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Gas separation membranes are essential for the capture, storage, and utilization

(CSU) of CO2, especially for H2/CO2separation. However, both glassy and rubbery

polymer membranes lead a relatively poor selectivity for H2/CO2 separation because the

differences in kinetic diameters of these gases are small. The present study establishing

the mixed matrix membranes (MMMs) consist of a nano-sized zeolitic imidazolate

frameworks (ZIF-8) blended with the polysulfone (PSf) asymmetric membranes. The gas

transport properties (H2, CO2, N2, and CH4) of MMMs with a ZIF-8 loading up to 10 wt%

were tested and showing significant improvement on permeance of the light gases (e.g.,

H2 and CO2). Moreover, the depositional polydopamine (PDA) layer further enhanced the

ideal H2/CO2 selectivity, and the PDA-modified MMMs approach the Robeson upper

bound of H2/CO2 separation membranes. Hence, the PDA post-modification strategy

can effectively repair the defects of MMMs and improved the H2/CO2selectivity.

Keywords: polysulfone, mixed matrix membranes, ZIF-8 nanoparticles, polydopamine, H2/CO2separation

INTRODUCTION

The continuous rise of atmosphere carbon dioxide (CO2) concentration caused by excessive
anthropological combustion of fossil fuels leads to global warming and extreme climate events (Gao
et al., 2017). In this situation, capture, storage, and utilization (CSU) of CO2 from other sources
have been a worldwide attention (Zhao et al., 2016; Zheng et al., 2016). At present, there are three
technically plausible strategies for CO2 CSU: post-combustion CO2 capture (mainly for CO2/N2

separation), oxy-combustion (mainly for O2/N2 separation), and pre-combustion CO2 capture
(mainly for H2/CO2 separation; Ramasubramanian et al., 2013; Yan et al., 2015). Among them,
pre-combustion CO2 capture is a promising technology, which can reduce the CO2 emission and
mitigate energy crisis (Wang et al., 2012; Liao et al., 2015). Since the H2/CO2 syngas fromwater–gas
shift reaction can provide H2 as a preferred fuel or chemical feedstock, it is very important for the
separation technologies for H2/CO2.

Membrane separation technology has obtained a great deal of attention for H2/CO2 separation
due to the fewer environmental impacts and lower energy costs, compared to conventional
industrial methods (e.g., adsorption or cryogenic distillation; Rabiee et al., 2014; Liu et al., 2016;
Wang et al., 2017; Ibrahim and Lin, 2018). Besides, membrane separation processes can be
employed for the capture of CO2, while H2 is subjected to combustion, which is due to a very
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high permeation rate of H2 relative to most other gases (Fu
et al., 2016). However, polymer membrane performance has been
limited by a trade-off between gas permeation and selectivity,
known as “Robeson upper bound” (Chua et al., 2011; Zhang
et al., 2012; Sánchez Laínez et al., 2018a). Both glassy and
rubbery polymer membranes show a relatively poor selectivity
for separation of H2/CO2 because the differences in kinetic
diameters of these gases are small (2.89 Å for H2 and 3.3
Å for CO2; Hosseini et al., 2010; Kim et al., 2018). The
inorganic membranes generally have uniform pore size and
excellent resistance to high temperature and pressure, e.g., silica
membranes (Song et al., 2016a,b), which can achieved both
high permeability and selectivity (Xiang et al., 2017). However,
the expensive price limited the large-scale gas application
of inorganic membranes. Recent gas separation membranes
have been focused on the mixed matrix membranes (MMMs),
which compensated the limitations of polymeric and inorganic
membranes, while offering an ease in processability andmoderate
processing cost (Nordin et al., 2015).

