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Abstract

We report the application of agent-based modeling to examine the signal transduction network and receptor arrays for
chemotaxis in Escherichia coli, which are responsible for regulating swimming behavior in response to environmental
stimuli. Agent-based modeling is a stochastic and bottom-up approach, where individual components of the modeled
system are explicitly represented, and bulk properties emerge from their movement and interactions. We present the
Chemoscape model: a collection of agents representing both fixed membrane-embedded and mobile cytoplasmic proteins,
each governed by a set of rules representing knowledge or hypotheses about their function. When the agents were placed
in a simulated cellular space and then allowed to move and interact stochastically, the model exhibited many properties
similar to the biological system including adaptation, high signal gain, and wide dynamic range. We found the agent based
modeling approach to be both powerful and intuitive for testing hypotheses about biological properties such as self-
assembly, the non-linear dynamics that occur through cooperative protein interactions, and non-uniform distributions of
proteins in the cell. We applied the model to explore the role of receptor type, geometry and cooperativity in the signal gain
and dynamic range of the chemotactic response to environmental stimuli. The model provided substantial qualitative
evidence that the dynamic range of chemotactic response can be traced to both the heterogeneity of receptor types
present, and the modulation of their cooperativity by their methylation state.
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Introduction

One of the great challenges facing modern biology is the

integration of knowledge from diverse experimental sources into a

cohesive picture of cellular behavior through time. Computational

modeling of cellular pathways plays a key role in this effort, providing

the ability to examine and test assumptions, identify areas of

incomplete or missing knowledge, explore system parameters, and

test hypotheses about system behavior. A common approach is to

model biological systems by representing bulk properties and reaction

rates using differential equations. Bulk rate models have been both

popular and effective for representing metabolic pathways where the

populations of proteins can be readily approximated as continuous

concentrations.

However, a significant class of modeling problems has spatial

and temporal relationships that are cumbersome to represent

using continuous equations that assume spatial and temporal

homogeneity. Examples include complex boundary conditions

such as membranes; self assembly of macromolecular complexes

such as ribosomes, viral particles, transcriptional regulators, or

receptor fields; and systems that are sensitive to the presence of

only a few molecules at a specific location, such as transcription

factors and bistable switching [1].

Agent-Based Modeling
Agent-based modeling (ABM) is an alternative – and potentially

complementary – method to these traditional top-down approach-

es. ABMs differ from other component modeling systems (such as

cellular automata) by the continuity of the landscape, the

heterogeneity of components, and the stochastic influences in

agent motion and interaction. ABM takes a bottom-up approach

that represents a system as a collection of agents, components that

are programmed to simulate the real-world observed behaviors of

the various elements of the system to be modeled. The agents

move and interact in a simulated environment referred to as a

scape (originally derived from landscape). The scape has a defined

geometry approximating spatial features of the target system.

Agents are individual objects that represent individual components

of the modeled system (e.g. individual proteins in cell). Each agent

behaves according to a set of rules representing key features of the

modeled system. When placed together in a population, the rule-

based interactions of agents with each other and with the modeled

environment produce complex, system-wide behaviors that may

not be obvious from the individual rules. The emergence of

complex interactions from relatively simple rules is termed

‘‘emergent behavior.’’ In agent-based models, one tries to find a

simple set of rules, defined for individual class members of a system
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(proteins in our simulations) that lead to a reproduction of the

system’s overall dynamics. Models are described and built from

the bottom-up, rather than from the top-down.

Agent-based modeling has been applied extensively in the social

and economic sciences to represent systems having spatial and

temporal dynamics not easily represented by bulk equations (e.g.

an equation that represents the aggregate properties of a sand cone

in an hourglass, but does not model each individual grain of sand).

Examples include vehicular traffic flows that are highly dependent

upon spatial configuration of cars, trucks, and road features

through time; the socioeconomic patterning of neighborhoods,

where for example the use of a single home for illicit drug sales can

create a dramatic downward spiral within the surrounding block;

and the disappearance of the Anasazi Indians of the Southwestern

United States, involving a complex web of interconnected

communities and ecologies (for a review of ABM see [2] and the

accompanying special issue in the same journal). These ABM

approaches differed substantially from traditional social science

methodologies such as numerical analysis and statistical inference,

however they proved to be effective tools providing novel insights

into the modeled systems. ABM is in a similar situation now with

respect to the biological sciences, and as an alternative to

intracellular networks with bulk rate equations, has only now

begun to see application in the modeling of biological systems at

the cellular level (e.g. [3]).

