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Abstract: Background: The heat-stable HSA/CD24 gene encodes a protein that shows high expression
levels in adipocyte precursor cells but low levels in terminally differentiated adipocytes. Its high
expression in many types of human cancer suggests an association between cancer, diabetes, and
obesity, which is currently unclear. In addition, peroxisome proliferator-activated receptor gamma
(PPARγ) is a regulator of adipogenesis that plays a role in insulin sensitivity, lipid metabolism,
and adipokine expression in adipocytes. Aim: To assess gender-dependent changes in CD24 KO
and its association with PPARγ expression. Experimental approach: WT and CD24 KO mice were
monitored from birth up to 12 months, and various physiological and molecular characteristics
were analysed. Mean body weight and adipose mass were higher in KO mice than in WT mice.
Male, but not female, KO mice showed increased insulin sensitivity, glucose uptake, adipocyte size,
and PPARγ expression than WT mice. In addition, enteric bacterial populations, assessed through
high-throughput sequencing of stool 16S rRNA genes, were significantly different between male
KO and WT mice. Conclusions: CD24 may negatively regulate PPARγ expression in male mice.
Furthermore, the association between the CD24 and insulin sensitivity suggests a possible mechanism
for diabetes as a cancer risk factor. Finally, CD24 KO male mice may serve as a model of obesity and
insulin hyper-sensitivity.
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1. Introduction

The heat stable antigen (HSA, or murine CD24) is a heavily glycosylated glycosyl
phosphatidylinositol-anchored protein expressed on most immature hematopoietic lin-
eages, developing neurons and epithelial cells. Its expression is dynamically regulated
during cellular differentiation, whereas its expression is usually absent from cells that have
reached their final differentiation [1].

The role of CD24 in carcinogenesis is increasingly becoming a focus of interest [2–6].
CD24 is highly expressed in a large variety of human cancers and is involved in pro-
cesses such as proliferation, invasion, chemosensitivity, and metastasis of various types
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of cancer [7]. In addition, CD24 has been associated with diabetes, possibly through the
associations between cancer, diabetes, and obesity [8–12], for which several molecular
mechanisms have been proposed, including the insulin synthesis pathway and glucose
regulation. In the synthesis of insulin, C-peptide is cleaved from proinsulin to form
mature insulin. Increased insulin secretion may lead to increased hepatic growth hormone-
mediated synthesis of IGF-1. High levels of insulin, C-peptide, and IGF-1 have been
associated with an increased risk of certain cancers in epidemiological studies, including
breast cancer, colorectal cancer, and prostate cancer. Regarding glucose homeostasis, glu-
cose transporters GLUT1, GLUT3, and GLUT4 are known to be overexpressed in many
tumors. Furthermore, the upregulation of anaerobic glycolysis directs glycolytic intermedi-
ates into the pentose phosphate pathway, leading to the production of precursors for fatty
acids, amino acids, and nucleic acids. In hyperglycemic mice, more aggressive skin and
mammary tumors were found compared to normoglycemic mice. Additional pathways
connecting diabetes, obesity, and cancer include estrogen signaling, dyslipidemia, and
inflammatory pathways [7]. In addition to these examples, CD24 is known to support the
differentiation of immature pre-adipocytes into adipocytes [13–15].

However, the involvement of CD24 in diabetes is not entirely clear. On the one hand,
daughter cells of CD24-negative pancreatic ductal cells have been shown to differentiate
into insulin-secreting cells in vitro [16]. On the other hand, CD24-positive human embry-
onic stem cells (hESCs), but not CD24-negative cells, have been reported to be capable of
differentiating into insulin-secreting cells, although these findings were later questioned in
a study of both mouse and human ESCs [17]. Furthermore, in Hashimoto’s thyroiditis (HT),
associated with insulin resistance, the level of CD19+ CD24hiCD38hi regulatory B-cells
(Bregs) was reduced, suggesting a potential role for CD24 in insulin resistance in these
patients [18]. A recent full single-cell transcriptome of pancreatic cells showed that CD24
and TM4SF4 expression can be used to sort live alpha and beta cells with high purity [19].

Insulin resistance and obesity are intricately related, and both are considered as
causative factors in the development of type 2 diabetes (T2D) [18,19]. The association
between obesity and impaired insulin-sensitivity has long been recognized, although some
obese individuals seem to be protected from insulin resistance [20].

Referred to as the ultimate thrifty gene [21], peroxisome proliferator-activated receptor
gamma (PPARγ) has been identified as the master regulator of adipogenesis. PPARγ plays
a role in insulin sensitivity, lipid metabolism, and adipokine expression in adipocytes.
It confers an advantage when food supply is unstable but increases the risk for obesity
and diabetes when food is abundant. The activation of PPARγ, which occurs through
ligand binding, results in a marked improvement of insulin and glucose parameters in T2D
patients, resulting from an increase of whole-body insulin sensitivity [22,23].