Zeolitic imidazolate frameworks (ZIFs) are promising
materials for gas separation membrane fabrication, for
example, zeolitic imidazolate framework (ZIF-8) as one of
the most investigated MOFs with the sod topology and
the smaller window of 3.4 Å, which is close to the kinetic
diameter of H2 (2.89 Å; Sánchez Laínez et al., 2018b). A
highly oriented ZIF-8 membrane on a porous α-alumina
support was reported by Bux et al. (2011). The results showed
that the H2 permeance of ZIF-8 membrane was ∼4,032
Barrer, while the H2/CO2 selectivity was only six. Besides,
the pure ZIF-8 membranes are difficult to be reproduced on
a large-scale and are too brittle to withstand high operating
pressures (Gascon et al., 2012). Recently, the number of studies
focused on the utilization of ZIF-8 for MMM preparation,
which could potentially overcome the H2/CO2 Robeson
upper bound of gas separation membranes (Li et al., 2015).

FIGURE 1 | Schematic diagram of preparation of polydopamine (PDA)-modified zeolitic imidazolate frameworks (ZIF-8)/polysulfone (PSf) mixed matrix membranes

(MMMs).

Song et al. (2012) incorporated the ZIF-8 as a nanofiller into
a model polymer matrix (Matrimid R© 5,218) via a mixing
solution, showing enhanced permeability of the MMMs
with negligible loss in selectivity. Wijenayake et al. (2013)
fabricated a polyimide MMM with 33.3 wt% ZIF-8, and H2

permeability of prepared MMM showed an approximate 400%
improvement. Nevertheless, excessive ZIF-8 loadings would
increase the chances to agglomerate and increase the defective
risks of MMMs.

Developing defect-free ZIF-8/polymer MMMs is a major
challenge because the defect leads to the deterioration of the
membrane performance (Dechnik et al., 2017). Recently, surface
post-treatment could effectively repair defects of MMMs (Nordin
et al., 2014). Polydopamine (PDA), which is prepared through
dopamine self-polymerization in weak alkaline solutions with
the participation of oxygen, forming a PDA coating adhere
onto nearly all kinds of substrates, has drawn much attention.
(Lu et al., 2017; Yang et al., 2018). This work aims to develop
a new type of asymmetric MMMs via phase inversion and
PDA modification (Figure 1), further improving the H2/CO2

selectivity. By using our designed strategy, the gas permeance of
ZIF-8/PSf MMMs was significantly improved in the presence of
a certain amount of ZIF-8 nanoparticles. Furthermore, the effect
of polydopamine (PDA)-modified MMMs on the gas transport
was studied.

EXPERIMENT

Materials
PSf (Mn: 22,000 Da) and PDA (98.5%) were purchased from
Sigma-Aldrich. Zinc nitrate hexahydrate [Zn(NO3)2•6H2O,
98%], 2-methylimidazole (mIm, 99%), N-N-dimethyl-acetamide
(DMAC), tetrahydrofuran (THF), methanol, and ethanol (EtOH)
were purchased from Sinopharm Chemical Reagent Co., Ltd. All
chemicals were used without further purification.
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Synthesis of ZIF-8 Nanoparticles
ZIF-8 nanoparticles were obtained by the solvent method as
described in a previous study (Sánchez-Laínez et al., 2016).
First, 1.47 g of Zn(NO3)2•6H2O and 3.25 g of mIm were added
in 100ml of MeOH as solutions A and B, respectively. Then,
solution A was rapidly poured into solution B under stirring.
The mixture solution was reacted for 30min with continuous
stirring at room temperature. Finally, the ZIF-8 nanocrystals
were separated from the milky dispersion by centrifugation and
then were washed with fresh MeOH three times. The obtained
ZIF-8 nanoparticles were directly used for the preparation of
MMMs without drying.