Application of ABM to Systems Biology
The success of ABM in social science applications led us to

examine whether it could be used to model biological processes

where complex spatial relationships are functionally important.

The principles of agent-based modeling are well matched to those

operative in cellular biology. A cell consists of a collection of

components, such as proteins, protein complexes, membranes,

DNA, RNA, metabolites, and so on. Individually, cellular

components may operate by simple rules, even though determin-

ing those rules experimentally can be difficult. For example, a

given protein may interact with other proteins, it may catalyze

certain reactions, and it may contain ‘‘state’’ information such as

the presence of chemical modifications (e.g. phosphorylation) that

modulate its behavior. In many cases, the interactions of system

components have important spatial relationships, such as in

protein complexes, cooperative interactions, or sub-cellular

localization. The global behavior of a functional cell arises from

the enormous number of local interactions between relatively

simple components, a phenomenon known as emergence [4].

In this study, we examined whether agent-based models could

be applied to effectively model intracellular signaling in the

chemotaxis network in Escherichia coli. We built a system called

Chemoscape that models intracellular pathways by representing

each protein as an individual agent in the simulation, placed in a

simulated cellular scape. Bacterial chemotaxis involves the

regulation of swimming behavior to optimize nutrient acquisition

and avoid harmful substances in the environment. Chemotaxis

presents a number of spatiotemporal modeling challenges, such as

the self-assembly of receptor complexes and their subsequent

interactions that are involved in the detection of environmental

substances with both high sensitivity and high dynamic range;

modeling feedback loops between membrane-bound receptors and

soluble proteins to regulate sensitivity; and modeling the flagellar

motors.

We chose to model the chemotaxis pathway in E. coli because

there is a large body of quantitative in vivo and in vitro data

available. Furthermore, other groups have extensively modeled

chemotaxis, which provides a basis for comparison of the

Chemoscape agent-based model we developed. We discuss the

strengths and limitations to the agent-based modeling approach,

and also discuss the ramifications of Chemoscape with regard to

the workings of chemotaxis and receptor fields.

Bacterial Chemotaxis
There are three major parts to the chemotaxis system in E. coli:

receptor proteins in the cell membrane, which bind to ligand

molecules in the environment and communicate their state to the

cell interior; intracellular proteins, which form the logic circuit of

the system and decide what kind of response will occur to a given

extracellular stimulus; and flagellar motors, which modulate their

rotation direction depending upon the output of the intracellular

circuit. The rotation of E. coli flagellar motors results in two

fundamental behaviors: running due to counter-clockwise rotation,

and tumbling due to brief reversals in rotation direction [5]. Runs

are the default behavior, with intermittent tumbles. This occurs as

long as the cell does not detect a change in stimuli from the

environment. When there is an increase in attractant (or decrease

in repellent), the chemotactic circuit causes the flagellar motors to

remain in counter-clockwise rotation, suppressing changes in

swimming direction and continuing on a favorable course [6]. If

no further changes in attractant/repellent are detected, the system

resets itself to the default swimming behavior, in a process called

adaptation. The chemotaxis system has several interesting

properties, including high sensitivity (the ability to respond to a

change of about one part in a thousand in receptor occupancy [7])

and a broad dynamic range (the ability to respond to stimuli and

adapt precisely over a million-fold range of background stimulus

concentrations [8,9]).

The proteins that interact to generate chemotaxis are reviewed

in [10–12] and illustrated in Figure 1. Transmembrane receptor

proteins consist of a periplasmic sensing domain and an

intracellular domain that can be variably methylated at specific

glutamic acid residues. The number of methyl groups modulates

sensitivity of a receptor to ligands, with an increasing number of

methyl groups reducing sensitivity to attractant molecules.

