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Background: Pancreatic ductal adenocarcinoma (PDAC) is the most aggressive form
of pancreatic cancer. Its 5-year survival rate is only 3–5%. Perineural invasion (PNI) is
a process of cancer cells invading the surrounding nerves and perineural spaces. It is
considered to be associated with the poor prognosis of PDAC. About 90% of pancreatic
cancer patients have PNI. The high incidence of PNI in pancreatic cancer limits radical
resection and promotes local recurrence, which negatively affects life quality and survival
time of the patients with pancreatic cancer.

Objectives: To investigate the mechanism of PNI in pancreatic cancer, we analyzed the
gene expression profiles of tumors and adjacent tissues from 50 PDAC patients which
included 28 patients with perineural invasion and 22 patients without perineural invasion.

Method: Using Monte-Carlo feature selection and Incremental Feature Selection (IFS)
method, we identified 26 key features within which 15 features were from tumor tissues
and 11 features were from adjacent tissues.

Results: Our results suggested that not only the tumor tissue, but also the adjacent
tissue, was informative for perineural invasion prediction. The SVM classifier based on
these 26 key features can predict perineural invasion accurately, with a high accuracy of
0.94 evaluated with leave-one-out cross validation (LOOCV).

Conclusion: The in-depth biological analysis of key feature genes, such as TNFRSF14,
XPO1, and ATF3, shed light on the understanding of perineural invasion in pancreatic
ductal adenocarcinoma.

Keywords: perineural invasion, pancreatic ductal adenocarcinoma, Monte-Carlo feature selection, incremental
feature selection, support vector machine

Abbreviations: PDAC, pancreatic ductal adenocarcinoma; PNI, perineural invasion; IFS, incremental feature selection;
LOOCV, leave-one-out cross validation; GEO, Gene Expression Omnibus; TSPs, tumor suppressor proteins; ATF3, activating
transcription factor 3.
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INTRODUCTION

Pancreatic cancer is a type of common malignant tumor of the
digestive tract, the most aggressive form of which is pancreatic
ductal adenocarcinoma (PDAC), which has a 5-year survival rate
of only 3–5% (Huang et al., 2014). The poor prognosis of PDAC
is largely due to the lack of early symptoms, explosive outcomes,
and resistance to treatment (Pour et al., 2003).Currently, there
is no effective method to detect pancreatic cancer in its early
stages. However, with the increasing insight into the mechanism
of this cancer over time, novel therapies are being researched and
developed (Rossi et al., 2014).

Pancreatic cancer has poor responses to conventional
therapies, such as chemotherapy and irradiation (Rossi
et al., 2014). Although surgery has been indicated to be an
effective therapeutic approach to eliminate cancer cells, 70–
81% of patients are rendered unresectable because of locally
advanced disease or distant metastatic lesions (White et al.,
2001; Mossner, 2010; Cai et al., 2013) and most patients
who have undergone surgery experience recurrence and
comorbidities (Pour et al., 2003). In the last few decades,
Gemcitabine has been the preferred treatment option for
PDAC. However, recent studies suggested that FOLFIRINOX
(a regimen combining fluorouracil, leucovorin, oxaliplatin, and
irinotecan) has shown a significant therapeutic advantage
in patients with advanced PDAC (Kleger et al., 2014;
Ferrone et al., 2015). In addition, the curative effect of oral
fluorouracil in Asian patients with PDAC has been proven
(Cid-Arregui and Juarez, 2015).

Most studies have focused on biomarkers to predict the
progression or recurrence of PDAC. It has been reported
that about 90% of the later stage pancreatic cancers have
point mutations of KRAS, indicating that KRAS may be
used as a diagnostic marker of PDAC (Campbell et al.,
2007; De Oliveira et al., 2012; Zhang et al., 2014). SLIT2-
ROBO signaling in PDAC has also been reported to enhance
metastasis and predispose PDAC cells to neural invasion (Gohrig
et al., 2014). There have also been some important and
highly penetrative genes identified, such as CEACAM1, MCU,
VDAC1, PKM2, CYCS, C15ORF52, TMEM51, LARP1, and
ERLIN2 (Calabretta et al., 2016; Giulietti et al., 2016). Although
many biomarkers have now been shown to be associated with
PDAC, their effectiveness in the early detection of cancer still
require verification.