Preparation of PDA-Modified ZIF-8/PSf
MMMs
Asymmetric PSf membranes were fabricated by a phase
separation method as described in the previous study (Ismail
et al., 2003), which consist of 22.0 wt% PSf polmyer, 31.8 wt%
DMAC, 31.8 wt% THF, and 14.4 wt% EtOH. For asymmetric
PSf membranes, the only difference is the evaporation time
(30, 45, 60, and 90 s), and the obtained samples were defined
as PSf-30, PSf-45, PSf-60, and PSf-90 membranes. For ZIF-
8/PSf MMMs, a certain amount (2.5, 5, 7.5, 10, and 15 wt%)
of ZIF-8 was added into the mixture solvents under stirring,
followed by 30min of ultrasonication. Then, the PSf polymer

FIGURE 2 | (A) XRD pattern of ZIF-8 nanoparticles; (B) SEM image of ZIF-8 nanoparticles; (C) N2 adsorption–desorption isotherms; and (D) pore size distribution of

the ZIF-8 nanoparticles.

TABLE 1 | Gas permeability and selectivity of asymmetric polysulfone (PSf) membranes with different evaporation time at 4 bar and 30◦C.

Membranes Selectivity Permeability (Barrer)

H2/N2 H2/CO2 CO2/CH4 CO2/N2 N2 CH4 CO2 H2

PSf-30 47.90 2.18 20.88 21.95 0.78 0.82 17.12 37.36

PSf-45 48.33 2.32 17.86 20.83 0.48 0.56 10.00 23.20

PSf-60 42.46 2.25 18.84 18.84 0.52 0.52 9.80 22.08

PSf-90 36.25 2.40 15.00 15.00 0.48 0.48 7.20 17.40
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FIGURE 3 | Cross-section SEM images of the asymmetric polysulfone (PSf) membranes with different evaporation times. (a) 30 s; (b) 45 s; (c) 60 s; and (d) 90 s.

TABLE 2 | Gas permeation of zeolitic imidazolate frameworks (ZIF-8)/polysulfone (PSf)-30 mixed matrix membranes (MMMs) with different ZIF-8 loading at 4 bar and

30◦C.

ZIF-8 loading (%)a Selectivity Permeability (Barrer)

H2/N2 H2/CO2 CO2/CH4 CO2/N2 N2 CH4 CO2 H2

2.5 45.59 2.07 22.00 22.00 0.88 0.88 19.36 40.12

5 57.91 2.30 24.82 25.08 0.92 0.93 23.08 53.28

7.5 51.75 1.97 26.31 25.33 1.30 1.35 34.20 67.28

10 65.91 2.38 27.72 26.52 1.32 1.38 36.60 87.00

15 41.96 2.28 17.75 18.41 1.08 1.12 19.88 45.32

aThe mass of ZIF-8 based on the mass of PSf polymer.
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was dissolved in a solution mentioned above and kept stirring
for 8 h. Next, the dope solution was casted on a glass plate
with a 150-µm casting knife (Elcometer3530). The as-prepared
MMMs were immersed into a DI-water bath for 24 h after the
30-s evaporation at room temperature. The MMMs were dried
for 24 h in ambient atmosphere and defined as 2.5 wt% ZIF-
8/PSf-30, 5 wt% ZIF-8/PSf-30, 7.5 wt% ZIF-8/PSf-30, 10 wt%
ZIF-8/PSf-30, and 15 wt% ZIF-8/PSf-30. The PDA coating layer
could reduce the defects of MMMs. The as-prepared ZIF-8/PSf
MMMs were immersed into a PDA Tris buffer solution (2mg
ml−1, 10mM, and pH = 8.5) with different coating times (0.5,
1, 1.5, 2, 2.5, and 3 h). Then, the PDA-modified MMMs were
rinsed with DI-water and dried in a vacuum oven for 12 h at
room temperature.

