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Regulatory network analysis defines unique drug mechanisms of action
and facilitates patient-drug matching in alopecia areata clinical trials
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ABSTRACT

Not all therapeutics are created equal in regards to individual patients. The problem of identifying which
compound will work best with which patient is a significant burden across all disease contexts. In the
context of autoimmune diseases such as alopecia areata, several formulations of JAK/STAT inhibitors have
demonstrated efficacy in clinical trials. All of these compounds demonstrate different rates of response,
and here we observed that this coincided with different molecular effects on patients undergoing treat-
ment. Using these data, we have developed a computational model that is capable of predicting which
patient-drug pairs have the highest likelihood of response. We achieved this by integrating inferred
mechanism of action data and gene regulatory networks derived from an independent patient cohort

Alopecia areata
Artificial intelligence

with baseline patient data prior to beginning treatment.

Drug prediction Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.

Personalized medicine

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).

1. Introduction

Imagine that a patient is newly diagnosed with alopecia areata
(AA). The next question that arises is a crucial one: which treat-
ment should the clinician begin with? Several promising treat-
ments have emerged for the disease, yet none of them are trivial
in either expense, or the risk of side effects, and there is always a
risk that a treatment is ineffective. This problem extends to the
many diseases for which many treatment options are available -
who should get what?

JAK/STAT-class inhibitors have emerged as a promising thera-
peutic option for the treatment of several autoimmune diseases,
and several formulations have undergone clinical trial testing
specifically for AA. Our group and others have evaluated the effi-
cacy of compounds such as tofacitinib (tofa), a pan-JAK inhibitor,
and ruxolitinib (ruxo), a JAK1/2 inhibitor, in the treatment of AA
[1-3] in open-label clinical trials. In addition, we have tested com-
pounds such as abatacept (CTLA4-Ig) and standard-of-care treat-
ments such as intralesional triamcinolone injections (ILTAC) [4].

During the course of these trials, we observed a variable rate of
non-response across each study, ranging from 20 to 40% of patients
as defined by <50% resolution of SALT score [5]. As each trial was
conducted independently, each treated patient was enrolled for a
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specific clinical trial without consideration for any of the other
available compounds.

However, now that we have several validated and promising
options, each with variable response rates, the question we now
seek to address with this data is whether or not it is possible to
sensibly decide which patient gets which treatment before they
begin any treatment at all? While numerous studies have provided
extensive molecular quantification of varying immune processes
and “immune privilege” mechanisms governing AA [4,6-9], there
has been little success in translating these observations to clinical
predictors to specific therapeutics. While many of these models
provide promising accounts of the underlying pathology, they do
not directly consider the effects of drug treatments such as JAK
inhibitors, which are not specifically designed to target these bio-
marker panels, but rather intersect with them in some way. Our
inclusion of biopsy sampling throughout the clinical trials allowed
us to measure the molecular response to treatment through RNA-
seq profiling alongside clinical outcome. The molecular effects of
each treatment course were individually related back to the clini-
cal outcomes via the (ALopecia Areata Disease INdex) ALADIN
score in the individual trials [4]. With these trials now complete,
we can use the data to drive more advanced computational model-
ing of drug mechanism of response (MoR), as these trials have pro-
vided us with a time course of the molecular effects of each
compound in an in vivo setting, through RNAseq analysis of the
patient scalp biopsies.
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Here, we integrated the RNAseq data for these trials into a
single framework using reverse-engineered regulatory networks
[9,10]. These networks describe the theoretical transcriptional
regulatory logic of target tissues (in this instance, the scalp skin
and hair follicle) by inferring transcriptional interactions
directly from transcriptome profiling. The algorithm allows us
to describe large pathogenic molecular signatures as a smaller
core of transcriptional regulators that are required to maintain
these signatures, which we refer to as candidate master
regulators (MRs). These MRs were then compared against
molecular models for each compound’s MoR to define the
effects of each drug.

