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Abstract: Detection and classification of road markings are a prerequisite for operating autonomous
vehicles. Although most studies have focused on the detection of road lane markings, the detection
and classification of other road markings, such as arrows and bike markings, have not received much
attention. Therefore, we propose a detection and classification method for various types of arrow
markings and bike markings on the road in various complex environments using a one-stage deep
convolutional neural network (CNN), called RetinaNet. We tested the proposed method in complex
road scenarios with three open datasets captured by visible light camera sensors, namely the Malaga
urban dataset, the Cambridge dataset, and the Daimler dataset on both a desktop computer and an
NVIDIA Jetson TX2 embedded system. Experimental results obtained using the three open databases
showed that the proposed RetinaNet-based method outperformed other methods for detection and
classification of road markings in terms of both accuracy and processing time.

Keywords: detection and classification of road markings; deep CNN; one-stage RetinaNet; NVIDIA
Jetson TX2; visible light camera sensor

1. Introduction

The U.S House of Representatives is quoted to have said “Self-driving cars seem like such
a good idea that even Republicans and Democrats can agree on their merits” [1]. Autonomous
vehicles are considered as the future of mobility. The most essential requirement for robust advanced
driver assistance systems (ADAS) is to make the perception of the environment around the vehicle
as comprehensive as possible. Although road lane markings can be defined by a combination of
horizontal and vertical lines, arrow markings vary. Arrow markings have different signature features
such as straight forward, left, right, forward-left-right arrow, or different color intensities even within
the same city or different character sets depending on the countries. The sizes of arrow markings also
vary when considering the distance and angular orientation of the front-view camera in the vehicle.
Therefore, the same arrow can show different lengths or thickness in different frames. Furthermore,
recognition of arrow markings becomes increasingly difficult because of occlusion. For example,
forward-left or forward-right arrow can be easily mischaracterized as forward arrow in case the
left or right part, respectively, is faint owing to factors such as shadows from nearby cars and trees
or paint quality. Figure 1 shows examples of road markings of a bike, forward arrow, forward-left
arrow, forward-right arrow, forward-left-right arrow, left arrow, left-right arrow, and right arrow.
Figure 2 shows examples of different shapes of arrow markings observed in the image obtained using
a front-view camera in a vehicle on different datasets.
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Conventional methods that do not employ machine learning techniques [2–5] require additional 
pre- and post-processing steps to transform the input image for increasing the contrast between the 
road markings and the background [6]. However, these methods only tackle problems such as 
illumination variations [7,8], curve line, or color intensities. These methods are not generalized for all 
application to all challenges. During the past few decades, deep learning has shown significant 
performance owing to the capabilities of parallel computing using graphics processing units (GPUs) 
and a breakthrough of huge collected and labeled data [9,10]. Based on these advancements, methods 
[11–14] based on a deep learning have been developed to tackle the above-mentioned challenges in 
road markings recognition. These methods have demonstrated a high performance on benchmarks 
and in real road scenarios. Applying the advantages of visual road understanding based on deep 
learning, we propose the detection and classification of road markings using a one-stage 
convolutional neural network (CNN), called RetinaNet [15] that works well in various complex 
environmental conditions as well as for small markings at far distance. 
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Figure 1. Road marking objects. (a) Bike. (b) Forward arrow. (c) Forward-left arrow.  
(d) Forward-right arrow. (e) Forward-left-right arrow. (f) Left arrow. (g) Left-right arrow.  
(h) Right arrow. 
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Figure 2. Different shapes of arrow markings observed in the image from the front-view camera in 
the vehicle for different datasets. (a) Malaga urban dataset image captured in Spain [16]. (b) Daimler 
dataset image captured in Germany [17]. (c) Cambridge dataset image captured in UK [18]. 

The remainder of this paper is organized as follows: Section 2 describes related works on 
detection and classification of road markings. Our contributions are listed in Section 3. In Section 4, 

Figure 1. Road marking objects. (a) Bike. (b) Forward arrow. (c) Forward-left arrow. (d) Forward-right
arrow. (e) Forward-left-right arrow. (f) Left arrow. (g) Left-right arrow. (h) Right arrow.

Conventional methods that do not employ machine learning techniques [2–5] require additional
pre- and post-processing steps to transform the input image for increasing the contrast between the road
markings and the background [6]. However, these methods only tackle problems such as illumination
variations [7,8], curve line, or color intensities. These methods are not generalized for all application to
all challenges. During the past few decades, deep learning has shown significant performance owing
to the capabilities of parallel computing using graphics processing units (GPUs) and a breakthrough
of huge collected and labeled data [9,10]. Based on these advancements, methods [11–14] based on
a deep learning have been developed to tackle the above-mentioned challenges in road markings
recognition. These methods have demonstrated a high performance on benchmarks and in real road
scenarios. Applying the advantages of visual road understanding based on deep learning, we propose
the detection and classification of road markings using a one-stage convolutional neural network
(CNN), called RetinaNet [15] that works well in various complex environmental conditions as well as
for small markings at far distance.
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Figure 2. Different shapes of arrow markings observed in the image from the front-view camera in
the vehicle for different datasets. (a) Malaga urban dataset image captured in Spain [16]. (b) Daimler
dataset image captured in Germany [17]. (c) Cambridge dataset image captured in UK [18].