Receptors are homodimers that appear to complex into trimers

of dimers [13,14]. Receptors have two states, active and inactive,

corresponding to whether they are activating the downstream

kinase CheA. The inactive state corresponds to an increasing

attractant signal. A complex of CheW and CheA proteins binds

the intracellular portion of the receptors, and is responsible for

translating receptor state to the downstream components of the

system. CheW interfaces CheA with receptors. Because CheA is a

dimer, the potential exists to connect adjacent receptor clusters

through self-assembled CheA2CheW ‘‘bridges’’. CheA is a

histidine kinase that, when receptors are active, autophosphor-

ylates and then serves as a source of phosphoryl groups for the

CheB and CheY proteins. Phosphorylated CheY interacts with the

flagellar motors to cause clockwise rotation. CheZ is a phosphatase

that constantly acts to return CheY molecules to the unpho-

sphorylated state. So the excitation portion of the circuit, driven by

CheY state, acts to translate increasing attractant or decreasing

repellent into swimming in smooth arcs without tumbles, by

shutting off CheY phosphorylation. Likewise, an increase in

repellent or decrease in attractant causes an increase in CheY

phosphorylation, and hence increased tumbling to change

direction.

However, when no further changes in ligand concentration are

detected, it is desirable for the cell to resume normal behavior

continuing the search for better conditions (e.g. nutrients). The

adaptation portion of the circuit, led by CheB, resets the system

back to the default swimming behavior. CheB is a methylesterase
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that is activated upon phosphorylation by CheA and removes

methyl groups from the receptors in the active conformation, thus

increasing sensitivity to attractants and reducing sensitivity to

repellents. By modulating sensitivity this way, CheB drives

adaptation by ratcheting the sensitivity up or down depending

upon the recent history of receptor activation. CheR is a single-

state methyltransferase that constantly works to counter-balance

CheB, methylating receptors independently of their state.

The high sensitivity of the chemotaxis information processing

system allows state switching of motor proteins in response to the

change in state of ligand binding to only a few receptors. Although

some of the signal gain is due to CheY-motor interactions [15],

most of the gain occurs in the receptor2CheW2CheA complexes

[16]. It is a matter of some question how this gain arises, though

cooperative interactions between receptor are one explanation

[17]. In addition to testing the premise that an ABM can be used

to model chemotaxis, we explored receptor cooperativity and

methylation, by developing models to explain recent experimental

results on the role of receptors in the signal amplification of the

system [16–18].

Results

We represented individual membrane bound and soluble

proteins as agents, with state information such as conformation

or post-translational modification represented as state variables.

Agents were placed within a simulated cellular environment laid

out as a two-dimensional hexagonal geometry representing

discrete cellular locations. Small molecules were represented in

bulk because they typically carry no state information, are far

greater in number, and have reactions that occur on fast time

scales relative to proteins.

We first modeled receptors in both homogenous (single receptor

type) and heterogenous (multiple receptor type) populations, with

the goal of reproducing key aspects of recent biological

experiments illustrating differing effects of distinct receptor types

on sensitivity and dynamic range. We then integrated the

downstream soluble components into the model, to examine

whether the combined system containing fixed and movable

agents would exhibit emergent behaviors mimicking those in the

biological system, such as chemotactic adaptation. Examples of the

model in action are shown in Figure S1 and Movie S1.

The model and source code are available to download from

http://bioinfo.unc.edu/Downloads

Receptor Models
E. coli contains at least five receptor types that respond to

various ligand stimuli in the environment. Experimental data both

in vitro and in vivo indicate cooperative interactions between these

receptors that result in several complex emergent behaviors. We

examined receptor interactions by modeling the two major

receptor proteins in Chemoscape, Tar and Tsr, which respond

to the ligands a-methylaspartate (MeAsp) and serine (Ser),

respectively. These receptors play a key role in chemotactic

sensing, translating detected ligand concentration into signals used

by the downstream apparatus to determine flagellar behavior and

cellular motion. In vivo chemoreceptors cluster at one pole of the

cell in a dense field (receptor patch), and it is believed that the

cooperative interactions between trimers of receptor dimers

produce the large observed signal gain and dynamic range,

although the physical mechanism of interactions is not known.