Due to the limitation of leveraging already-completed clinical
trials specifically in the context of AA, e.g. retrospective, relatively
limited sample sizes, we designed a specific framework of predic-
tion concerned primarily with predicting non-response rates in
specific compound-patient matchups, and aimed to create a com-
putational model that could predict non-response rates of individ-
ual patients to each compound using only the initial, pre-treatment
biopsies. This study focused specifically on rank-ordering these
three compounds based on the predicted non-response likelihood.
This has the caveats that 1) it was not designed to discern which of
the compounds would certainly work (i.e. just because the algo-
rithm did not pick the drug as the best does not imply that the drug
would fail), and 2) it does not have predictive coverage of drugs
that were not included in the analysis (but they can be included
if the corresponding data becomes available). The aim of the study
was to provide highest-likelihood predictions to minimize non-
response rates.

This is a crucial requirement for clinical application, since the
goal is to be able to aid in therapeutic decisions before putting
patients on treatments. This computational framework provides
the foundation for bioinformatic patient-matching of individual
patients to the treatments with the highest probability of posi-
tive response. Fig. 1 provides a conceptual workflow of the
algorithm.

2. Results

2.1. Naive differential expression analysis of four independent AA
clinical trials defines distinct drug response programs

Initially, we collated the patient data for the four clinical trials
(ruxo, tofa ILTAC, and abatacept) as four independent groups and
performed a standardized, naive differential expression analysis
for each cohort as a baseline (see methods). The molecular mech-
anism of response (MoR) signature was defined as the genes differ-
entially expressed between each treatment groups’ endpoint
treatment biopsy and its corresponding pre-treatment biopsy. For
reference, the distribution of differential expression and statistical
significance are presented in Fig. 1 as volcano plots (Fig. 2 A-D, top
panels).

For each group, these MoR signatures were used in an unsu-
pervised hierarchical clustering analysis with unaffected controls
spiked in to assess the strength of MoR gene clustering (Fig. 1
A-D heatmaps). It should be noted that these gene signatures
are not explicitly informed by the ALADIN signature, and exist
largely orthogonally to ALADIN. Tofa and ruxo were associated
with the most robust molecular response, defined both by the
separation of pre- and post-treatment samples and by the clus-
ter strength of the MoR gene sets. ILTAC and abatacept overall
associated with fewer differentially expressed genes and
reduced clustering quality. Both of these compounds also asso-
ciated with the lowest overall clinical response rates in the clin-
ical trials.
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2.2. Direct comparison of four compounds reveals orthogonal
mechanisms of action in both human clinical trials and mouse models

Using the response signatures above, we can compare the gene
sets associated to each course of treatment and assess their overall
similarity. Fig. 2E provides a representation of the relative overlap
of genes that are differentially expressed in association with each
completed course of treatment. The accompanying table presents
the p-value of the corresponding left-tailed Fisher’s Exact test for
each pair of gene sets - a statistically significant p-value for the
pair indicates that the two gene sets are statistically non-
overlapping and distinct from each other. From this analysis, the
MoR sets of all four compounds were statistically independent of
each other, including the two JAK inhibitors, tofacitinib and ruxoli-
tinib, suggesting that all four of the tested compounds have sepa-
rate, traceable molecular MoRs.

These results were supported by mouse models in which we
treated mice with AA using tofacitinib, ruxolitnib, and com-
pounds targeting specific JAK pathway genes. Specifically, the
unique MoRs of ruxo and tofa observed in human cohorts
was recapitulated in the mouse models (supplemental Tables
1-4 for relevant data) [11]. While tofacitnib and ruxolitinib
exhibit molecular perturbation behaviors consistent with combi-
nations of JAK1 and JAK3 targeted compounds, the topography
of their respective graphs indicate synergistic effects greater
than the simple sum of the two compounds, expressed as the
significant expansion of over-represented genes in the MoR
signatures.

These results suggest that the molecular downstream effects
of treatment in the in vivo setting can vary drastically beyond
what may be suggested by the class of compound, e.g. JAK1 vs
JAK3 vs JAK1/3. These molecular complexities produce a system
that is difficult to model using consensus-based differential
expression, but also allow for the potential for patient-
matching optimization if an integrative representation of MoR
can be modeled.