In humans, there are two general approaches when evaluating differences in substrate
metabolism between males and females. One, which is clinically probably the most relevant,
is to accept the differences in phenotype between men and women and acknowledge that
the observed differences in metabolism may be secondary to those characteristics. The
other strives to eliminate as many as practically feasible potentially confounding variables to
determine if gender per se (i.e., sexual genotype) affects the control of metabolism. It is thus of
importance to consider gender differences when investigating the associations of CD24 with
obesity and weight gain. In addition, the influence of sex on the development of obesity, Type
2 Diabetes Mellitus (T2DM), and dyslipidemia is well documented, although the molecular
mechanism underlying those differences reminds elusive [24–28]. In addition, ligands of
peroxisome proliferator-activated receptors (PPARs) are used as oral antidiabetics (PPARγ
agonists: thiazolidinediones, TZDs), or for the treatment of dyslipidemia and cardiovascular
diseases, due to their lipid-lowering properties (PPARα agonists: fibrates), as PPARs control
transcription of a set of genes involved in the regulation of lipid and carbohydrate metabolism.
Therefore, investigations of the association between CD24 and obesity and weight gain in
humans should consider gender-dependent associations of PPARγ.



J. Pers. Med. 2021, 11, 50 3 of 17

In 1997, the generation, production and characterization of mice that completely lack
HSA expression was reported. CD24 knockout mice exhibit a loss of immature B cells
via their increased apoptosis demonstrating that altering CD24 expression has serious
repercussions in these cells [29,30]. In addition, male CD24 KO mice show a significant
decrease in white adipose tissue of more than 40%, as well as increased fasting glucose
and free fatty acids, decreased fasting insulin, and plasma leptin. It was concluded that
the global absence of CD24 affects adipocyte cell size and causes metabolic disturbances
in glucose homeostasis and free fatty acid levels [14]. In this study, we aimed to assess
gender-dependent changes in CD24 KO and its association with PPARγ expression.

2. Materials and Methods
2.1. Materials

All reagents were purchased from Sigma-Aldrich (Rehovot, Israel), unless otherwise stated.
EZ-ECL detection kit and cell culture supplements were purchased from Beit-Haemek, Israel.

2.2. Transgenic Mice

Mice of genotypes CD24−/− (KO) and CD24+/+ (WT) were bred on the same genetic
background (C57B/6J× C57BL/6). The mice were bred in our facility and were 8–12 weeks-
old at the start of the experiment. All had ad libitum access to a standard pellet diet and
to tap water and were kept in an animal room at constant temperature (22 ± 2 ◦C) with a
standard 12 h light/dark cycle. Food was weighed twice a week. Body weight and water
and food consumption were closely monitored from birth and compared between KO and
WT mice for 12 months. All experiments were approved by the institutional committee for
animal welfare at Tel Aviv Sourasky Medical Center.

In the case of high fat diet consumption, a rodent diet with 60 kcal% fat was used
(Research Diets, D12492, see Table 1. Mice that were fed with HFD received this diet from
the age of 3–4 weeks, at the end of breastfeeding.

Table 1. Rodent Diet with 60% kcal Fat Formulation.

Class Description Ingredients Gram

Protein Casein, Lactic, 30 Mesh 200

Protein Cystine, L 3

Carbohydrate Lodex 10 125

Carbohydrate Sucrose, Fine Granulated 72.8

Fiber Solka Floc, FCC200 50

Fat Lard 245

Fat Soybean Oil, USP 25

Mineral S10026B 50

Vitamin Choline Bitartrate 2

Vitamin V10001C 1

Dye Dye, Blue FD&C #1, Alum.
Lake 35–42% 0.05

Caloric Information

Protein 20% Kcal

Fat 60% Kcal

Carbohydrate 20% Kcal

Energy density 5.21 Kcal/g
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2.3. Genotyping of CD24 Knockout Mice

Genomic DNA was extracted from mouse tails, and the genotype of HSA−/− was
verified by Polymerase chain reaction (PCR). Two PCRs were conducted to detect the
CD24 Exon 1 fragment and/or the Neomycin cassette, which replaces the CD24 Exon1 in
two alleles of CD24−/− genotype (and in one allele of CD24+/−). Table 2 summarizes the
oligonucleotides and the reaction details used for this assay. The reaction was carried out
in a Tgradient ThermoCycler (Biometra, Germany) using 2x ReddyMix™ PCR Master Mix
(Thermo Scientific, Rhenium Israel, cat. No. AB-0575/DC/LD/B).

Table 2. Oligonucleotides sequence.