Crystallographic studies suggest that inter-trimer receptors are in

contact at their periplasmic tips [19], but it is unclear whether tip

contact is the mechanism by which state information is

communicated between adjacent receptors. Individual receptor

proteins in vivo, and the agents representing them in our model,

hold state information that includes: conformation, the number of

bound methyl groups, and the concentration of interacting ligand

molecules. Receptors have a shape that can be approximated by a

cylinder [12], so from the two-dimensional perspective of our

model they are circular. Geometrically, the maximal packing

configuration for circles is hexagonal, so we modeled receptors as

fixed agents in hexagonal arrays consisting of trimers of dimers,

shown in Figure 2. Recent whole cell electron cryo-tomography

Figure 1. Schematic of the E. coli chemotaxis pathway, as described in the Introduction.
doi:10.1371/journal.pone.0009454.g001
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experiments demonstrate that bacterial chemoreceptors are

packed into hexagonal arrays in vivo [20]. Receptors are thought

to tightly cluster at one pole of the cell, so the hexagonal model

geometry facilitates modeling both tight clustering and the ability

of receptors in trimers to have symmetrical contacts with one

another, where state information is communicated to model

cooperativity. We then modeled the occurrence of inter-trimer

interactions when agents are proximal and separated by a single

empty lattice cell.

Homogeneous receptor arrays. In vivo, the conformation of

a receptor is determined by its ligand binding state, methylation

state, and the conformation of neighboring receptors. Bacteria that

are over-expressing a single type of receptor with two methyl

groups exhibit high Hill coefficients of about 10 [17]. The Hill

coefficient is a parameter that describes the slope of the dose-

response curve (equation 4, Materials and Methods). A high Hill

coefficient indicates strong cooperativity between adjacent

receptors, where the activation/deactivation of one receptor

makes it more likely that its neighbors will follow suit.

We modeled cooperativity in homogeneous arrays of Tar

receptor agents using MeAsp as the ligand that deactivates them

with increasing concentrations. In the absence of an experimen-

tally determined mechanism of cooperativity, we used the

experimental value for the Hill coefficient to deduce the

cooperativity parameter in simulations with receptor agents in a

lattice populated with a single receptor type. To model receptor

activity as a function of ligand concentration, cooperative

activation effects, and methylation level, we used the free-energy

based formulation of Shimizu et al. [21]. This heuristically derived

equation simulates the effects on the free energy difference

between the active and inactive state of the receptor by bound

ligand, methylation level, and cooperativity with neighboring

receptors, thus resulting in a ratio of active to inactive receptors

that is a direct function of their free energy difference as given by

equation 2 (Materials and Methods). Our formulation differs from

the original by including a fractional rather than discrete ligand

binding term F(l), and for later experiments, a term that introduces

a cooperativity dependence on methylation state.

Our simulations modeled an array of 1,083 receptors (Materials

and Methods), and were composed of triplicate runs using distinct

seeds for the pseudo random number generator. For the initial

homogenous receptor array experiment, we examined the

influence of the parameters Ej (interaction strength) and G0 (base

activation level) on the Hill coefficient (Figure 3A), because those

parameters have not yet been experimentally determined and are

affected by model geometry.

While previous models used a G0 = 0 (the ground state, i.e. non-

ligand bound receptors are half active), in Chemoscape it was not

possible to achieve a Hill coefficient above 3 when using G0 = 0

regardless of the interaction strength Ej (Figure 3A). However, by

increasing the ground-state activity level of receptors (decreasing

G0), larger Hill coefficients were obtained as a function of

interaction strength. Figure 3B represents the dose-response curve

for values G0 of 2600 cal mol21 and Ej of 2700 cal mol21, giving

a Hill coefficient of ,10. These values were then used as the

setting for subsequent simulations.

Cooperativity in mixed receptor arrays with a single

ligand. In bacteria with multiple receptor types, the Hill

coefficient depends on their relative quantities [17]. The more

abundant a receptor species (i.e. the closer to a homogeneous

receptor population), the higher the Hill coefficient of the response

to that receptor’s ligand.

In our ABM, the separate representation of individual

receptors made it straightforward to explicitly represent and

model the behavior of a heterogeneous mixture of receptors. We

modeled mixed fields of 1083 Tar and Tsr receptor agents, in

Figure 2. Example simulation. Receptor trimers (gray) arrayed on a hexagonal lattice, with soluble proteins (colored dots) able to move around on
top of the array, and to stochastically bind to one another or transfer state information such as phosphorylation/methylation status.
doi:10.1371/journal.pone.0009454.g002
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varying ratios, and tested their response to the ligand MeAsp, the

primary deactivator of the Tar receptor, leading to decreased

tumbling of the bacteria. We used the parameters

G0 = 2600 cal mol21, with two receptor methylations. The

model assumed that MeAsp exclusively bound to Tar, so that

Tsr receptors would only be indirectly affected by changes in

MeAsp concentration through its cooperative interactions with

Tar. The results of the simulations shown in Figure 4A closely

matched the experimental observations from Sourjik and Berg

[17], showing that as the population becomes more homogenous,

the Hill coefficient increases towards that of a purely homogenous

population. The good fit between the simulation and the

biological system supports the choice of parameters used, but

more importantly, shows the ease with which the ABM can

represent emergent spatio-temporal behaviors in complex,

heterogeneous populations of molecules.