Perineural invasion (PNI) is a process in which cancer
cells invade the surrounding nerves and perineural spaces
(Ceyhan et al., 2008), which is associated with recurrence (Dai
et al., 2007; Gil et al., 2010) and poor outcome (Bapat et al.,
2011). PNI also contributes to the severe pain syndrome in
patients with advanced PDAC (Zhu et al., 1999; Esposito et al.,
2008). It is estimated that the incidence of PNI reaches up
to 90% in pancreatic cancer (Nakao et al., 1996). The high
incidence of PNI in pancreatic cancer limits radical resection and
promotes local recurrence, which negatively affects life quality
and survival time of the patients with pancreatic cancer (Hirai
et al., 2002). Among the factors influencing the prognosis of
pancreatic cancer, PNI has gradually become an independent

prognostic factor and pathological feature. Therefore, further
studies are urgently needed to investigate the mechanism of
PNI in pancreatic cancer, thus providing a theoretical basis
for the treatment of pancreatic cancer. Adjacent tissues are
important parts of a tumor microenvironment, and Existing
studies have taken adjacent tissues as normal tissues for control
to study the difference between cancer tissues and normal
tissues. However, present studies have indicated that there
will still be some physiological changes in adjacent tissues
affected by the tumor tissues of patients (Casbas-Hernandez
et al., 2015; Yamakawa et al., 2019). A number of studies have
included adjacent tissues in cancer research, and researchers
have found that adjacent tissues can also serve as a marker
of tumor prognosis (Lee et al., 2019). In this study, PNI was
studied in combination with the differences between tumor
tissues and adjacent tissues of patients to find prognostic
biomarkers affecting PNI.

In this work, we analyzed the gene expression profiles of
28 pancreatic ductal adenocarcinoma patients with perineural
invasion and 22 pancreatic ductal adenocarcinoma patients
without perineural invasion. Both tumor and adjacent
tissues were profiled. With Monte-Carlo feature selection
and Incremental Feature Selection (IFS) method, 26 key features
were identified. Interestingly, 15 of them were from tumor
tissues but the other 11 features were from adjacent tissues.
Our results proved that the microenvironment of the tumor
is important for perineural invasion. Based on these 26 key
features, a Support Vector Machine (SVM) predictor was
constructed and its accuracy, evaluated with Leave-One-Out
Cross Validation (LOOCV), was 0.94, which needs to be
validated in another independent large dataset. But many key
feature genes, such as TNFRSF14, XPO1, and ATF3, showed
great promise on explaining perineural invasion in pancreatic
ductal adenocarcinoma.

MATERIALS AND METHODS

Datasets
We downloaded the gene expression profiles of tumors and
adjacent tissues in 50 pancreatic ductal adenocarcinoma patients
from GEO (Gene Expression Omnibus) under accession number
GSE102238 (Yang et al., 2020). In this dataset, 28 patients
had perineural invasion while 22 patients had an absence
of perineural invasion. Each patient had both tumor and
adjacent samples. The gene expression levels were profiled with
25,492 probes from the Agilent-052909 CBC_lncRNAmRNA_V3
platform, which included both lncRNAs and mRNAs.

To systematically compare the difference between pancreatic
ductal adenocarcinoma patients with perineural invasion and
pancreatic ductal adenocarcinoma patients without perineural
invasion, we combined the gene expression levels from tumor
samples and adjacent samples for each patient. Therefore, there
were 25,492 × 2 = 50,984 gene expression features. Our goal was
to identify the key genes from either tumor or adjacent samples
that could discriminate the patients with perineural invasion and
without perineural invasion.
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Identification of Key Genes Using
Monte-Carlo Feature Selection
As we can see, the feature number was much greater than the
sample size. If we directly used so many features to classify
the patients, it would obviously overfit. To partially solve this
problem, we adopted the Monte-Carlo feature selection method
(Draminski et al., 2008) to rank the features. The Monte-Carlo
feature selection method randomly chooses a number of features
and then constructs a number of tree classifiers (Chen et al.,
2018a; Pan et al., 2018; Wang et al., 2018). Based on these
tree classifiers, it assigns each feature an importance value.
If a feature is selected by many tree classifiers, it is more
important than others.