Characterization
An XRD diffractometer (Bruker D8, Germany) was used
to detect the crystal structure of the ZIF-8 at 2θ = 5◦-40◦

with 0.02 step size. The infrared spectral analysis of the
ZIF-8 nanoparticles and MMMs were tested by attenuated
total reflectance-Fourier transform infrared spectroscopy
(ATR-FTIR; Vertex 70; Bruker). The morphology and
structure of the samples were observed by scanning electron
microscopy (Nova NanoSEM450, USA). The N2 adsorption and
desorption isotherms of the ZIF-8 nanoparticles were observed
by 3Flex physical adsorption instrument (Micromeritics,
USA) at 77K, and the adsorption isotherms of H2 and
CO2 were tested at 273K. A thermogravimetric analyzer
(TGAQ50; TA Instruments-Waters LLC) was used for
evaluating the thermal stability of the ZIF-8 nanoparticles
and MMMs. All samples were heated from 30 to 800◦C
with 10◦C min−1 heating rate under N2 with a flow of
50-ml min−1.

Gas Permeation Tests
Single-gas permeability of membranes was measured using a
constant-volume variable-pressure method (Zhao et al., 2018).
The entire permeation cell was placed in an oven to keep
the temperature at 30◦C. The permeation cell was kept under
vacuum for 12 h to remove other gases. The effective area
of membranes is about 0.3 cm2, and the gas permeability of
each samples has been tested at least three times. The gas
permeation (in terms of Barrer, 1 Barrer = 1 × 10−10 cm3

(STP) cm cm−2 s−1 cmHg−1) was calculated by the following
Equation (1):

P = (
273× 1010

760
)

[

Vl

AT(P0 × 76
14.7 )

]

(
dp

dt
) (1)

where, P is the gas permeability in Barrer, V is the constant
volume container (cm3), l is the thickness of dense layer of
membrane (cm), which are obtained from SEM images. A is the
membrane surface area (cm2), T is the temperature (K), P0 is
the upstream (feed) pressure (psia), and dp/dt is the change in
pressure against time (mmHg/s). The gas ideal selectivity (αi/j )

for components i and jwas defined as the ratio of gas permeability
of the two components by the following Equation (2):

αi/j =
Pi

Pj
(2)

RESULTS AND DISCUSSION

Characterization of ZIF-8 Nanoparticles
The ZIF-8 nanoparticles were synthesized by the solvent method,
and the XRD characteristic peaks of ZIF-8 are shown in
Figure 2A, comfirming the typical sodalite (SOD) type structure
of ZIF-8 nanoparticles (Park et al., 2006; Cravillon et al., 2009).
Figure 2B shows the resembling spherical morphology of ZIF-
8 nanoparticles by SEM characterization, and the average size

FIGURE 4 | Cross-section and surface of SEM images of ZIF-8/PSf-30 MMMs

with different ZIF-8 loadings. (a) 2.5 wt%; (b) 5 wt%; (c) 7.5 wt%; (d) 10 wt%;

and (e) 15 wt%.
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of ZIF-8 nanoparticles was about 150 nm. The microporous
structure of ZIF-8 was confirmed by N2 adsorption and
desorption isotherms, and the ZIF-8 nanoparticles exhibited a
typical Type-I isotherm, as shown in Figure 2C. The BET surface
area and pore volume of ZIF-8 nanoparticles were 1,371 m2

g−1 and 0.72 cm3 g−1, respectively. The pore size distribution
(PSD) provided further insight into the pore structure of ZIF-8
nanoparticles (Figure 2D). The 0.64 and 0.75 nm PSD centers of
ZIF-8 represented the flexible six-membered ring, which arises
from the vibrations of imidazole ligands (Guo et al., 2018). In
addition, the largest PSD center of ZIF-8 was about 1.0 nm, which
corresponds to the diameter of the ZIF-8 SOD cage.

Effect of Evaporation for Asymmetric PSf
Membranes
To optimize the preparation process of asymmetric PSf
membranes, the effect of evaporation for gas separation
performance of membranes was investigated as shown inTable 1.
It can be found that the H2 and CO2 permeabilities significantly
were reduced with the increasing evaporation time. This is due
to the evaporation process that induced the skin layer formed of
PSf membranes, and the skin layer thickness was improved with
increasing evaporation times as shown in Figure 3. The formed
skin layer is a resistance barrier between the PSf membrane
and the coagulation bath. Presence of this resistance barrier

induced the densification of skin layer as the evaporation time
(Hołda et al., 2013). Moreover, all asymmetric PSf membranes
exhibited lower N2 and CH4 gas permeabilities than the other
gases, owning to their larger kinetic diameters. The cross-
sectionmorphology of asymmetric PSf membranes with different
evaporation times is shown in Figure 3, which consist of the
extremely well-defined dense skin layers supported on a highly
open-celled structure. Based on the gas separation test results, the
PSf-30 membrane was used for the ZIF-8/PSf MMMpreparation.