The remainder of this paper is organized as follows: Section 2 describes related works on
detection and classification of road markings. Our contributions are listed in Section 3. In Section 4,
the proposed method is explained in detail. Section 5 presents the experimental setup and the results.
Our conclusions and discussions on ideas for future work are reported in Section 6.
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2. Related Works

Previous studies on detection and classification of road markings are categorized into handcrafted
features-based and deep features-based methods. In the former category of methods, Li et al. [6]
combined a local adaptive threshold and canny edge detection for extraction of road markings.
However, the performance of their method relied on the accuracy of the canny edge detector.
Yoo et al. [7] converted the color space from red-green-blue (RGB) to luminance-chroma blue-chroma
red (YCbCr) for gradient-enhancing to deal with illumination changes. They assumed that multiple
different illuminations were not included within a single scene; thus, their method was only effective
for limited variations of illumination. Instead of using YCbCr color space, Sun et al. [8] chose the HSI
color representation with a Fuzzy c-means algorithm, and simple thresholds were empirically selected
for saturation and intensity values to detect lane markings. In [2,3], the authors used method based on
a line segment detector, which can be operated regardless of the orientation or size of line segment.
However, their methods require a distinct contrast to exist between the road lane marking and the
background for accurate edge detection.

The performances of the abovementioned handcrafted features-based methods are limited
in complex road environments. Therefore, deep features-based methods have been studied.
Chen et al. [19] proposed a general framework for road marking detection and classification by using
binarized normed gradient (BING) and principal component analysis network (PCANet). The BING
object detector provides a number of possible candidate regions that have relevant similarities to
road markings, the detected regions are then classified by PCANet. However, the drawback of
their approach is that the number of candidate regions determined by the BING detector causes a
computational burden for the classification process using PCANet. In addition, road markings are not
localized precisely; hence, the bounding box often includes other irrelevant objects. Lee et al. [14] used
the vanishing point guided net (VPGNet) model for lane and road markings detection and recognition
under adverse weather conditions. They evaluated their network model using images captured from
a downtown area of Seoul, South Korea. These images had a resolution of 1288 × 728 pixels. Thus,
all the shapes and symbols of the lane and road markings in the images follow the regulations of
South Korea. Although they are different from those in other open datasets captured from different
countries, they did not evaluate their method with these datasets. Li et al. [12] used a CNN and
a recurrent neural network (RNN) to detect the boundaries of road lane marking. In their study,
the multi-task CNN provides geometric information of the given lane structures, and the RNN
automatically detects lane boundaries without any explicit prior knowledge or secondary modeling.
He et al. [20] proposed a method using a dual-view CNN (DVCNN) framework for the detection of
road lane marking. In their approach, both the images of front-view and top-view were fed as inputs to
the DVCNN. Distractions from moving vehicles, barriers, and curbs are excluded from the front-view
image, and the club-shaped structures were maintained in the top-view image. Unfortunately, their
method shows low accuracy in case that the road lane marking is occluded by the other vehicles
or the image is completely over-exposed. Huval et al. [21] presented empirical evaluations of the
detection of road lane marking and vehicle marking based on computer vision algorithms combined
with deep learning. Their network includes sub-networks that perform binary classification and
regression tasks. However, the results were evaluated on highway images without complex road
markings or occlusion from other vehicles. Al-Qizwini et al. [22] proposed a deep learning-based
algorithm for autonomous vehicles using GoogLeNet for autonomous driving (GLAD). However,
their algorithm was evaluated using images generated by the open racing car simulator (TORCS)
instead of camera images from a real vehicle environment. For the detection and classification of road
markings, Bailo et al. [23] presented a technique using density-based grouping based on maximally
stable extremal regions (MSER) features to obtain candidate regions. Then, the regions of interest (ROIs)
were recognized using a shallow CNN comprising a single convolutional layer, 1 max pooling layer,
and 3 fully connected layers. However, to recognize the road marking object using their CNN model,
their algorithm relies on an MSER detector to detect the correct ROI candidates by pre-processing,
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including image rectification and enhancement, to increase the distinctiveness between objects and
their background. Thus, the enhanced images of the road might include excessive noisy texture
information, which could reduce the accuracy in the classification of road markings. To overcome
the limitations of previous studies, we propose the detection and classification method of various
types of road markings on roads in various complex environments using a one-stage deep CNN,
called RetinaNet. In Table 1, we summarize the comparisons between the proposed method and
existing methods.

Table 1. Comparisons between existing method and the proposed method for detection and classification of
road markings.

Category Method Advantage Disadvantage

Handcrafted
features-based

Uses color space different from
RGB [7,8]

Local adaptive threshold and edge
detector [6]

Line segment detector [2,3]
Uses marking pixel extraction and

pattern comparison [5]

No extensive training is
required

Algorithm is simple with
low processing time

Performs well only for specific
conditions

Intensive pre- and post-processing is
required

Poor performance under extreme
conditions

Original image must be converted to
bird’s eye view to detect straight

edge line segment

Deep features-based

VPGNet [12] used for vanishing
point detection and detection and

classification of road markings
BING and PCANet [19]

DVCNN [20]
Deep CNN [9,11,21], CNN with

RNN [10], and GLAD [22]
Uses density-based grouping and

shallow CNN [23]

Outperforms
handcrafted

features-based methods
Work well with various

shapes and types of road
markings in extreme
weather conditions

Additional pre-processing is
required [10,11,19,20,23]

Evaluations were not performed on
multiple datasets collected from

different countries, including
various shapes and types of road

markings [9,10,12,19–23]

Uses one-stage deep CNN
(proposed method)

Does not require pre-
and post-processing

Performs evaluation on
multiple datasets

collected from different
countries, including

various shapes and types
of road markings

Requires intensive training for
deeper CNN model than previous

deep features-based methods

3. Contributions

Below, we summarize the novelty of this study in five points.

- This is the first approach using one-stage deep CNN for the detection and classification of road
markings. This method achieved high accuracies of detection and classification in complex
conditions such as extreme illumination change, occlusion, and far distance.

- The proposed system does not require any pre-processing including image rectification and
enhancement, or post-processing for the detection and classification of road markings.