Let us formulate the algorithm formally. Suppose d is the total
number of features, we randomly select m features (m�d) for
s times and construct t trees for each of the s subsets. At last,
s·t classification trees will be constructed. A feature g’s relative
importance (RI) can be reflected by how many times it is used to
set a decision rule by the s·t trees and how much it contributes
to the classification of the s·t trees, and is calculated with the
equation below:

RIg =
st∑

τ=1

(wAcc)u
∑
ng (τ)

IG(ng (τ))(
no. in ng (τ)

no. in τ
)v (1)

where wAcc is the weighted classification accuracy of decision
treeτ, IG(ng (τ) is the information gain of node ng (τ),
no. in ng (τ) is the number of samples under node ng (τ),
no. in τ is the number of samples in decision tree and τ, u and
v are parameters.

To be more specific, wAcc is defined as follows:

wAcc =
1
c

c∑
i=1

nii
ni1 + ni2 + · · · + nic

(2)

where c is the number of classes (it is 2 in this study) and nij
is the number of samples from class i that are classified as class
j (i, j = 1, 2, . . . , c)

The features were ranked based on their RI values from large
to small as F

F =
[
f1, f2, . . . , fN

]
(3)

where N is the total number of features (50,984 for this study).

Construction of SVM Predictor for
Perineural Invasion
Although all features were ranked using Monte-Carlo feature
selection, it was not clear how many top features should be
selected to construct a final predictor for perineural invasion.
To choose the final key features for the predictor, we adopted
the Incremental Feature Selection (IFS) method (Wang et al.,
2017; Zhang et al., 2017; Chen et al., 2018b,c; Li et al.,
2018) to optimize the key features and their predictor. We
tested 500 different feature sets (F1, F2 , . . . , F500), whereFi =

[f1, f2, . . . , fi]. In other words, feature set Fi contains the top
i features in F from equation (2). For each feature set, we
constructed a support vector machine (SVM) predictor. Based
on the number of features and their accuracy, we can balance
the model complexity and performance and choose the final key
features and optimized model. In this study, the SVM predictor
was constructed using R function svm from package e1017 and
leave-one-out cross validation (LOOCV) was used to evaluate the
performance of the SVM predictor.

RESULTS AND DISCUSSION

The Top Discriminative Genes Between
Patients Were With Perineural Invasion
and Without Perineural Invasion
The gene expression profiles in the tumor and adjacent
tissues can represent the difference between pancreatic
ductal adenocarcinoma patients with perineural invasion
and without perineural invasion. The gene expression
in the tumor directly shows the activity of pancreatic
ductal adenocarcinoma while the gene expression in the
adjacent tissue reflect the microenvironment of the tumor.
Therefore, we combined the gene expression profiles
in tumors and in adjacent tissues for each patient and
compared the combined profiles between pancreatic ductal
adenocarcinoma patients with perineural invasion and

FIGURE 1 | The IFS curve for final key feature selection. The X-axis was the
number of features. The Y-axis was their prediction accuracy evaluated with
LOOCV. When 175 genes were used, the accuracy was the highest, at 0.96.
But when only 26 genes were used, the accuracy became 0.94. Balancing
both model complexity and performance, we chose the 26 genes as the final
key features and their SVM predictor as the optimized predictor for perineural
invasion.
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without perineural invasion using Monte-Carlo feature
selection. Based on the RI values, which represented how
well a gene feature can classify the two groups of patients,
we ranked all the features and further analyzed the top 500
discriminative genes.