2.3. Master regulator analysis of the gene networks of treatment
response in these clinical trials reveals distinct modules of unique
mechanism of response

Having defined these orthogonal MoR signatures, we per-
formed a master regulator analysis to identify the core, minimal
set of transcriptional regulators required to propagate and reca-
pitulate this signature using our existing, validated skin regula-
tory network [9]. This will eventually have predictive capability,
but we initially must define a set of MRs for each drug. Each mas-
ter regulator analysis was conducted independently for each MoR
signature, and the networks were integrated and visualized in
Fig. 2. Of the four compounds tested, only abatacept had an
MoR signature that failed to map to any individual regulatory
hub with a coverage of > 70%, which is considered a heuristic
measure of confidence [9,12-14]. This could suggest that the
MoR of abatacept does not significantly propagate through tran-
scriptional machinery or that it may not significantly affect the
molecular steady state of the scalp tissue. For biomarker and clin-
ical prediction purposes, we then iterated through this combined
network and eliminated the edges shared between multiple treat-
ments to create a treatment network module reflecting only
unique regulatory interactions associated with each MoR
(Fig. 2F,G). At the chosen statistical significance level (see meth-
ods), the MoR of these four compounds can be described and
differentiated through a combination of six sets of MRs. While
these intersected edges may be biologically relevant, for predic-
tion purposes we focused on maximizing the ability to differenti-
ate between the drugs.
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Fig. 1. A schematic flow diagram of the progression of this algorithm. (A) An independent skin regulatory network is integrated with drug mechanism of response data
inferred from a clinical trial time-series. (B) This data is used to map the master regulators that define molecular response to each compound. These master regulators
uniquely describe the molecular hubs associated to each compound. (C) on a per-patient basis, we assess the transcriptional state of each hub in relation to the theoretical
master regulator hub provided by our network. The concordance is quantified for each hub in each patient. (D) Treatments for each patient are ranked based on the strength
of concordance between the observed molecular state and the theoretical network hub. Patient response is then unblinded and accuracy in outcome is measured.

2.4. Molecular response programs can be used to predict non-
responder rates in patient cohorts prior to treatment and to rank
responsiveness to treatment

Using the master regulator hubs generated from Fig. 2G, we
developed a model to measure the similarity of an individual
patient’s response hub its corresponding computationally pre-
dicted model (see Methods for details). The method essentially
identifies patients whose expression an MR-predicted target falls
outside the reference set normal range. These outlier genes are
subsequently marked as network edges that do not conform to
the computationally inferred network. The overall prediction of
patient response is then defined as the relative concordance
between the computationally inferred network and the number
of these dysregulated edges in an individual patient by computing
the total hub co-information minus the information of the dysreg-
ulated edges.

When performing this analysis across multiple patients, we
observed that each patient had unique set of deviations from
the inferred hub (Fig. 3A,B). This cartoon, and the associated
figure, shows an abstraction of this process (the full details are
available in Methods). Given a specific regulatory hub, e.g.
tofacitinib, each of three patients are assessed for genes in the
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hub that exist at the appropriate steady state (present) or not
(absent). These edges are then weighted by their network-
predicted mutual information into a bivariate vector that
measures the overall relationship between total present and
absent information.

The angle, theta, of this vector therefore represents the devia-
tion of this individual patient’s regulatory hub from the prototyp-
ical, inferred ARACNe hub (see Methods for mathematical proof of
metrics). Here, a greater theta demonstrates less concordance
between the master regulator state of an individual patient with
the theoretical MR hub, and we interpret this as a lower likelihood
of response to the associated treatment.

When done for an individual patient’s pre-treatment biopsies,
and using the MoR hubs of multiple compounds, it becomes possi-
ble to rank each hub according to its concordance with the
ARACNe-predicted hub (Fig. 3C). Each compound can be mapped
to a theta value and ranked, lowest to highest corresponding to
best- and worst choice, respectively, for each patient. Note that
the current implementation of this method does not provide infor-
mation as to whether each individual treatment will or will not
work, rather, it provides the best-case estimate of the best candi-
date drug based on the patient’s pre-treatment molecular
signature.
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Fig. 2. Biomarker panels associated with prolonged treatment of (A) ruxolitinib, (B) tofacitinib citrate, (C) intralesional triamcinolone, and (D) abatacept were generated using
RNAseq data generated from scalp biospies taken throughout the clinical trial. Each compound had variable response in terms of both the number of genes (volcano plots) and
the robustness of the response (heatmaps) in separating pre-treatment (heatmap, orange barcodes) from post-treatment (heatmap, purple barcodes) and unaffected controls
(heatmap, teal barcodes). (E) Venn diagram showing the overlap of the biomarker panels associated with each treatment course and accompanying pairwise overlap statistics.
Sufficient statistical evidence exists that all biosignature panels are non-overlapping p < 0.05 corrected. (F) These signatures are integrated with a skin regulatory network
using an edge-crawl method to identify master regulators with the maximal unique regulatory logic associated with each drug, allowing for (G) the mapping of distinct
master regulators (yellow nodes) to each compound for outcome prediction. The MoRs of the four tested compounds can be covered through the combination of six candidate
MR hubs. Dark blue nodes indicate unique MR gene hubs that differentiate the compounds, the overall cloud shows the total molecular hub describing all response genes in
the study. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