- We determined that a converted bird’s eye view image cannot cover all drivable regions where
some part of original road markings disappear. This negatively influences the training of the
CNN model.

- Considering the application of autonomous vehicles in real environments, we tested the trained
CNN model not only on a desktop computer but also on an NVIDIA Jetson TX2 embedded
system [24], which has been widely used as onboard platform in autonomous vehicles.

- Finally, although the open databases used in our experiments have been widely used in previous
studies, they do not provide annotated information of road markings. This increases the time
and load for system implementation. Therefore, we provide the manually annotated information
of road markings for the Malaga urban dataset, the Daimler dataset, and the Cambridge dataset
as shown on the website [25]. We also provide the proposed train models based on different
backbones with and without pre-trained weights to other researchers for fair comparison.
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4. Proposed Method Using Deep RetinaNet

4.1. Overview of Proposed Method

Figure 3 shows the overall flowchart of proposed method. The input image from three channels is
captured using a front-view camera mounted on the car, and it is used as an input for deep RetinaNet.
From the outputs of RetinaNet, the positions and classes of road markings are determined. As shown
in Figure 3, our method does not require pre- and post-processing.
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4.2. Architecture of the Deep RetinaNet Model

The architectures for networks tasked with object detection is usually split in two categories,
namely single-stage (or one-stage) and two-stage object detectors [26]. In two-stage detectors such
as R-CNN [27], Faster region-based CNN (R-CNN) [28] and Mask R-CNN [29], a region proposal
network is used (RPN) to generate ROIs in the first stage. Subsequently, these ROI proposals are
transferred down the pipeline for object classification and bounding-box regression in the second stage.
These two-stage models are very slow; however, they yield a high accuracy because they maintain
a manageable balance between the foreground and the background. On the other hand, one-stage
detectors such as you only look once (YOLO)v3 and single shot multibox detector (SSD) [30,31] do
not have a pre-selection step for detection of foreground candidates and they treat object detection as
a simple regression problem. These one-stage methods normally use 10,000~100,000 box proposals
per image, compared to only 2000 proposals generated by two-stage methods like Faster R-CNN [32].
Therefore, they yield a lower detection accuracy; however, they are faster than two-stage object
detectors. Our system for detecting and classification for road markings is built to be operated on
an embedded system in an actual car, which usually has lower computing power than a desktop
computer. By considering the aspects of processing speed and accuracy, we use the one-stage object
detection based on deep RetinaNet architecture as shown in Figure 4 [15].
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The backbone is necessary for computing a convolutional feature map over the entire input image.
It consists of an encoder and a feature pyramid net (FPN) including subnets [33]. The original road
scene image can be applied as input to a residual network (ResNet) [34], dense convolutional network
(DenseNet) [35], or visual geometry group (VGG) net [36] encoder, which processes the image through
convolution kernels and generates deep features. Each component of the ResNet architecture [34],
which is the backbone of deep RetinaNet, is explained in detail as follows. The ResNet model enables
training hundreds of layers while still maintaining compelling performance, and the performance of
many computer vision applications and image classification schemes have been improved. In our
research, we can process a 3-channel image regardless of its size, and we only need to specify the
number of channels as an input parameter. The size of the output feature map can be calculated using
Equations (1) and (2) below [37,38]:

output height =
H − Fh + 2P

Sh
+ 1 (1)

output width =
H − Fw + 2P

Sw
+ 1 (2)

where H, W, Fh, Fw, Sh, and Sw are the dimensions of the input image (height = H, width = W), a filter
(height = Fh, width = Fw), and stride (height = Sh, width = Sw), respectively. P is the number of padding.
The bottom-up pathway uses ResNet50 as the encoder, as shown in the left structure of Figure 4a and
is composed of many convolution modules; each module has several convolutional layers. As shown
in Table 2, ResNet50 without the last average pooling layer, fully connected layer, and softmax layer
is used in our RetinaNet. As we move up from lower to higher modules in ResNet50 of Figure 4a,
the spatial dimensions are reduced by half. The output of each last residual block is labeled as Ci
(i varies from 1 to 5), and both C1 and C2 are not connected to the FPN because of its large memory
footprint [33], as shown in Figure 5.

Instead of adding a classifier right after ResNet50, FPN is used as a decoder [33]. The advantages
of using FPNs are that feature maps can be chosen from different layers of ResNet50; therefore, rich
and multi-scaled features can be obtained. Because objects appear in various scales and sizes, an image
pyramid is used to make it easy for CNN-based object detection. Therefore, some of the reported studies
used only a single scale prediction, whereas others obtained predictions from intermediate layers.
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Table 2. Revised ResNet50 architecture used in our RetinaNet. Each layer is followed by batch
normalization (BN) and rectified linear unit (ReLU) activation function. 2/1* means 2 at the first
iteration and 1 from the second iteration. The shortcut for a 1 × 1 convolutional filter is included in
each layer of Conv2_x, . . . , Conv5_x. Conv1 is performed with the feature map including a padding of
3, whereas the convolutional filtering of 3 × 3 × depth in Conv2_x, . . . , Conv5_x is performed with
the feature maps including paddings of 1. In all the other cases, the padding number is 0.