The Final Key Features and SVM
Predictor for Perineural Invasion
With IFS method (Chen et al., 2017a,b,c,d; Li and Huang,
2017; Liu et al., 2017), we evaluated the prediction accuracy
of different feature sets and plotted the IFS curve in which
the X-axis was the number of features and the Y-axis was
their prediction accuracy evaluated with LOOCV. The IFS curve
was shown in Figure 1. It can be seen that when 175 genes
were used, the accuracy was the highest, at 0.96. But when
only 26 genes were used, the accuracy became 0.94. Balancing
both model complexity and performance, we chose the 26
genes as the final key features and their SVM predictor as the
optimized predictor for perineural invasion. The 26 key features
were given in Table 1. With the 26 key features, 15 features
were from tumor tissues while 11 features were from adjacent
tissues. These results suggested that not only the tumor tissue,
but also the adjacent tissue, was informative for perineural
invasion prediction.

Compare the SVM Predictor With Other
Classification Methods
To compare the SVM predictor with other classification
methods, we tried three other classification algorithms:
decision tree (R function rpart from package rpart),
nearest neighbor (R function knn with k = 1 from
package class), and naïve Bayes (R function naiveBayes
from package e1071). The highest accuracies of decision
tree, nearest neighbor, naïve Bayes were 0.76 with 24
features, 0.94 with 44 features, and 0.94 with 185 features,
respectively. Their performances were worse than SVM and
required more features.

Compare the Monte-Carlo Feature
Selection With Other Seven Feature
Selection Methods
There have been many feature selection methods. Each has its
assumption and application scenario. Therefore, we compared
the Monte-Carlo feature selection results with seven other
feature selection methods in Weka (Frank et al., 2016):
chi-squared statistic (ChiSquared), correlation (Correlation),
gain ratio (GainRatio), information gain (InfoGain), OneR
classifier (OneR), ReliefF (ReliefF), and symmetrical uncertainty

TABLE 2 | Ranking of the 26 key features selected by the Monte-Carlo method in the other seven feature selection methods.

Monte
Carlo

Best Rank in other
seven methods

ChiSquared Correlation GainRatio InfoGain OneR ReliefF SymmetricalUncert

1 OneR 4 6 12 51 12 4 21 15

2 ChiSquared 14 14 49 52 24 94 306 30

3 GainRatio 2 18 1121 2 16 267 11 9

4 GainRatio 4 20 501 4 15 227 220 8

5 SymmetricalUncert 5 13 38 13 10 527 1602 5

6 ReliefF 4 26 43 168 39 613 4 67

7 Correlation 8 10 8 135 19 1839 80 29

8 SymmetricalUncert 3 11 74 12 9 6306 121 3

9 ChiSquared 25 25 47 170 38 5466 194 69

10 Correlation 5 40 5 140 48 760 545 72

11 GainRatio 1 19 1205 1 18 10 67 11

12 GainRatio 29 123 1697 29 114 11583 8543 46

13 Correlation 1 31 1 17 13 73 3 14

14 Correlation 6 45 6 9 31 1037 160 22

15 ChiSquared 1, InfoGain
1, SymmetricalUncert 1

1 89 11 1 13 7 1

16 SymmetricalUncert 4 12 239 14 11 4030 128 4

17 ReliefF 38 100 2787 238 155 1528 38 269

18 ChiSquared 53 53 106 417 57 366 572 192

19 GainRatio 3 17 1935 3 17 609 115 10

20 ChiSquared 22 22 581 406 34 4094 335 97

21 ChiSquared 15 15 3593 251 26 2325 489 66

22 ChiSquared 16 16 21 250 25 45 56 65

23 ChiSquared 41 41 303 139 50 3739 329 70

24 ChiSquared 62 62 2882 404 120 197 2038 259

25 ReliefF 429 10141 12902 10141 10141 6549 429 10141

26 ReliefF 52 71 1801 438 142 11874 52 288
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FIGURE 2 | The IFS curves of seven other feature selection methods from Weka. (A) The IFS curve of ChiSquaredAttributeEval; (B) The IFS curve of
CorrelationAttributeEval; (C) The IFS curve of GainRatioAttributeEval; (D) The IFS curve of InfoGainAttributeEval; (E) The IFS curve of OneRAttributeEval; (F) The IFS
curve of ReliefFAttributeEval; (G) The IFS curve of SymmetricalUncertAttributeEval. The IFS curves of seven other feature selection methods from Weka were plotted.
Their peak accuracies were 0.88, 0.94, 0.90, 0.88, 0.76, 0.92, and 0.88, all smaller than the highest accuracy of Monte-Carlo feature selection, which was 0.96.