Name Sequence (5′ → 3′) PCR Reaction

Neo-cassette-Forward TTGAACAAGATGGATTGCACGCA 95 ◦C—5 min

Neo-cassette-Reverse TGATCGACAAGACCGGCTTCC

95 ◦C—1 min
65 ◦C—1 min
72 ◦C—30 s
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2.4. Genotype Verification by Flow Cytometry Analysis

Heparinized peripheral blood samples (100 µL) were collected from the orbital sinus
of KO and WT (control mice strain C57B/6J) and diluted in PBS. The samples were then
centrifuged at 2000 rpm for 5 min. The pellet was incubated with 100 µL of rat anti-CD24
antibody, clone M1/69 at 4 ◦C for 30 min. Cells were washed twice in FACS buffer (10%
FCS, 0.01% sodium azide in ice cold PBS). Then, 100 µL of 1:100 diluted fluorescein isothio-
cyanate (FITC)-conjugated goat anti-rat antibody (Jackson Immunoresearch Laboratories,
Inc, West Grove, PA, USA) was added to the pellet and incubated at 4 ◦C for 30 min. Cells
were washed twice with FACS buffer and bound antibodies were detected on a FACSCal-
ibur™ and analyzed using CellQuestion software (both supplied by Becton Dickinson,
San Jose, CA, USA).

2.5. Insulin Sensitivity

Insulin sensitivity in KO and WT mice (n = 5–10 per genotype) was determined at
9–12 weeks of age through measurement of blood glucose reduction following an insulin
tolerance test. Both groups were fasted overnight (12 h) and then intraperitoneally (IP)
injected with 0.5 units insulin per kg of body weight. Whole-blood glucose was determined
at 0, 15, 30, 45, 90, and 120 min following the insulin injection, and the data were presented
as a percentage of baseline glucose levels at T = 0. Tail-tip whole-blood glucose was
determined using an Accutrend® Sensor (Roche Diagnostics, Basel, Switzerland), using
blood glucose test strips as described by the manufacturer.

2.6. Intraperitoneal Glucose Challenge

The blood glucose response to IP glucose administration in KO and WT mice
(n = 5–10 per genotype) was determined at 9–12 weeks of age through measurement of
blood glucose elevation following a glucose challenge test. Both groups were fasted overnight
(12 h) and then injected IP with 1 g glucose (Sigma, Israel, cat. no. 47829) per kg of body
weight. Whole-blood glucose was determined at 0, 20, 40, 60, 90, and 135 min following the
glucose injection, and the data were presented as a percentage of the glucose level at T = 0.
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Tail-tip whole-blood glucose was determined with the Accutrend® Sensor (Roche Diagnostics,
Basel, Switzerland), using blood glucose test strips as described by the manufacturer.

2.7. Triglycerides in Liver Tissue

Approximately 200 mg of frozen liver tissue, isolated from KO and WT mice, was
homogenized in 4 mL 2:1 chloroform (Sigma, Rehovot, Israel, cat. no. C-2432): methanol
(Biolab, Beit Haemek, Israel, cat. no. 001368052100) solution, lightly vortexed and incubated
for 10 min at room temperature (RT). Samples were filtered through Sharkskin filter (Fisher
Scientific, Waltham, MA, USA) and 0.2 volumes of 0.58% NaCl solution were added. Samples
were centrifuged at 4 ◦C at 1000 rpm for 5 min and the upper phase was gently aspirated.
Samples were then washed again with NaCl and stored until the analysis was performed.

Samples were evaporated by gently blowing with nitrogen, reconstituted by resus-
pension in 1 mL of Triton™ X-100 (Sigma, Israel, cat. no. T8787) (5% v/v in water), and
slowly heated in a water bath to 80 ◦C. Finally, samples were gradually cooled to RT and
then heated again for triglyceride solubilization. Insoluble residues were removed by
centrifugation at 4 ◦C for 5 min at 1000 rpm and the supernatant was diluted 10-fold to a
final volume of 10 mL with distilled water for analysis.

2.8. Total RNA Extraction from Animal Tissues

Kidney adipose tissues were isolated from KO and WT mice and total RNA was
extracted as follows: the tissue was homogenized in 4.5 mL TRI reagent® (Sigma Aldrich,
Rehovot, Israel, T9424) and incubated at RT for 5 min. Samples were divided on ice into
three samples and 0.3 mL of chloroform was added to each sample. After gentle mix-
ing, samples were incubated at RT for 8 min and then centrifuged at 4 ◦C for 15 min at
13,000 rpm. The upper phase was transferred to another tube and 0.75 mL of isopropanol
was added. After gentle mixing, samples were incubated at RT for 7 min and then cen-
trifuged at 4 ◦C for 15 min at 13,000 rpm. The pellet was washed twice with 75% ethanol.
The resulting RNA pellet in the three tubes was then recombined, resuspended in double
distilled water, and heated to 55 ◦C for 2–5 min. Pure RNA concentration was determined
using a NanoDropTM2000 device (Thermo Scientific, Waltham, MA, USA).