Layer Name #of Iterations Kernel Size #of Filters Stride Size of Feature Map
(Height × Width × Channel)

Input Layer 720 × 960 × 3

Conv1 1 7 × 7 × 3 64 2 360 × 480 × 64

Max pool 1 3 × 3 1 2 180 × 240 × 64

Conv2_x x3
1 × 1 × 64 64 1 180 × 240 × 64
3 × 3 × 64 64 1 180 × 240 × 64
1 × 1 × 64 256 1 180 × 240 × 256

Conv3_x x4
1 × 1 × 256 128 2/1* 90 × 120 × 128
3 × 3 × 128 128 1 90 × 120 × 128
1 × 1 × 128 512 1 90 × 120 × 512

Conv4_x x6
1 × 1 × 512 256 2/1* 45 × 60 × 256
3 × 3 × 256 256 1 45 × 60 × 256
1 × 1 × 256 1024 1 45 × 60 × 1024

Conv5_x x3
1 × 1 × 1024 512 2/1* 23 × 30 × 512
3 × 3 × 512 512 1 23 × 30 × 512
1 × 1 × 512 2048 1 23 × 30 × 2048
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Figure 5. Architecture of deep RetinaNet with revised ResNet (block in orange box) and FPN (block in
gray box). M3~5 means the feature maps obtained from Conv3~5, respectively, whereas P3~5 shows
the feature maps for prediction.

Unlike these approaches, an FPN uses simple merge layers (mode = “addition”) to combine both,
as illustrated in Figures 5 and 6. For each feature map, the FPN up-samples the spatial resolution of the
input feature map by a factor of two, and the up-sampled map is then merged with the corresponding
bottom-up map, which undergoes a 1 × 1 convolution to reduce channel dimension by element-wise
addition, as shown in Figures 5 and 6. This whole process is repeated until the finest resolution map
is generated.
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As specifically depicted in Figure 5, when we trace the top-down path in the FPN, a 1 × 1
convolutional filter is applied to reduce C5 channel depth to 256-d to create M5, and a subsequent
3 × 3 convolution is performed to create P5, which becomes the first feature map layer used for
object prediction [15]. For each subsequent layer, we up-sample the previous layer by 2 using nearest
neighbor up-sampling and apply a 1 × 1 convolution to the corresponding feature maps from ResNet.
Then, we add the up-sampled feature map to the output feature map by 1 × 1 convolution based on
element-wise summation and repeat this process with 3 × 3 convolution to obtain the corresponding
feature map layer.

Two subnets named classification subnet and box regression subnet with different tasks are
applied to predict results, as shown in Figure 4b. FPN is not an object detector but a feature detector
that works with the object detector. Therefore, multiple feature map layers are extracted by the FPN and
then fed into the region proposal network (RPN), for example, to detect objects. The RPN then applies
3 × 3 convolutions over the feature maps followed by separate 1 × 1 convolution for class predictions
and bounding box regressions. In our study, the classification subnet predicts the probability of object
presence at each spatial position for each of the A anchors and K object classes; the parameters of this
subnet are then shared between all pyramid levels. The subnet takes an input feature map with C
channels from a pyramid level and applies four 3 × 3 convolutional layers with C filters followed by a
rectified linear unit (ReLU) activation function. Finally, sigmoid function activations are attached to
the output KA binary predictions per spatial location. This subnet implements focal loss (FL) [15] as
calculated in Equation (4) as the loss function. The focal loss is the reshaping of cross entropy (CE)
loss in Equation (3) such that it down-weights the loss assigned to well-classified samples; it also
focuses training on a sparse set of hard samples and prevents a large number of easy negatives from
overwhelming the detector during training [15].

Meanwhile, the box regression subnet is implemented similar to the classification subnet, but the
parameters are not shared. The output of this subnet is the object location with respect to anchor box if
an object exists, and it terminates in 4A linear outputs per spatial location compared to the KA outputs
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of the classification subnet with K is number of classes and A is number of anchors. Smooth L1 loss
(Equation (5)) with a sigma of 3 is applied as the loss function to this part of the sub-network [39]:

CE(p, y) =

{
−log(p) , i f y = 1
−log(1− p), otherwise

(3)

FL(pt) = −1(1− pt)
µ log(pt) (4)

L1;smooth =

{
|x| , i f |x| > α
1
|α| x

2, else i f |x| ≤ α
(5)

In Equation (3), y ∈ {±1} defines the ground-truth class, and p ∈ [0, 1] is the model’s estimated
probability for the class with label y = 1. pt is p if y = 1 whereas pt is 1− p if y = −1 [15]. In addition,
µ ∈ [0, 5]. While focal loss function adds a modulating factor (1− pt)

µ to the CE loss, a tunable
focusing parameter µ ≥ 0 and µ value can smoothly adjust the rate at which easy examples are
down-weighted to reduce the loss contribution [15]. In Equation (5), α is a hyper-parameter and
usually set to 1. The variable x is the L1 distance between two vectors.

5. Experimental Results

5.1. Experimental Dataset

We trained and tested the network model with various datasets under different illumination and
complex conditions. The Cambridge dataset contains four sub-datasets (Seq01TP, Seq06R0, Seq16E5,
and Seq05VD) captured in the UK, and the size of each image is 960 × 720 pixels [18]. The Daimler
dataset includes the sub-datasets (Test2, Train1, and Train3) with sizes of 1012 × 328 pixels each [17].
In addition, the Malaga urban dataset contains images captured in urban roads in Spain under various
illumination conditions, and the size of each image is 800 × 600 pixels [16]. For the experiments,
we selected 3572, 898, and 9120 images from the Cambridge, Daimler, and Malaga urban datasets,
respectively, by excluding images where eight classes of road markings to be detected and classified in
our research (Figure 1) were not included. Example images of each dataset are shown in Figure 7, and
Table 3 summarizes the descriptions of each dataset.

Table 3. Descriptions of each dataset.

Dataset Sub Dataset Image Size (Pixels) Number of Images (Frames) Total (Frames)

Cambridge

Seq01TP

960 × 720

216

3572
Seq05VD 162
Seq06R0 1518
Seq16E5 1676

Daimler
Test2

1012 × 328
470

898Train1 362
Train3 66

Malaga urban 800 × 600 9120 9120
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performed only for the training images, and original images were used for testing. 
  

