., 2014). Intriguingly, siRNA-mediated
Spastizin knockdown displays a similar perturbed phenotype,
revealing biological and physiological relevance of this factor
in mammalian cells (Hirst et al., 2013). On the other hand,
although fishes do not have ovastacin coding sequence, they
do encode the astacin family protein alveolin, which is also
involved in the hardening of the ZP (Shibata et al., 2012).
This indicates that it is possible to track how conserved or lost
functions during the oocyte-to-embryo transition and different
reproductive strategies have evolved among animal species.
Hence, the study of maternal-effect mutants and knockdown
animals, displaying defects during CG biogenesis and exocytosis,
will be highly informative for illuminating the function of
maternal factors in the vertebrate oocyte and egg.

The cellular and molecular underpinnings of CG biology
regulation can be comprehensively deciphered in vertebrate
oocytes and eggs, which offer a myriad of advantages. These
include easy experimental manipulation and culturing, optical
properties, and single-cell analysis. Also, in the last decades,
open access availability of complete genome sequences from
different organisms has been pivotal to reveal the identity of
key factors functioning during the oocyte-to-egg transition.
Therefore, examining the one-cell female gamete by using high-
throughput molecular and imaging phenotyping resources, will

inform us about novel biological markers of reproduction and
fertilization. In this way, zebrafish and mouse model systems can
be integral to the study of vertebrate CG biology. This, will allow
establish oocyte and egg quality selection criteria and potential
therapies in human assisted reproductive technologies.
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