2.9. cDNA Synthesis and PCR Amplification of PPARγ

For RT-PCR reactions, 3–5 µg of pure RNA was used. cDNA synthesis was per-
formed according to the manufacturer′s instructions (Promega, WI, USA). The RT-PCR
products were amplified in a PCR reaction using the following primer sequences tar-
geted against the PPARγ gene: forward: 5′-GCGGAGATCTCCAGTGATATC-3′, reverse:
5′-CACCAAAGGGCTTCCGC-3′. The mouse GAPDH gene was used as a reference
housekeeping gene and amplified using the following primer sequences: forward: 5′-
GGAGATTGTTGCCATCAACG-3′, reverse: 5′-TTGGTGGTGCAGGATGCATT-3′. The
amplified DNA products were identified by electrophoresis using 2% agarose gels and
using GelStar™ Nucleic Acid Gel Stain (Lonza, Basel, Switzerland). They were then
visualized under UV light.

2.10. Adipocyte Cultures

For the isolation and culture of primary adipose cells, 15-week-old male KO and WT
mice were used to obtain primary adipose cells essentially as described previously [31].
Briefly, the epididymal fat pads were removed, minced, and digested using collagenase at
37 ◦C for 2 h. The primary adipose cells were then washed extensively and incubated at
37 ◦C in a KRBH buffer (Krebs-Ringer-bicarbonate HEPES buffer, pH 7.4) or Dulbecco’s
modified Eagle’s medium containing 5% bovine serum albumin. Primary adipose cells and
conditioned medium were taken at various times as indicated in the figure legends and
were flash-frozen in liquid nitrogen and stored in 80 ◦C until use.
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2.11. qRT-PCR for PPARγ Expression in Visceral Fat

For each reaction, 0.02 µg/mL of pure RNA was used. A StepOne™ Real-Time PCR
System (Applied Biosystems, USA) was used according to the manufacturer’s instructions
with a SYBR® Select Master Mix (Thermo Fisher, USA) with SYBR® GreenER™ dye for
visualization. The RT-PCR products were amplified in a PCR reaction using the following
primer sequences targeted against the PPARγ gene: forward: 5′-CATAAAGTCCTTCCCG
CTGA-3′, reverse: 5′-GAAACTGGCACCCTTGAAAA-3′. The mouse RPLPO gene was used
as a reference housekeeping gene and amplified using the following primer sequences: for-
ward: 5′-TCCAGCAGGTGTTTGACAAC-3′, reverse: 5′-CCGATCTGCAGACACACACT-3′.
The results were analyzed using the StepOne™ Software according to the manufacturer’s
instructions (Applied Biosystems, Forster City, CA, USA).

2.12. Stool 16S rRNA Genes Assessment

Fecal samples were collected from WT and KO mice (n = 8–11 for each genotype)
receiving either a regular (NC) or a high-fat diet (HFD). All samples were placed immediately
into sterile plastic tubes and stored at −80 ◦C until analysis. DNA was extracted from
the samples using the FastDNA SPIN Kit for Soil (MP Biomedicals Inc., Solon, OH, USA)
according to the manufacturer’s instructions.

PCR amplification was performed using primers targeting from V3 to V4 regions of
the 16S rRNA gene with extracted DNA. The PCR conditions used were 5 min at 95 ◦C,
35 cycles of 30 s at 94 ◦C, 30 s at 55 ◦C and 90 s at 72 ◦C, followed by 10 min at 72 ◦C.
Amplification was carried out by using a Verity Thermocycler (Applied Biosystems, Forster
City, CA, USA). The PCR product was confirmed by using 2% agarose gel electrophoresis
and visualized under UV light. The amplified products were purified with the Wizard
SV Gen PCR Clean-Up System (Promega, WI, USA). Equal concentrations of purified
products were pooled together and followed by a further purification step involving
the Agencourt AMPure XP DNA purification beads (Beckman Coulter Genomics GmbH,
Bernried, Germany) in order to remove primer dimers. The quality and product size were
assessed using a DNA 7500 chip. Mixed amplicons were pooled and the sequencing was
carried out according to the manufacturer’s instructions.

2.13. Statistical Analysis

All experiments were performed at least in triplicates. Quantitative data were ana-
lyzed using the student t-test. For all tests, p < 0.05 was considered significant. Data were
expressed as the mean ± standard deviation (SD).

The operational taxonomic unit (OTU) table of raw counts was normalized to an
OTU table of relative abundance values. Taxa analysis was performed on the core taxa
prevalent in more than >25% of samples. Same types of taxa were agglomerated at the
phylum, class, order, family, and genus level. We used unweighted and weighted Unifrac
distance of even OTU samples to perform Principal Coordinate Analyses (PCoA) and
Analysis of similarities (ANOSIM) was used to analyze the difference among groups.
Linear discriminant analysis (LDA) Effect Size (LEfSe) was performed to find out the
differentially enriched taxa between groups. The functional prediction of microbiota was
done with PICRUSt [32]. Only reads identified in closed reference picking (Greengenes
13_5 database) were used for the PICRUSt analysis. The reference genome coverage of
samples was also calculated using weighted Nearest Sequenced Taxon Index (NSTI) score
with the -a option in the predict metagenomes.py script.