Figure 7. Examples of images from the open datasets. (a) Cambridge dataset. (b) Daimler dataset.
(c) Malaga urban dataset.

We provide the manually annotated information of road markings for the Malaga urban dataset,
Daimler dataset, and Cambridge dataset through [25]. In addition, we provide the proposed training
models based on different backbones with or without pre-trained weights to other researchers for fair
comparison purposes through [25].

5.2. Training Process

For evaluating the performance of deep RetinaNet-based road marking detection and
classification, we performed the experiments based on a two-fold cross validation. The database
of all images was divided into two subsets for training and testing, respectively, and the whole process
was repeated anew by swapping these subsets. The overall performance was measured based on
the average of the obtained results from the two-fold validation scheme. Usually, large datasets are
required to train deep CNNs for better performance and to avoid overfitting; thus, data augmentation
was used to increase the training data in this work [9]. There should not be large changes in the
geometries of the original road markings based on the front-viewing camera after data augmentation.
Therefore, data augmentation was performed only by image shifting ±4 pixels and horizontal flipping
in our experiments. This kind of data augmentation has been widely used in previous research [9].
Each original training image was horizontally and vertically shifted by (−4, −4), (0, −4), (+4, −4),
(−4, 0), (0, 0), (+4, 0), (−4, +4), (0, +4), (+4, +4), thus generating nine versions of the image by simple
image shifting. In addition, by horizontally flipping each image, two versions of each shifted image
were generated via data augmentation, as shown in Figure 8, for a total of 18 versions per original
image; the total number of images thus obtained is summarized in Table 4. Data augmentation was
performed only for the training images, and original images were used for testing.
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by Keras-Tensorflow [41] on the Ubuntu 16.04 operating system [42]. More specifically, we setup 
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Figure 8. Examples of augmented images. (a) Original images. (b) Flipped images.

Table 4. Number of images in original training, augmented training, and testing sets (unit: frames).

Dataset Original Training Set Augmented Training Set Testing Set

Cambridge 1786 32,148 1786
Daimler 449 8082 449

Malaga urban 4560 82,080 4560

For the training of deep RetinaNet, a method for stochastic optimization (Adam) was used, and
the training parameters were as follows: the epoch number was 50, number of iterations within
each epoch was 10,000, learning rate was initialized at 0.0001 with reduction factor of 0.1, and the
two losses were controlled; the regression loss used smooth L1 and the classification loss used FL.
We performed the training using a desktop computer with Intel CoreTM i7 processor of speed 3.47 GHz,
12 GB main memory, and NVIDIA GeForce GTX 1070 graphics card including 1920 compute unified
device architecture (CUDA) cores and 8 GB graphics memory [40]. The algorithm was implemented by
Keras-Tensorflow [41] on the Ubuntu 16.04 operating system [42]. More specifically, we setup python
version 3.5, Tensorflow-GPU version 1.9, NVIDIA CUDA® toolkit 9.0, and NVIDIA CUDA® deep
neural network library (cuDNN) version 7.0 on the computer. The training loss converged to 0 for
each repetition, as shown in Figure 9, which implies that our network was sufficiently trained with the
augmented data.
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5.3. Testing of the Proposed Method

5.3.1. Accuracies According to Databases and Classes

Testing was performed on both a desktop computer with the same configuration as the training
system and a Jetson TX2 embedded system [24]. The testing results are calculated as average values of
the two-fold cross validations. To measure the accuracies of road marking detection and classification,
the ground-truth positions of the bounding boxes including each road marking were manually
annotated in the images and then compared for the overlapping regions between the detected and
ground-truth bounding boxes. In our method, we only consider whether the detected road marking
is correct or not, so true negative (TN) data are not obtained (i.e., ground-truth data of a non-object);
thus, TN errors are 0% in our experiments. Other kind of errors such as true positive (TP), false
positive (FP), and false negative (FN) are calculated to obtain precision, recall, accuracy, and F_score,
as shown in Equations (6)–(9) [43]. The number of TP, FP, and FN errors are represented as #TP, #FP,
and #FN, respectively:

Precision =
#TP

#TP + #FP
(6)

Recall =
#TP

#TP + #FN
(7)

Accuracy =
#TP + #TN

#TP + #FP + #TN + #FN
(8)

F_score = 2 × Precision× Recall
Precision + Recall

(9)

Tables 5 and 6 show the results of detection and classification using our deep RetinaNet with
the revised ResNet50 using the initial weights pre-trained by the ImageNet database [10,44]. Table 5
shows the results according to each dataset, and the accuracies for each class are shown in Table 6.
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Table 5. Accuracies by our proposed method for different datasets.

Dataset Sub-Dataset Precision Recall Accuracy F_score

Cambridge

Seq01TP 1.000 1.000 1.000 1.000
Seq05VD 0.988 0.904 0.895 0.944
Seq06R0 0.999 0.864 0.863 0.926
Seq16E5 0.999 0.953 0.952 0.976

Daimler
Test2 0.989 0.750 0.744 0.853

Train1 1.000 0.955 0.955 0.977
Train3 1.000 1.000 1.000 1.000

Malaga 0.993 0.973 0.966 0.983
Average 0.996 0.925 0.922 0.957

Table 6. Accuracies by our proposed method for different classes.

Classes Precision Recall Accuracy F_score

Bike (B) 0.999 0.753 0.752 0.859

Arrow

Forward (F) 0.995 0.873 0.869 0.930
Forward–left (FL) 0.993 0.989 0.982 0.991

Forward–left–right (FLR) 0.987 1.000 0.987 0.993
Forward–right (FR) 0.997 0.945 0.942 0.970

Left (L) 1.000 0.982 0.982 0.991
Left–right (LR) 0.967 1.000 0.967 0.983

Right (R) 0.992 0.948 0.940 0.970

Average 0.991 0.936 0.928 0.961

The reason why the detected result of Bike marking is low in Table 6 is that these markings in
sub-dataset Test2 in the Daimler dataset are faded, as depicted in Figure 10.