2.5. Ranking treatments per-patient by theta concordance associates either at least 20% response in SALT score or by whether or not
with observed response rates they were predicted responders by ALADIN (Fig. 3D).
If a patient was treated by a compound that the algorithm did
To assess the accuracy and application of this method, we then not mark as best-in-case, and that patient failed to respond, this
unblinded the patient treatment and response rates, and compared event was interpreted as a correct identification of non-response
the best-case prescription by the algorithm to the treatment the (the algorithm suggested a different treatment, and the patient
patient actually received, and whether or not the patient exhibited did not respond on their prescribed treatment). If the patient was
a response at the end of a 24-week treatment cycle, defined as treated with a compound that the algorithm predicted was best,
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B Ranking compounds based on hub stability per-patient
]
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Fig. 3. (A) Schematic representation of measuring master regulator hub stability of a tofacitinib master regulator in three different patients. The same theoretical regulatory
hub of a master regulator is compared against the molecular state of three different patients, all of whom have varying levels of concordance with it. Using mutual
information this level of concordance can be vectorized into quantified concordant and discordant edges. Concordance overall is measured by angle theta of this vector, with
lowest values being most concordant with the model, and therefore most likely to elicit clinical response, e.g. Patient 1 would be the most likely of the three to respond to
tofacitinib. (B) The same as A, except now measuring three different compounds in an individual patient for ranking, e.g. for this Patient 1, tofacitinib would be the most likely
to elicit a response, and abatacept the least likely. (C) taking each individual patient’s pre-treatment biopsy and applying this logic provides a ranking for best treatment of the
options available. Patients are then unblinded and their given treatment and response rate are compared with the algorithm’s prediction. (D) the algorithm has significant
association between first-pick and patient response, and mismatch with patient non-response using two different clinical outcome measures. (E) the algorithm assigns
available compounds in proportions concurrent with their expected response rates.

and the patient responded, this was interpreted as a correct predic-
tion and match, etc. Based on these interpretations, the categorical
tabulation of prediction vs response rates are provided for both
scoring definitions (ALADIN and SALT), see supplemental Tables
5-9 for related information. Both were statistically associated at
alpha < 0.05 corrected.

Furthermore, we tabulated the algorithm’s overall assignment
rates of each of the compounds, e.g. how often/for how many
patients did the algorithm suggest ruxolitib, and compared those
rates to the expected response rates in the cohort based on the
non-responder rates in each individual clinical trial. This was to
assess the potential “bias” of the algorithm in picking “ideal” com-
pounds - if the algorithm categorically assigned ruxolitinib to all
patients (perhaps because it has the overall highest response rate
of the trials conducted), it loses its value as a predictive matching
algorithm. However, the distribution of the three compounds was
concordant with the expected rates given overall observed clinical
response rates by chi-squared test of independence (x> = 0.477, not
significant, Fig. 3E). This result suggests that the algorithm’s
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relative rates of assigning each compound are concordant with
overall observed response rates associated with each compound.