3. Results
3.1. Establishment of CD24 Knockout Mice Colony

A colony of KO mice was generated by breeding and crossing them over. The genotype
of the mice was verified by FACS analysis, based on the absence of CD24 expression on the
surface of erythrocytes from the KO mice. The genetically altered mice were demonstrated
to be completely inbred: the erythrocytes of the WT were stained (Figure 1A), while those
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of the KO mice were not (Figure 1B). The KO genotype was confirmed by Western blot
analysis (Figure 1C) using specific anti-CD24 M1/69 monoclonal antibodies. A similar
colony of WT C57B/6J mice served as a control group.

1 
 

 
Figure 1. Genotype verification by FACS analysis. Heparinized blood samples from KO (A) and
WT (B) mice were collected and analyzed for CD24 expression by FACS analysis. The red curves
represent the negative control (secondary antibody only), and the black curves represent the binding
of M1/69 anti-CD24 antibody. (C) Blood samples were taken from KO and WT mice and peripheral
blood leukocytes were isolated. Protein extracts (20 µg) were subjected to SDS-PAGE (odium
dodecyl sulphate–polyacrylamide gel electrophoresis) and Western blotting using anti-CD24 M1/69
monoclonal antibodies. The membrane was re-probed with anti-tubulin to confirm uniform loading
of the samples.

3.2. CD24 Deficiency Is Associated with Increased Body Weight and Increased Abdominal Fat
Mass in a Gender-Dependent Manner

The phenotype and possible developmental changes of the mice were closely moni-
tored, including monitoring of food consumption, for 12 months. The mean body weight,
weighed weekly, of the KO male mice was greater than that of WT male mice of the same
body length and age (Figure 2A,B). The weight difference was noted from week 4 and lasted
until 12 months, when the study was completed. These differences were not apparent
in female mice. Water and food consumption were similar in KO and WT mice over the
course of a year (data not shown). Figure 2C shows the weight follow-up of male KO and
WT mice, and Figure 2D depicts weight fluctuations in female KO and WT mice.

Fifteen-week-old male KO and WT mice (n = 4) were dissected, and their internal
organs were weighed. The mean weight of the liver and intestines of KO mice (2.03 ± 0.5 g
and 3.5 ± 0.9 g, respectively) were greater than those of WT mice (1.2 ± 0.16 g and
2.0 ± 0.14 g, respectively) (Figure 2E,F), but no significant differences were observed in the
mean weight of their spleen, kidney, heart, brain, bladder and stomach (Figure 2E). The KO
mice had greatly increased fat tissue around the pelvis and kidneys, as is further described
in Table 3. However, no statistically significant differences were observed in the level of liver
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triglycerides (52.0± 27.8 µmol/gr in KO mice compared to 40.3 ± 15.2 µmol/gr in and WT
mice) (Figure 2F) and cholesterol (22.6 ± 1.15 µmol/gr in KO mice and 20.3 ± 2.6 µmol/gr
in and WT mice) (Figure 2G).
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demonstrate the differences in body weight. Both male (C) and female (D) KO and WT mice were monitored, and their body
weights were recorded from birth. Four mice, 15 weeks old, were dissected and their internal organs weighed separately (E).
Liver triglycerides (F) and cholesterol (G) were measured in KO and WT mice.

Perirenal adipose tissue was different between KO and WT male mice, as described
in Table 3 below. Following the injection of Actrapid (human insulin, Novo Nordisk) to
30-week-old mice, mice were sacrificed after 30 min and testicular fat, kidney fat and liver
were assessed. Total fat was determined as the sum of the testicular and kidney fat, and the
% fat/BW was determined as the sum of testicular and kidney fat/body weight * 100%.
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Table 3. Fat coefficient evaluation.

BW ± SE [gr] Testicular
Fat ± SE [gr]

Kidney Fat ± SE
[gr] Total Fat ± SE [gr] %Total Fat/BW ± SE

[%]

HSA−/− mice (n = 6) 39.71 ± 2.53 2.07 ± 0.26 0.78 ± 0.14 2.86 ± 0.12 7.20 ± 0.19

HSA+/+ mice (n = 6) 30.31 ± 1.77 0.9 ± 0.11 0.26 ± 0.11 1.16 ± 0.11 3.85 ± 0.38

3.3. Greater Insulin Sensitivity in Male KO Mice

Whole-body insulin sensitivity was measured by the relative blood glucose reductions
in response to the insulin challenge test. Following insulin injections, glucose levels decreased
by a rate of 1% per minute and at 40–45 min reached a maximum reduction of 70% in CD24
KO compared to baseline glucose levels, at which time they started to increase.