Figure 10. Faded bike markings on the road (red box). (a) Example 1 and (b) example 2.

Figure 11 shows the correct detection and classification cases from our deep RetinaNet, which
proves that the proposed method can work well under various illumination conditions as well as detect
small road markings at a distance. As seen in Figure 11a, road markings can be correctly detected
and classified even in low illumination conditions. In Figure 11b,d, our method can also detect road
markings even if they are a little faded or occluded. Figure 11c–h shows the cases where multiple road
markings are detected correctly. In addition to the label of class category, the detection probability
of the object is represented from 0 to 1. For example, “1.00” of Figure 11a shows that the detection
probability of the object is 100%.
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Figure 11. Examples of correct detection and classification cases. (a) Seq01TP, (b) Seq05VD,  
(c) Seq06R0, and (d) Seq16E5 from the Cambridge dataset; (e) Test2, (f) Train1, and (g) Train3 from 
the Daimler dataset; (h) Malaga urban dataset. In (a–h), true positive cases are shown by the boxes of 
various colors. 

Figure 12 shows examples of incorrect detection of road markings (false rejection cases), which 
are shown as red colored boxes with solid lines. In our research, we train our network with 
augmented images to avoid overfitting, and there is no case (false acceptance case) in which the road 
background is incorrectly detected as road marking. However, in some cases where the road objects 
are small or marking quality is not good, as shown in this figure, the road markings could not be 
detected. Figure 12 explains why the testing accuracies in these sub-datasets are lower than the others, 
as summarized in Table 5. 
  

Figure 11. Examples of correct detection and classification cases. (a) Seq01TP, (b) Seq05VD, (c) Seq06R0,
and (d) Seq16E5 from the Cambridge dataset; (e) Test2, (f) Train1, and (g) Train3 from the Daimler
dataset; (h) Malaga urban dataset. In (a–h), true positive cases are shown by the boxes of various colors.

Figure 12 shows examples of incorrect detection of road markings (false rejection cases), which
are shown as red colored boxes with solid lines. In our research, we train our network with augmented
images to avoid overfitting, and there is no case (false acceptance case) in which the road background
is incorrectly detected as road marking. However, in some cases where the road objects are small or
marking quality is not good, as shown in this figure, the road markings could not be detected. Figure 12
explains why the testing accuracies in these sub-datasets are lower than the others, as summarized in
Table 5.
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Figure 12. Examples of incorrect detection and classifications. (a) Test2 of the Daimler dataset.  
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negatives whereas the boxes of other colors represent true positives. 
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Figure 12. Examples of incorrect detection and classifications. (a) Test2 of the Daimler dataset.
(b) Seq06R0 of the Cambridge dataset. In (a,b), the red colored boxes with solid lines indicate false
negatives whereas the boxes of other colors represent true positives.

5.3.2. Comparisons of Accuracies by Deep RetinaNet with Those by One-Stage and
Two-Stage Methods

As we explained in Section 4.2, deep RetinaNet can work with various backbone CNNs (encoders),
such as ResNet (ResNet50 or ResNet101), DenseNet, VGG net-16, and VGG net-19. In this experiment,
we compared the deep RetinaNet with ResNet50 with the weights pretrained with ImageNet database
(Retina_1) or without the pretrained weights with ImageNet database (Retina_2). In addition, the case
where VGG net-16 was used as the encoder (Retina_3) was also compared. Further, other detectors of
Faster R-CNN [28,45] as the two-stage method and you only look once version 3 (YOLOv3) [30,46] as
the one-stage method were compared. As shown in Table 7, our method for Retina_1 shows higher
accuracies than those for Retina_2 and Retina_3 in terms of accuracies and F_score. Furthermore,
our method for Retina_1 outperforms the Faster R-CNN [28,45] (two-stage method) and YOLOv3 [30,46]
(one-stage method).
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Table 7. Comparisons between proposed method and other methods of different encoders, one-stage
and two-stage methods.