(SymmetricalUncert). The default parameters in Weka were used
for the seven feature selection methods.

We checked the ranks of the 26 key features selected
by the Monte-Carlo method in the other seven feature
selection methods. Their ranks were listed in Table 2. It
can be seen that most of the features ranked on top with
other methods as well. The first feature by Monte-Carlo
ranked fourth by OneR, the third feature ranked second by
GainRatio, the fourth feature ranked fourth by GainRatio,
the fifth feature ranked fifth by SymmetricalUncert, the sixth
feature ranked fourth by ReliefF, the seventh feature ranked
eight by Correlation, and the eighth feature ranked third
by SymmetricalUncert.

Similarly, for the seven methods, the top 500 ranked genes
were further evaluated with IFS and their accuracies were used
to represent how different they were between two groups of
samples. The IFS results of the seven feature selection methods
in Weka was shown in Figure 2. It can be seen that the peak
LOOCV SVM accuracies of ChiSquared, Correlation, GainRatio,
InfoGain, OneR, ReliefF, and SymmetricalUncert were 0.88,
0.94, 0.90, 0.88, 0.76, 0.92, and 0.88, respectively. They were
all smaller than the highest accuracy of Monte-Carlo feature
selection, which was 0.96.

We compared the best Monte-Carlo genes with the best
genes selected by the other seven methods in Weka using R
package SuperExactTest1 (Wang et al., 2015). The number of
overlapped genes between Monte-Carlo and SymmetricalUncert,
ReliefF, OneR, InfoGain, GainRatio, Correlation, and ChiSquared
were 10, 10, 4, 11, 13, 5, and 12, respectively. The enrichment
p values between Monte-Carlo and SymmetricalUncert, ReliefF,
OneR, InfoGain, GainRatio, Correlation, and ChiSquared were
4.88E-31, 3.41E-22, 1.78E-08, 3.85E-33, 7.46E-31, 4.57E-14, and
4.40E-36, respectively. The Monte-Carlo selected genes were
most like the ChiSquared selected genes and most unlike the
OneR selected genes.

The Biological Functions of Key Genes
for Perineural Invasion
The probes of Agilent-052909 CBC_lncRNAmRNA_V3
microarray were poorly annotated. We mapped the probe
sequence onto the human genome using blastn2 with default
parameters against Genome (GRCh38.p12 reference, Annotation
Release 109) and identified the best match genes for these probes.

1https://CRAN.R-project.org/package=SuperExactTest
2https://blast.ncbi.nlm.nih.gov
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The biological functions of the 15 genes from tumor tissues,
the 11 genes from adjacent tissues, and the combined 26
genes were analyzed using GATHER3. The enrichment results
were shown in Table 3. For tumor signature genes, they
were significantly enriched onto GO:0016043: cell organization
and biogenesis and GO:0006996: organelle organization and
biogenesis with a p value of 0.0004 and 0.006, respectively. For
adjacent genes, TNFRSF14 was involved in hsa04060: Cytokine-
cytokine receptor interaction. DOCK9, NPHP1, and SOCS4 from
tumors and CREB5 and XPO1 from adjacent tissues were all
targets of transcription factor NF-κB.