Male KO mice demonstrated 10–20% higher insulin sensitivity than male WT mice
(Figure 3A). While no statistically significant differences were demonstrated in baseline
glucose levels (data not shown), following insulin injection, the decrease in whole-blood
glucose levels, was 20% and 10% greater in the KO males than in the WT males at 30 and
45 min, respectively (p < 0.05 for both). These observations were also gender-dependent, as
no statistically significant differences were observed for the insulin challenge test between
female KO and WT mice (Figure 3B).
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Figure 3. CD24 deficiency and insulin sensitivity. Insulin sensitivity of KO and WT males and females,
aged 9–12 weeks, is presented in (A,B), respectively. Following intraperitoneal insulin injection (0.5
unit/kg body weight) of fasted mice, whole-blood glucose was measured at the indicated time points
using a glucometer. Values are expressed as a percentage, relative to baseline glucose levels. Asterisks
indicate statistically significant differences (p < 0.05) between genotypes at each time point. Each
value represents the average of at least three independent measurements.

3.4. Blood Glucose Response to IP Glucose Challenge in KO Mice

Blood glucose response was measured by the relative blood glucose increase in response
to glucose stimulation. Baseline plasma insulin concentrations, drawn from 9–12 weeks
old male mice, did not differ significantly between the two genotypes (Figure 4A) while at
20 min post-injection insulin levels were lower in the KO mice (Figure 4B).
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with glucose (1 g/kg body weight). (A) Baseline insulin levels were measured from mice serum by ELISA assay. (B) Insulin
levels were measured 20 min after glucose injection.

3.5. High Expression of PPARγ in Male KO Mice

Since PPARγ has been associated with the regulation of insulin sensitivity, we com-
pared the levels of PPARγ expression in perirenal fat depot tissue of male KO and WT
mice. As shown in Figure 5A, in KO mice, PPARγ mRNA levels were 1.5 times higher
than in WT mice. In addition, quantitative real-time PCR was carried out, confirming
these results (Figure 5B). It is noteworthy that the visceral fat in the obese CD24 KO mice
differed not only from that of controls, but also from classical forms of obesity models
such as diet-induced obesity. Therefore, we also evaluated, by real-time PCR, the levels
of Perilipin-1, Adiponectin and PPARα (Figure 5C). Adiponectin expression, which is
typically low in the obese state [33] was similar to that in the lean control mice; PPARα
expression was markedly lower, as was Perilipin-1 expression, despite larger fat mass and
larger adipocyte size. Because Perilipin-1 is actively involved in lipolysis and PPARα in
fatty acid oxidation, these findings are consistent with the observation of enhanced insulin
sensitivity in the CD24 KO obesity model: insulin suppresses adipocyte lipolysis, such
that fat cell lipolytic cascades are relatively inhibited, thus requiring lesser expression in
proteins comprising the lipolysis machinery.

J. Pers. Med. 2021, 11, x FOR PEER REVIEW 12 of 19 

Figure 5. PPARγ expression in KO and WT male mice. RNA extraction from kidney adipose tissue from KO and WT mice 
was prepared and cDNA synthesis was performed. (A). A fragment of the PPARγ gene was amplified by PCR reaction 
and uniformity of the samples was confirmed by the murine GAPDH housekeeping gene. PPARγ expression levels in 
samples, shown on the right, were determined by densitometry (TINA 2.0). (B). Quantitative real-time PCR was performed 
to confirm the results above. (C). Quantitative real-time PCR was performed to determine the levels of perilipin 1, PPARα, 
and adiponectin in visceral fat.

3.6. Differences in Adipocyte Size 
Adipocyte increased cell size (hypertrophy) has been associated with obesity in hu-

mans [19,22]. Therefore, we compared adipocyte size between KO and WT genotypes. As
shown in Figure 6, KO mice showed statistically significant increase in adipose cell size,
as demonstrated through the white adipocyte tissue (WAT) cell area of 8258 ± 2359 µm2

in KO mice and 5471 ± 2030 µm2 in WT mice. 

Figure 5. Conts.



J. Pers. Med. 2021, 11, 50 11 of 17

J. Pers. Med. 2021, 11, x FOR PEER REVIEW 12 of 19 

Figure 5. PPARγ expression in KO and WT male mice. RNA extraction from kidney adipose tissue from KO and WT mice 
was prepared and cDNA synthesis was performed. (A). A fragment of the PPARγ gene was amplified by PCR reaction 
and uniformity of the samples was confirmed by the murine GAPDH housekeeping gene. PPARγ expression levels in 
samples, shown on the right, were determined by densitometry (TINA 2.0). (B). Quantitative real-time PCR was performed 
to confirm the results above. (C). Quantitative real-time PCR was performed to determine the levels of perilipin 1, PPARα, 
and adiponectin in visceral fat.