Criterion Methods
Cambridge Daimler

Malaga Avg.
Seq

01TP
Seq

05VD
Seq
06R0

Seq
16E5 Test2 Train1 Train3

Precision

Ours (Retina_1) 1.000 0.988 0.999 0.999 0.989 1.000 1.000 0.993 0.996

Ours (Retina_2) 0.985 0.988 0.995 0.997 0.996 1.000 1.000 0.993 0.994

Ours (Retina_3) 0.992 0.988 1.000 0.997 0.996 1.000 1.000 0.993 0.996

Faster R-CNN [28,45] 0.966 0.988 0.985 0.974 0.966 0.931 0.955 0.979 0.968

YOLOv3 [30,46] 0.682 0.628 0.869 0.623 0.841 0.543 0.719 0.771 0.710

Recall

Ours (Retina_1) 1.000 0.904 0.864 0.953 0.750 0.955 1.000 0.973 0.925

Ours (Retina_2) 0.992 0.94 0.862 0.953 0.739 0.972 1.000 0.973 0.929

Ours (Retina_3) 0.985 0.904 0.867 0.953 0.744 0.955 1.000 0.973 0.923

Faster R-CNN [28,45] 0.851 0.883 0.782 0.810 0.859 0.874 1.000 0.498 0.820

YOLOv3 [30,46] 1.000 0.989 0.999 0.997 0.894 0.919 1.000 0.985 0.973

Accuracy

Ours (Retina_1) 1.000 0.895 0.863 0.952 0.744 0.955 1.000 0.966 0.922

Ours (Retina_2) 0.977 0.884 0.859 0.950 0.737 0.972 1.000 0.966 0.918

Ours (Retina_3) 0.978 0.895 0.867 0.951 0.742 0.955 1.000 0.966 0.919

Faster R-CNN [28,45] 0.826 0.874 0.771 0.793 0.834 0.821 0.955 0.493 0.796

YOLOv3 [30,46] 0.682 0.624 0.868 0.622 0.765 0.518 0.719 0.763 0.695

F_score

Ours (Retina_1) 1.000 0.944 0.926 0.976 0.853 0.977 1.000 0.983 0.958

Ours (Retina_2) 0.989 0.963 0.924 0.975 0.848 0.986 1.000 0.983 0.958

Ours (Retina_3) 0.989 0.944 0.929 0.975 0.852 0.977 1.000 0.983 0.956

Faster R-CNN [28,45] 0.905 0.932 0.870 0.884 0.909 0.901 0.977 0.661 0.880

YOLOv3 [30,46] 0.811 0.769 0.929 0.767 0.867 0.683 0.837 0.865 0.816

Figure 13 shows examples of road marking detection by our method, Faster R-CNN, and YOLOv3.
As shown in Figure 13, although there are detection errors for Faster R-CNN and YOLOv3, our method
can correctly detect and classify them. As shown in the upper-center image of Figure 13b, false rejection
case of bike marking occurs by Faster R-CNN. In addition, false positive case for inverted forward
arrow occurs in the bottom-left image of Figure 13b. As shown in the upper-left, upper-right, and
bottom-center images of Figure 13c, multiple detections happen on road markings as false positive
cases by YOLOv3. As shown in the bottom-right image of Figure 13c, false negative cases happen by
YOLOv3 as well.



Sensors 2019, 19, 281 18 of 25

Sensors 2019, 18, x  18 of 25 

 

 
(a) 

 

 
(b) 

 
(c) 

Figure 13. Comparison of road marking detection: (a) Proposed method. (b) Faster R-CNN. (c) YOLOv3.

5.3.3. Comparisons of Accuracies Using Original Image with Those by Birds-Eye View Image

As described in Section 2, existing research have used a bird’s-eye view image obtained by inverse
perspective mapping (IPM) pre-processing to detect road markings because such an image can reduce
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the complexity of the original image by representing the curve as a straight line [47]. The IPM projects
the original front-view image obtained from the camera mounted on the vehicle on the bird’s-eye view
image so that the local route map (which is typically also in bird’s-eye view) can be fused with the
projected image. The IPM projection assumes that the vehicle performs minor pitch or roll movements
during the operation (this assumption is valid in most urban driving scenarios involving low-speed,
fixed-route vehicles such as buses). Therefore, a fixed, pre-determined projection matrix can be used
for the IPM [48]. However, large pitch and roll movements of the vehicle can cause errors if the same
fixed projection matrix is used for the IPM, which can result in large deviations of map fusion and
detection failure in the subsequent processes [49,50]. In addition, the fixed projection matrix has
another disadvantage as the IPM image works well only in small ROIs with road markings at a close
distance [47] as shown in Figure 14. A solution to this problem is to install an inertial measurement
unit and measure the real-time attitudes of the vehicle, so that these measurements can be used to
dynamically compensate for the projection matrix of the IPM. Considering this issue, our method uses
the original image as the input for the deep RetinaNet without the IPM pre-processing as shown in
Figure 3. In the next experiment, we compared the accuracies using the original and IPM images for
training and testing our RetinaNet. Based on the results in Table 7, we used RetinaNet with ResNet50
with the weights pre-trained with ImageNet databases (Retina_1) for the experiments. As listed in
Table 7, the detection and classification accuracies obtained using the original image are higher than
those obtained using the IPM image. Figure 15 shows examples of detection results obtained using the
original and IPM images. As shown in the images on the right of Figure 15b, and on the left and right
of Figure 15d, false rejection cases occurred in the IPM images even if they were correctly detected
in the original images. In the images on the left of Figure 15b,d, some road markings are correctly
detected in the IPM images, but their detected boxes are larger than those in the original images, which
can cause confusion that both road markings and background are included in the detected box. Based
on the experimental results in Table 8, we can find that the IPM projection is difficult to be used for
multi-datasets with different parameters of camera installation and the large pitch or roll movements
of vehicle during the operation. In addition, we can observe that the IPM method uses fixed and
pre-determined projection matrix, and it can be used for small ROIs with road markings at a close
distance. These can be obstacle for being adopted to real car application.

Table 8. Comparative experimental results using the original and IPM images.

Criterion Methods
Cambridge Daimler

Malaga Avg.
Seq

01TP
Seq

05VD
Seq

06R0
Seq
16E5 Test2 Train1 Train3

Precision
Original image 1.000 0.988 0.999 0.999 0.989 1.000 1.000 0.993 0.996

IPM image [48] 0.957 0.959 0.994 0.991 0.973 0.964 0.927 0.990 0.969

Recall
Original image 1.000 0.904 0.864 0.953 0.750 0.955 1.000 0.973 0.925

IPM image [48] 0.827 0.823 0.848 0.847 0.712 0.802 0.821 0.816 0.812

Accuracy Original image 1.000 0.895 0.863 0.952 0.744 0.955 1.000 0.966 0.922

IPM image [48] 0.797 0.795 0.844 0.840 0.698 0.779 0.771 0.809 0.792

F_score
Original image 1.000 0.944 0.926 0.976 0.853 0.977 1.000 0.983 0.958

IPM image [48] 0.887 0.886 0.916 0.913 0.822 0.876 0.871 0.895 0.883
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5.3.4. Measuring Processing Speed and Evaluation of Embedded Systems

In the next experiment, we compared the processing time of our method with that of Faster
R-CNN [28,45] and YOLOv3 [30,46] on a desktop computer. The specifications of the desktop computer
are explained in Section 5.2. As described in Table 9, our method is faster than the one and two-stage
methods, YOLOv3 and Faster R-CNN, respectively.