Bockman DE et al. found that a large number of molecules,
such as LIF (Bressy et al., 2018), CCL2–CCR2 (Jessen and Mirsky,
2016), and NCAM (Deborde et al., 2016), were involved in PNI
by studying the paracrine mechanism of signal transduction
between nerves and cancer cells (Wang et al., 2014). For
instance, cellular adhesion molecules LICAM mediates the
homologous interaction between the tumor and nerves and
increases PNI to promote the development of cancer (Ben et al.,
2014; Lund et al., 2015). According to Giulia Gasparini et al.,
nerve growth factor (NGF) may be involved in the migration
of glial cells in PNI. The results suggested that high levels
of NGF and its affinity receptor TrKA were associated with
the frequency of occurrence and severity of PNI, as well as
decreased survival time and increased pain in patients with
PDAC (Barbacid, 1995; Demir et al., 2010; Wang et al., 2014;
Gasparini et al., 2019). The importance of GDNF-RET signal
transduction in PDAC nerve invasion has been emphasized
in many studies (Gil et al., 2010; Demir et al., 2012). Demir
et al. have shown that in PDAC, soluble GFRα1 released by
nerves can promote the binding of neural GDNF and RET
in pancreatic adenocarcinoma, thus enhancing PNI (He et al.,
2014; Mulligan, 2018). The synthesis, secretion, and transport
of these cytokines are carried out by organelle organization,
such as ribosomes and endoplasmic reticulum (Alrawashdeh
et al., 2019). This evidence supports our findings that there is a
close relationship between GO:0006996 (organelle organization),
hsa04060 (Cytokine-cytokine receptor interaction), and PDAC
PNI. In addition, some studies have shown that the activation of
the NF- κB signaling pathway affects a wide range of biological
processes, including immunity, inflammation, stress response, B
cell development, and lymphoid organogenesis (Yu et al., 2017;
Balaji et al., 2018), while PNI in PDAC is associated with lymph
node metastasis (Chatterjee et al., 2012).

We investigated their clinical relevance with the survival of
117 pancreatic ductal adenocarcinoma patients from Kaplan
Meier-plotter4 (Nagy et al., 2018). 17 genes were included in
the database. 11 of them (NPHP1, WBP2NL, EXD3, G2E3,
DOCK9, CT47A12, TMEM250, PLCB1, XPO1, HIST1H4G, and
SLC35E2B) were significant with a p value smaller than 0.05 and
one (ATF3) was marginally significant with a p value of 0.074.
The Kaplan Meier plot of these 12 survival-associated genes were
shown in Supplementary Figure 1.

3https://changlab.uth.tmc.edu/gather/
4https://kmplot.com/analysis/ TA
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FIGURE 3 | The STRING network of the 26 genes. The 26 genes were mapped onto the STRING network (https://string-db.org/). The light-yellow nodes were
genes from adjacent tissues while the light-blue nodes were genes from tumor tissues. The genes from tumors can be grouped into three clusters and the hub
genes of these three clusters were ATF3, XPO1, and TNFRSF14, which were highlighted in red.

To select the most possible key genes, we constructed the
network of the 26 genes using STRING database5 version 11.0
(Szklarczyk et al., 2018). The network of the identified genes was
shown in Figure 3. It can be seen that six genes from tumors
were mapped onto the network and they can be grouped into
three categories: (1) the XPO1, UBR4, EXD3 cluster in which
XPO1 was the hub gene with degree of six (RAN, RANGAP1,
CDC42, JUN, UBR4, EXD3); (2) the ATF3, CREB5 cluster in
which ATF3 was the hub gene with degree of five (JUN, ATF4,

5https://string-db.org/

CDC42, AHI1, CREB5); and (3) the TNFRSF14 cluster in which
the degree of TNFRSF14 was three (JUN, BTLA, TNFSF14).
Therefore, the three genes (XPO1, ATF3, and TNFRSF14) from
tumors were the hubs.

Probe A_21_P0010506, ranked 5th in Table 1, was mapped
onto TNFRSF14. TNFRSF14, also known as HVEM, encodes a
member of the TNF receptor superfamily that activates either
proinflammatory or inhibitory signaling pathways (Pasero et al.,
2012). Recent reports indicate that HVEM and its ligands may
also be involved in tumor progression and resistance to immune
response (Derre et al., 2010). The tumor microenvironment of

Frontiers in Genetics | www.frontiersin.org 9 October 2020 | Volume 11 | Article 554502

https://string-db.org/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-554502 October 12, 2020 Time: 17:57 # 10

Zhu et al. Key Genes for PDAC

pancreatic cancer is rich in the expression of immune-inhibitory
molecules, such as PDL1, galectin-9, HVEM, or HLA-G (Sideras
et al., 2014). High tumor expression of these molecules has
been identified to be associated with improved cancer-specific
survival (Sideras et al., 2017). The combination of such immune
biomarkers could be a powerful prognostic tool for pancreatic
cancer patients, as well as targets for future immunotherapy.