Effect of ZIF-8 Loading for ZIF-8/PSf-30
MMMs
Table 2 summarizes the effects of the ZIF-8 gas loading on
the gas separation performance of MMMs. Compared with
the asymmetric PSf-30 membrane, it was confirmed that
permeability of MMMs for the four gases was improved with
increasing ZIF-8 loading below 10 wt.%. However, an excessive
amount of ZIF-8 can cause the separation performance to
decline in the case of the 15 wt% ZIF-8/PSf-30 MMM. Figure 4
shows the cross-section and top surface of the five different
MMMs. The surface defect was significantly increased due to the
incorporation of ZIF-8 with different loadings. The defects on the
surface of MMMs could be attributed to the ZIF-8 agglomeration
(Nafisi and Hägg, 2014; Boroglu and Yumru, 2017). Owing to
these defects of surfaces, the gas selectivity of MMMs did not

FIGURE 5 | (a) Effect of different PDA coating time of the 10 wt% ZIF-8/PSf-30 MMM on H2/CO2 separation at 30◦C under 4 bar; (b) Effect of feed pressures on the

H2/CO2 separation of PDA-2/10 wt% ZIF-8/PSf-30 MMM at 30◦C; (c) attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) spectra; and

(d) TG curves of the ZIF-8, PSf-30 membranes, 10 wt% ZIF-8/PSf-30, and PDA-2/10 wt% ZIF-8/PSf-30 MMM.
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change significantly; only the improvement of H2/N2 selectivity
was found. In addition, the thickness of sublayers under the dense
skin layers was improved (Figure 4) with the increasing ZIF-8
loading. This morphological change in theMMMs was attributed
to the delayed demixing during the phase separation, leading to
the dense skin layer transformation to the porous layer (Lu et al.,
2016).

PDA Coating the 10 Wt% ZIF-8/PSf-30
MMMs
The PDA modified method can overcome the limitations caused
by the traditional self-assembly, entrapment, and chemical
binding methods (Lu et al., 2017; Wang et al., 2019). After the
PDA modification, the stability of MMMs could be improved,
and the defects of surfaces will be repaired (Liu et al., 2013;
Huang et al., 2014; Yuan et al., 2014). In order to further study
the gas separation of MMMs after PDA coating with different
time, the H2 and CO2 gases were selected as the representatives.
Figure 5A showed the H2 and CO2 permeabilities and H2/CO2

selectivity of 10 wt% ZIF-8/PSf-30 MMM with the different
PDA coating time. Either H2 or CO2 permeability follows a
decreasing trend when increasing PDA coating times. This is
because the improved denser layers of MMMs and the enhanced
gas transport resistance. However, for smaller kinetic diameter
gas such as H2, the permeability inhibition was not obvious

than that of CO2. Hence, the H2/CO2 selectivity of MMMs was
improved, such as the selectivity of PDA-2/10 wt% ZIF-8/PSf-30
MMM achieved 9.3 at 4 bar and 30◦C. Figure 5B showed the H2

and CO2 permeabilities andH2/CO2 selectivity of PDA-2/10 wt%

FIGURE 7 | Selectivity of H2/CO2 vs. H2 permeability for the prepared MMMs

at 30◦C under four bar in the presence of 2008 Robeson upper bound.

FIGURE 6 | Surface and cross-section of the 10 wt% ZIF-8/PSf-30 MMMs with different PDA coating times. (a) 1 h; (b) 2 h; and (c) 3 h.
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TABLE 3 | A summary of the H2/CO2 separation performance of the reported MMMs.