3.6. Differences in Adipocyte Size 
Adipocyte increased cell size (hypertrophy) has been associated with obesity in hu-

mans [19,22]. Therefore, we compared adipocyte size between KO and WT genotypes. As
shown in Figure 6, KO mice showed statistically significant increase in adipose cell size,
as demonstrated through the white adipocyte tissue (WAT) cell area of 8258 ± 2359 µm2

in KO mice and 5471 ± 2030 µm2 in WT mice. 

Figure 5. PPARγ expression in KO and WT male mice. RNA extraction from kidney adipose tissue from KO and WT mice
was prepared and cDNA synthesis was performed. (A). A fragment of the PPARγ gene was amplified by PCR reaction
and uniformity of the samples was confirmed by the murine GAPDH housekeeping gene. PPARγ expression levels in
samples, shown on the right, were determined by densitometry (TINA 2.0). (B). Quantitative real-time PCR was performed
to confirm the results above. (C). Quantitative real-time PCR was performed to determine the levels of perilipin 1, PPARα,
and adiponectin in visceral fat.

3.6. Differences in Adipocyte Size

Adipocyte increased cell size (hypertrophy) has been associated with obesity in hu-
mans [19,22]. Therefore, we compared adipocyte size between KO and WT genotypes. As
shown in Figure 6, KO mice showed statistically significant increase in adipose cell size, as
demonstrated through the white adipocyte tissue (WAT) cell area of 8258 ± 2359 µm2 in
KO mice and 5471 ± 2030 µm2 in WT mice.
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imaging was done with a Nikon microscope at ×10 magnification. * p < 3.51 × 109.

3.7. Differences in Enteric Bacterial Populations

High throughput sequencing of stool 16S rRNA genes was evaluated in the enteric
microbial populations of male and female mice of either KO or WT genotype, that were fed
either a normal or a high fat diet. Enteric bacterial populations were significantly different
between young male KO and WT mice that were fed a normal diet by unweighted (R = 0.32,
p < 0.01) β-diversity analysis. These differences became much more apparent when mice
were kept on a high-fat diet by weighted (R = 0.43, p < 0.01) and un-weighed β-diversity
analysis (R = 0.31, p < 0.01) (Figure 7). Specifically, in young KO males, many more bacterial
strains were overrepresented when they were fed a high-fat diet than when they were fed a
normal diet (24 strains vs. 4 strains respectively, each with an LDA score of 2.4 or more (data
not shown). No significant differences were found in the other test groups (data not shown).
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4. Discussion

This study provides new insight into the role of CD24 in insulin sensitivity and
obesity. HSA/CD24 deficiency was found to be associated with increased body weight and
visceral obesity only in male KO mice as compared to WT mice, despite similar food and
water consumption in both groups. Only male KO mice demonstrated increased insulin
sensitivity and increased expression of PPARγ.

The current model is interesting as it demonstrates the early onset of male obesity along
with increased insulin sensitivity. This increased sensitivity might be mediated through the
PPARγ pathway, which is known to be involved in fatty acid storage and the regulation of
glucose metabolism. The activation of PPARγ in mature adipocytes induces a number of
genes involved in the insulin-signaling cascade, thereby increasing insulin sensitivity [34]. In
addition, the induction of adipogenesis, associated with the capability for fatty acid trapping,
has been shown to contribute to the maintenance of systemic insulin sensitivity [35].

The higher expression of PPARγ in male KO mice, as compared to WT mice, suggests
an association between CD24 and PPARγ, and indicates that CD24 may be a suppressor of
PPARγ in male mice. This observation supports the documentation of increased PPARγ
expression in CD24-negative cells of male mice compared to CD24-positive cells [35]. In
that study, CD24-positive cells were identified as adipocyte progenitors, which, upon
becoming further committed to the adipocyte lineage, lost CD24 expression and generat-
ing CD24-negative pre-adipocytes, the latter becoming discernible only after birth. The
population shift of CD24-positive to CD24-negative cells from the prenatal to postnatal
stages may explain the seeming discrepancy between studies, such as the one described
above, regarding the insulin-producing capacity of CD24-negative cells [16,36]. Further-
more, the loss of CD24 expression appears to be a stage of the process by which mature
adipocytes are formed from CD24-positive cells [37]. The increased insulin sensitivity
in CD24-negative cells, demonstrated in the present study, suggests that the population
shift from CD24-positive to CD24-negative cells may increase insulin sensitivity, as well as
stimulate adipogenesis. Conversely, high expression of CD24-positive cells may be associ-
ated with insulin resistance and impaired adipogenesis. In this context, it is interesting to
note that CD24 does not affect glucose uptake in differentiating adipocytes in vitro [37–40].
Considering the associations documented between CD24 and cancer [41], we suggest
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that further investigation of the role of CD24 in insulin sensitivity and weight gain may
elucidate associations between cancer and both diabetes and obesity [26].