2.6. Edge-driven patient-matching has significant positive and
negative predictive value pre-treatment

Based on these results, we proceeded with an assessment of the
algorithm'’s positive and negative predictive values based on poste-
rior probabilities. The main findings are derived and detailed below
in Fig. 4 (details in Methods). In summary, in this study the algo-
rithm has a 78% (Fig. 4A) probability of correctly predicting patient
response in a pretreatment biopsy, i.e., when a patient was given
the treatment predicted by the algorithm to be the best fit for
the patient, the patient did respond in 78% of cases. This is com-
pared to the overall response rates of ~ 20-70% for each of the indi-
vidual clinical trials, for a LR improvement of 1.3-3.9. Conversely,
the algorithm had a negative predictive value overall of 65%, i.e.,
when a patient was given a compound that was not the best-in-
case prediction by the algorithm, 65% of the patients failed to
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Fig. 4. (A) an assessment of the positive predictive value of the algorithm. Using the unblinded data, the posterior probability of patient response to a treatment given that the
algorithm assessed that treatment as the best-case for that patient is 77.7%, with a relative risk improvement of 1.3-3.9, depending on the base response rate of the particular
compound. (B) the assessment of negative predictive value based on posterior probability. The probability of a patient failing to respond to a treatment given that the
algorithm did not select that treatment as the best-case option is 65.4%, with a relative risk improvement of 1.53-3.06 depending on the base response rate of the particular

drug.

respond to the treatment, with an overall LR improvement of 1.53-
3.6 (Fig. 4B). The lower bound of improvement (1.53) is due to
comparing the overall matching rate to ruxolitinib, which overall
had the highest response rate (and consequently the lowest non-
response rate), i.e. ruxolitinib has the highest response rate across
the individual trials, so comparing global probability assessments
against it yields lower improvements in likelihood simply because
the base response rate is higher.

3. Discussion

This study provides molecular quantification supporting the
hypothesis that these four tested compounds have drastically dif-
ferent molecular fingerprints in scalp biopsies of AA patients.
Regardless of the convergence of their molecular pathology, as
measured by the ALADIN score, the exact patient response as mea-
sured by gene expression changes suggest that the biological path-
ways through which the suppression of pathology is achieved is
unique to each compound. From even the most basic level of differ-
ential gene expression, statistical analysis can be conducted to
show that the molecular effects of each of these compounds is sta-
tistically differentiable from each other, and distinct in signature.
While a limited number of genes do fall within the intersections
of each MoR signature, on the whole each compound elicits a
unique molecular response in a treatment cohort that can be used
to infer what compound a patient was subject to with no a priori
information. In essence, patients can arrive at a remitted disease
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through multiple different molecular paths. This finding in itself
warrants further investigation, as there has been little research
devoted specifically to tracking the molecular effects of com-
pounds on the patients in clinical trials.

One of the more striking findings of this study was the extent of
the molecular divergence in MoR of different formulations of JAK
inhibitors. The molecular MoRs associated with tofacitinib (pan-
JAK) and ruxolitinib (JAK1,2) in the context of human clinical trials
is statistically robust and orthogonal, and are as disparate from
each other as they are from ILTAC and abatacept. In fact, all for
compounds tested in human clinical trials had statistically distinct
MoRs. These observations were corroborated in controlled, pre-
clinical animal model studies of targeted JAK1, -2, and -3 inhibitors
alongside ruxolitinib and tofacitinib.

Individual JAK compounds have statistically separable
molecular effects, and the combinatorial effects of pan- and
mult-JAK inhibitors are not a simple additive or linear progression.
There are genes within the intersections of these MoRs, but while
these individual genes may be biologically interesting, the global
view of the MoR suggests the importance of regarding these com-
pounds as distinct and non-equivalent treatments. Comparing the
multi-targeting tofacitinib and ruxolitinib compounds to the indi-
vidual JAK inhibitors directly shows a perhaps-surprising lack of
overlap in gene signatures at all. Rather than each pan-JAK inhibi-
tor being a superset of JAK1 and JAK3 inhibitor effects (or of all
three), there is instead no statistical evidence of overlap of any
pairwise comparison (no comparisons pass a p < 0.05 FDR
threshold).
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The global differences in these molecular MoRs beget the possi-
bility of dynamic matching of individual patients to specific com-
pounds in order to minimize non-response rates. These
differences also highlight the importance of not implicitly regard-
ing different compounds targeting the same pathway as inter-
changeable and, as a corollary, the potential dangers of doing so:
these data show that these various JAK treatments are not in any
way interchangeable as a function of the total molecular perturba-
tion associated with patient response.