Sensors 2019, 19, 281 21 of 25

Table 9. Processing time per each frame in the desktop computer environment (unit: millisecond).

Dataset Sub Dataset
Processing Time

Proposed Method Faster R-CNN [28,45] YOLOv3 [30,46]

Cambridge

Seq01TP 50 291 49
Seq05VD 50 297 50
Seq06R0 47 279 47
Seq16E5 50 319 50

Daimler
Test2 31 656 40

Train1 35 631 40
Train3 37 668 40

Malaga 42 278 39
Average 42.75 427.38 44.38

In the next experiment, we compared the processing speed of the embedded systems. Considering
the application of our method to embedded systems in actual vehicles, we used the Jetson TX2
embedded system [24] as shown in Figure 16 with NVIDIA PascalTM -family GPU, having 8GB of
memory shared between the central processing unit (CPU) and GPU, and 59.7 GB/s of memory
bandwidth; it uses less than 7.5 watts of power. The details of the specifications of this board are
explained in Table 10. This board has been widely used in an actual car environment for autonomous
vehicles. As indicated in Table 11, our method is faster than YOLOv3 and Faster R-CNN on Jetson TX2
embedded systems. The reason why Faster R-CNN has a lower processing speed than our method is
that it requires approximately 15.3 billion floating point operations per second (FLOPs) for VGGNet-16,
but only 3.8 billion FLOPs are required while using ResNet50 [34] in our deep RetinaNet.
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Table 10. Specifications of the Jetson TX2 embedded system.

Jetson TX2 Embedded System

GPU NVIDIA PascalTM, 256 CUDA cores
CPU HMP Dual Denver 2 (2 MB L2) + Quad ARM® A57 (2 MB)

Memory 8 GB
Data storage 32 GB

Operating system Linux for Tegra R28.1 (L4T 28.1)
Dimensions (width × height × depth) 50 mm × 87 mm × 10.4 mm
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Table 11. Processing time per each frame on Jetson TX2 embedded system (unit: millisecond).

Dataset Sub Dataset
Processing Time

Proposed Method Faster R-CNN [24,37] YOLOv3 [27,38]

Cambridge

Seq01TP 50 297 50
Seq05VD 57 297 54
Seq06R0 54 286 50
Seq16E5 54 319 52

Daimler
Test2 38 662 42

Train1 39 638 45
Train3 38 675 43

Malaga 44 281 43
Average 46.75 431.875 47.375

6. Conclusions

In this research, we propose a novel one-stage method based on deep RetinaNet that can detect and
classify road markings in various conditions and at long-range distances with high accuracy. Testing
results obtained from three open databases show that our network model has advantages in terms of
accuracy and processing speed when compared with other one and two-stage methods. Our method
has also the benefit of high processing time in both the desktop computer environment and embedded
system of Jetson TX2 board [24]. Because of using Keras-Tensorflow instead of Matlab (toolbox),
our algorithm could be easily ported on an NVIDIA Jetson TX2 embedded system. In addition,
the processing speed of our algorithm is fast enough for being operated on both desktop computer
and NVIDIA Jetson TX2 embedded system as shown in Tables 9 and 11 by using Keras-Tensorflow
instead of Matlab (toolbox). Through experiments conducted using RetinaNet with various encoders
and input image types, we prove the effectiveness of our method. The detection and classification
accuracies degrade in some cases with faded bike markings.

As shown in Table 7, the overall precision by our method is higher than that by YOLOv3 whereas
the overall recall by YOLOv3 is higher than that by our method. Because the precision usually has
the trade-off relationship with recall, the accuracy and F_score considering both precision and recall
at the same time have been widely used as the evaluation metrics. As shown in the experiments of
Table 7 with eight sub-datasets from three open databases, the accuracy by our method is higher than
YOLOv3 with 6 sub-datasets, and the average accuracy by our method with whole sub-datasets is
higher than that by YOLOv3. In addition, as shown in the experiments of Table 7, the F_score by
our method is higher than YOLOv3 with 6 sub-datasets, and the average F_score by our method
with whole sub-datasets is higher than that by YOLOv3. Even with one (Seq06R0) of the remained
2 sub-datasets, our method using VGG net-16 as encoder (Retina_3) shows the same F_score as that
by YOLOv3. However, the processing speed by our method is faster than that by YOLOv3 on both
desktop computer and embedded system as shown in Tables 9 and 11. Considering the real-time
operation in embedded system of car environment, the low processing time is very important, and we
can conclude that our method has more benefit than YOLOv3.

In our future work, we intend to combine our method with image restoration to handle this
problem. Instead of processing the whole image, we would segment only road drivable region,
perform the geometry transform of the segmented region based on adaptive parameters, and use this
transformed region to the input of CNN model for object detection. Combining with image restoration
methods, we can reduce the computational complexity by not considering the noises from non-drivable
background. Alternatively, we can also consider the method using two different CNN models for
detection and classification, respectively. The first CNN model would focus on the detection of object
and background. Then, the detail classes of the object would be classified by the second CNN model.
By this approach, we can expect that the processing complexity of the proposed RetinaNet which
includes the functionalities of detection and classifications of multiple classes can be reduced, which
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can enhance the overall performance of road marking detection. In addition, we would study the
method of making our network lighter so as to operate it at a faster speed on embedded systems.
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