The present study shows that adipocytes in CD24 KO mice are hypertrophic. In
contrast, previous research has demonstrated that the loss of CD24 has been associated
with hypotrophy in mice, but that this phenotype is reversed into hypertrophy when fed a
high-sucrose or a high-fat diet [14]. One explanation may be that the absence of CD24 has a
different effect on different sources of adipocytes, as the latter study assessed interscapular,
inguinal and epididymal white adipocyte tissue (WAT). Further investigation is needed to
understand the mechanisms by which CD24 and adipocyte phenotypes are linked.

Explanations for gender-specific effects of PPARs may lie in differences in body fat,
dietary habits and nutrient metabolism, hormonal activity, and in differential PPAR activity
that may be related to other factors. Gender-specific differences in nutrient metabolism,
such as a higher capacity for storing fat in adipose tissue and for oxidizing fatty acids
in muscle in females, as demonstrated in rats [42], may be related to the gender-specific
effects of PPAR activity on BMI and fat mass. Gender-specific expression of hormones,
transcription factors, and genes may also affect PPAR activity [43]. In a study of sex
differences in subcutaneous adipose tissue transcriptional regulation, 162 genes were
found with robust sex-related expression differences. Interestingly, the genes that were
found were enriched for binding motifs for adipo-genic transcription factors, including
PPARγ [41–44]. Furthermore, in rats, sex hormones appear to affect the expression of the
PPARγ2 subtype in adipose tissues [45]. Ciana et al. reported considerably lower PPAR
transcriptional activity in female rats than in males; a high fat diet, gonad removal, and
hormone replacement did not increase activity [46]. These and other findings indicate that,
although gender is determined genetically, it can be considered an environmental factor
that modifies both penetrance and expressivity of traits [47], and it therefore should be
considered in any study of PPAR activity.

Investigations of the association of CD24 with obesity and weight gain in humans
should consider the distribution of the single nucleotide polymorphisms (SNPs) of PPARγ,
including gender-dependent associations in this regard. For example, female, but not
male carriers of the PPARγC161T allele, were shown to have a higher mean body weight
and waist circumference; male C161T allele carriers had lower insulin levels than male
non-carriers [38]. Computational analysis identified five PPARγ variants expressed in
cancer tissues and associated with insulin resistance and partial lipodystrophy, including
C162S, R166W, Q286P, Q314P and P467L. Specifically, the effects of the C162S variant found
in this study, may be similar to the effects of the C161T allele due to their immediate
proximity in the protein structure [48]. In addition, a number of studies have associated
the PPARγP12A allele with reduced BMI [49–51], whereas others have associated it with
increased BMI [52–57]. Most of these studies did not stratify their analysis by gender. More
conclusively, the P12A allele has been associated with lower fasting insulin levels [58],
increased insulin sensitivity [49,58–62] and reduced risk of T2D [63–69]. In addition, we
have previously associated the C248T SNP with statistically significant higher blood levels
of total cholesterol and LDL-C (unpublished data), suggesting that CD24 may also play a
role in dyslipidemia, possibly through regulation of PPARγ expression.

PPARγ signaling has been linked with gut microbiota in several studies. For example,
PPARγ signaling is involved in homeostasis of gut microbiota as it controls and limits the
expansion of potentially pathogenic dysbiotic bacteria [70]. Furthermore, a recent study
showed that PPARγ is strongly affected by the metabolites secreted by commensal bacteria,
at least several of them through a change in PPARγ’s phosphorylation status [71]. Interest-
ingly, in a study of the oral epithelial immuno-transcriptome response by a multispecies
biofilm, CD24 expression was elevated under bacterial challenge. It would be of interest
to explore whether CD24 expression is regulated by the gut microbiome as well, and if
PPARγ-mediated microbiome homeostasis plays a role in this purported CD24 regulation.

It is possible that the larger liver mass in KO mice, compared to WT mice, may explain,
at least in part, the greater insulin sensitivity demonstrated in this study. Finally, the
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possibility of a role for CD24 in insulin sensitivity and obesity, as suggested in this study,
may contribute to an improved understanding of the increasingly growing association
between cancer and both diabetes and obesity.

In this study, we aimed to assess gender-dependent changes in CD24 KO and its
association with PPARγ expression. Insulin sensitivity, early obesity, and PPARγ expression
were assessed in CD24 knockout (KO) mice and compared to wild-type (WT) mice. Our
results demonstrate gender-specific differences in insulin sensitivity. CD24 KO male mice
displayed, at an early age, greater insulin sensitivity and glucose uptake, suggesting a
gender-dependent role of CD24 in insulin-sensitive obesity. We conclude that CD24 may
negatively regulate PPARγ expression in male mice. Furthermore, the association between
the CD24 and insulin sensitivity suggests a possible mechanism for diabetes as a cancer
risk factor. Finally, CD24 KO male mice may serve as a model of obesity and insulin
hyper-sensitivity.
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