Polymers Fillers Pressure (bar) Temperature (◦C) PH2 (Barrer) αH2/CO2 References

Polyamide ZIF-8 3 35 ∼11.3 4.4 Sánchez Laínez et al., 2018b

PBI ZIF-8 3.5 35 28.5 13 Yang et al., 2012

PBI ZIF-8 3.5 35 39 6.8 Yang and Chung, 2013

PSf ZIF-8 1 35 ∼55 ∼2 Sorribas et al., 2014

Matrimid® ZIF-8 - - ∼35 7 Ordoñez et al., 2010

PSf SiO2 3 35 14 2.6 Pakizeh et al., 2013

PSf with PDA modification ZIF-8 4 30 23.3 9.3 This work

ZIF-8/PSf-30 MMM as a function of feed pressure. H2 and CO2

permeabilities of PDA-2/10 wt% ZIF-8/PSf-30 MMM change
slightly with increasing feed pressure. However, the H2/CO2

selectivity decreased significantly when the pressure increases,
which is due to the CO2 permeance improvement. This can be
attributed to enhanced CO2 solution into the PDA coating layer
at high pressures (Huang et al., 2014; Wang et al., 2015).

In addition, the surface property of PDA-2/10 wt% ZIF-
8/PSf-30 MMM was investigated by ATR-FTIR as shown in
Figure 5C. Compared with the 10-wt% ZIF-8/PSf-30 MMM, a
different peak at 1,540 cm−1 was attributed to the N–H bending
vibration of PDA (Habibi et al., 2015; Zhou et al., 2015), which
proved the successful PDA modified layers. However, the TG
curves showed good thermal stability of MMMs as shown in
Figure 5D. The surface and cross-section SEM images of the
10-wt% ZIF-8/PSf-30 with different coating times are shown in
Figure 6. The SEM images were taken to investigate the changes
in surface morphology of MMMs with different coating times.
With increasing PDA coating time, it can be observed that the
defects in the surface almost disappeared, and the little rough
surface becomes quite smooth.

The correlation between selectivity and permeability for
H2/CO2 is shown in Figure 7. Embedding ZIF-8 nanoparticles
into the PSf-30 asymmetric membrane had a positive effect on
the H2 permeability. However, the selectivity of H2/CO2 was not
improved. After the PDA coating, the H2/CO2 selectivity was
significantly improved, while the H2 permeability was reduced,
and the result of PDA-2/10 wt% ZIF-8/PSf-30 MMMs was
very close to the 2008 Roberson upper bound. Compared to
the reported MMMs, the PDA-modified MMMs showed higher
selectivity of H2/CO2 as shown in Table 3.

CONCLUSIONS

The novel MMMs have been developed for gas separation
application by the PDA post-modified strategy. The ZIF-8
nanoparticles have been embedded in the PSf asymmetric
membranes as the MMMs, and the gas permeability of MMMs

was significantly improved. The optimal ZIF-8 concentration
of 10 wt% produced an H2 permeability of 87 Barrer, but
the H2/CO2 selectivity was only 2.38. The PDA modification
has been considered as an effective method for improving the
properties of membranes. This bindingmethod can overcome the
limitations caused by the traditional self-assembly, entrapment,
and chemical binding methods (Lu et al., 2017, 2019). Coating
the MMMs with PDA repaired most defects of the surfaces,
which reduced the H2 permeability of MMMs and improved
the H2/CO2 selectivity. For PDA-2/10 wt% ZIF-8/PSf-30 MMM,
the H2 permeability was 23.3 Barrer and the H2/CO2 selectivity
achieved 9.3 at 30◦C under 4 bar. Prepared PDA-modified
MMMs were highly promising for H2/CO2 separation, owing
to the simple manufacturing process and effective improvement.
These results demonstrated the availability of the PDA post-
modified MMMs for gas separation application.
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