Probe A_23_P40078, ranked 20th in Table 1, was mapped
onto XPO1. Exportin 1 (XPO1), also called chromosome
maintenance region 1 (CRM1), is known as a medium of nucleo-
cytoplasmic shuttling of mature microRNAs (Muqbil et al.,
2013). Recent studies show that up- or down-regulation of
specific miRNAs and their target genes are directly involved
in the progression and prognosis of human cancers like
PDAC (Calin and Croce, 2006; Zhang et al., 2007). Azmi
et al. suggested that XPO1 inhibition can down-regulate the
expression of miR-145 target pathways via up-regulating the
expression of tumor suppressive miR-145, therefore leading
to the inhibition of migration and proliferation of PDAC
(Azmi et al., 2017). High expression of XPO1, a common
feature of PDAC and other cancers, results in functional
inactivation of tumor suppressor proteins (TSPs) via constant
nuclear protein export (Turner and Sullivan, 2008; Huang
et al., 2009; Gao et al., 2014). Gao et al. developed some
newly specific inhibitors of nuclear export targeting XPO1,
which have been proven to inhibit the proliferation of
pancreatic cancer cells and tumor invasion effectively (Gao
et al., 2014). Therefore, blocking nuclear export could become
an attractive therapeutic strategy for the treatment of PDAC
(Mao and Yang, 2013).

Probe A_24_P33895, ranked 24th in Table 1, was mapped
onto ATF3. Activating transcription factor 3 (ATF3) is involved
in the complex process of cellular stress response (Hackl et al.,
2010) and is a key mediator of the PERK/ATF4 pathway (Jiang
et al., 2004). Several studies have identified rapid increases of
ATF3 expression during pancreatic insult (Allen-Jennings et al.,
2001; Hartman et al., 2004; Jiang et al., 2004), but it is still
unclear how the increase affects the response of the pancreas
to injury. Fazio et al. demonstrated that ATF3 reduces the
severity of pancreatic injury as a key transcriptional regulator
of pancreatic acinar cells (Fazio et al., 2017). However, long-
term activation of ATF3 may increase the sensitivity to factors
that promote PDAC.

CONCLUSION

Pancreatic cancer is a common cancer and pancreatic ductal
adenocarcinoma (PDAC) is the most aggressive subtype, with
a 5-year survival rate of only 3–5%. Perineural invasion (PNI)
is associated with the poor prognosis of PDAC. Adjacent
tissues are normal tissues that grow around tumors. There
are often some capillaries and immune cells in the adjacent
tissues due to the influences of tumor invasion. Adjacent
and tumor tissues constitute the tumor microenvironment
(Degos et al., 2019; Harmon et al., 2019). Many studies have
been conducted on the adjacent tissues of patients, and the

results suggest that the expression of corresponding genes
in adjacent tissues can be used to predict the prognosis of
patients (Lee et al., 2019). To explore the mechanism of
PNI, by analyzing the gene expression profiles of tumors and
adjacent tissues from 28 pancreatic ductal adenocarcinoma
patients with perineural invasion and 22 pancreatic ductal
adenocarcinoma patients without perineural invasion,
we identified 26 key features, within which 15 features
were from tumor tissues while 11 features were from
adjacent tissues. These results merit further validation in
large cohort studies.
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WBP2NL; (C) The Kaplan Meier plot of EXD3; (D) The Kaplan Meier plot of G2E3;
(E) The Kaplan Meier plot of DOCK9; (F) The Kaplan Meier plot of CT47A12; (G)
The Kaplan Meier plot of TMEM250; (H) The Kaplan Meier plot of PLCB1; (I) The
Kaplan Meier plot of XPO1; (J) The Kaplan Meier plot of HIST1H4G; (K) The

Kaplan Meier plot of SLC35E2B; (L) The Kaplan Meier plot of ATF3. The clinical
relevance of these genes with survival were evaluated using the 117 pancreatic
ductal adenocarcinoma patients from Kaplan Meier-plotter
(https://kmplot.com/analysis/).
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