Here, we investigated the hypothesis that differences in
response rates could be predicted on a per-patient basis by using
the pre-treatment, steady-state molecular level of key master reg-
ulators associated with the drugs’ MoRs. Published research from
other groups [15,16] established the feasibility of using computa-
tional methods such as consensus-based master regulator analysis
to model drug mechanism of response. Such methods are signifi-
cant in the scope of both designing novel drugs and predicting
response because it gives us a quantitative method to assess and
predict how large molecular pathologies progress through treat-
ment and time. Here, we leveraged our regulatory networks to col-
lapse these MoRs into a core set of master regulators. For each
compound pair, we mapped and identified the best non-
overlapping hubs of molecular MoR for bioinformatic predictions.
Using these hubs, we were able to develop a computational frame-
work to estimate how well an individual patient would respond to
each available compound based on their pre-treatment molecular
state, and demonstrated that these predictions could be related
back to the response rate predicted by the ALADIN signature and
in clinical recovery metrics via the SALT score.

Despite the predictive power of the algorithm, it is important to
note that its current implementation is not designed to assess
whether or not specifc compounds tested will produce response.
Rather, it is currently designed to take in a list of compounds for
which molecular MoR data exists and to rank-order them based
on an individual patient’s molecular concordance with the corre-
sponding MR network hub. This is significant to note because the
Bayesian assessment of predictive power likely underestimates
the results as a consequence of this framework. Due to the limita-
tions of the data (retrospective and no option for follow-up inter-
ventions), patients who are not given the best predicted
treatment yet respond are nonetheless counted against the algo-
rithm'’s performance - the algorithm is designed to pick the "best,"
but this does not preclude that "non-best" can work. Furthermore,
this study is not meant to provide a ready-made assay format for
the clinic. The goal of the study is to demonstrate that the field is
now technologically capable of making network-based predictions
of patient response using pre-treatment biopsies, and to encourage
interest in developing the assays that would facilitate such assays
for clinical applications.

These studies were also not designed to distinguish or charac-
terize patients with long-standing AA, or alopecia totalis or univer-
salis, which have been associated with poorer response rates to
therapeutics in general, nor can we directly account for the rela-
tively rare rate of spontaneous remission, since no reliable method
currently exists for detecting it before the presentation of clinical
remission. Further validation in the form of additional clinical trials
or studies directly designed to inform methods such as this will be
required to accurately include these parameters into a predictive
model will greatly benefit not only validating this methodology
further based on the framework we’ve presented in this study.

Regardless, this study establishes the precedent that network-
based inference methods can be used to model and supplement
drug matching decisions. The ability to provide quantitative esti-
mates of efficacy for a panel of compounds will have significant
influence on the overall success in treating diseases, as well as mit-
igate significant financial, temporal, and quality of life burdens and
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loss associated with patients being prescribed treatments that had
little chance of working. In this study alone, in modeling three
compounds, we observed variable response rates in each individ-
ual clinical trial. All outcome rates could have been systematically
improved through the application of methods such as this
beforehand.

While drugs with lower response rates — those with more speci-
fic and unique MoRs - will clearly benefit the most from such
applications, even drugs with a high baseline efficacy can be
enhanced by supplementing with these approaches by screening
out even the rare non-responders early. The difference between
70% response to abatacept (random assignment) and 96% chance
(assigned by algorithm), while perhaps less impressive than the
other results, is nonetheless a significant improvement. More
importantly, the quick identification of the 20% of patients who
have a 0% chance of response to a treatment, before beginning
treatment, would no doubt be appreciated by those individual
patients. While the “stakes” of early identification in this disease
context could be argued as minimal for clinical applications (e.g.
“Why not just give ruxo to all patients?”), this technology has
far-reaching consequences for the viability of precision medicine-
based individualized testing, and these methods represent an
invaluable tool in the future as we continue to develop new treat-
ments for AA and identify feasible repurposing targets for known
drugs.

Finally, such methods establish a novel framework and
approach for translational biomarker development and have direct
application potential to the clinic, directly affecting patient care
and health. These proof-of-concept studies leverage whole skin
biopsies of the scalp and bulk RNA sequencing to generate the pre-
dictive models. While this could already be directly implemented
(if costly and time consuming) for patients before being prescribed
medication, it also clearly defines large biomarker panels that can
be used to refine more practical, compressed panels for testing.
Perhaps with enough study and resources, more non-invasive
biosampling could be adapted from this work to truly promote
rapid, practical individualized patient matching.
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