Activity in mixed receptor populations with multiple

ligands. In bacteria with heterogeneous receptor populations,

sensitivity to an attractant ligand that binds one receptor type is

increased by the presence of an attractant ligand [17] that binds a

different receptor type. The reason for this behavior has not been

elucidated, but logically it might be explained by cooperativity

between different receptor types. The agent-based model

facilitated defining a receptor field composed of a randomly

placed mix of two receptor types, and analyzing the effect of

cooperativity rules upon the overall receptor response. For the

simulations, we used the major receptors Tar and Tsr, which bind

to the ligands MeAsp and Ser, respectively. In the simulation, we

allowed ligands to bind only their preferred receptor type, in order

to elucidate whether cooperative interactions alone might explain

the apparent crosstalk between receptors observed in biological

experiments.

Using the same receptor patch configuration and parameters as

the previous simulation, we modeled the dose-response curves for

MeAsp inactivation of the Tar receptor, both in the presence of

serine (1025 M, binds Tsr), and absence of serine (Figure 4B). At

zero MeAsp concentration, the baseline activity of the receptor

population in the presence of Ser was approximately two-thirds

lower than in the absence of Ser, due to inactivation of Tsr

receptors by the Ser ligand. Notably, there was about a six-fold

increase in the sensitivity of the system to the Tar ligand MeAsp in

the presence of Ser, as seen by the leftward shift of the response

curve. Matching biological experiments, the agent-based receptor

models responded at a lower concentration of MeAsp in the

presence of Ser than in the absence of Ser, due to cooperative

effects. This shows a potential mechanism by which the emergent

behavior observed biologically in mixed receptor populations may

be explained by straightforward rules governing individual

cooperative interactions.

Mixed receptor population and methylation. Sourjik and

Berg performed experiments with engineered E. coli strains having

a mixed population of Tar and Tsr receptors, where the

methylation state of the Tsr receptors were fixed and the

methylation state of the Tar receptors varied by strain [16]. The

experiments exposed the strains to varying MeAsp concentrations,

which binds and deactivates Tar with a Kd that is 105 fold lower

than for Tsr. The dose-response of the chemotactic circuit was

biphasic, with two distinct concentrations at which receptors

became deactivated. It has been postulated that the first phase

arises from the primary response of Tar to MeAsp along with a

cooperative response of Tsr, followed at a much higher

concentration by a secondary response of Tsr directly to the

MeAsp ligand. One unexpected result from these experiments was

that as the methylation of Tar was increased, the cooperative

response of Tsr was reduced.

We examined the properties of the cooperative interactions

leading to these response curves, with a Chemoscape model that

builds on the previous simulation using a mixed population of Tar

and Tsr, in ratio of 1:2 to mimic the biological experiments. The

Tsr methylation level was fixed at two, and Tar methylation level

was tested at three different values: two, three, or four. MeAsp was

used as the deactivating ligand in the simulation, with stronger

binding affinity to Tar and weaker affinity for Tsr.

The first simulations produced the response curves shown in

Figure 4C, which mimic the biological results in having a biphasic

response, where the first group of receptors deactivate at about

1026–1025M MeAsp due to the primary response of Tar, and the

second group deactivates at about 1023M or higher due to the

response of the remaining active Tsr receptors. However, the

dependence of the plateau level on Tar methylation state was the

inverse of that observed in the in vivo experiments. One biological

explanation for the changes in the dose-response curves at

different Tar methylation levels is modulation of receptor

cooperativity according to methylation level.

Figure 3. Simulations of a homogeneous receptor population of 1083 Tar receptor dimers. Data points are the mean values from three
independent simulations. (A) Hill coefficient as a function of interaction strength for four different G0 values (blue diamond: G0 = 0, red square:
G0 = 2200, yellow triangle: G0 = 2400, green x: G0 = 2600). Error bars indicate minimum and maximum Hill coefficients from three independent runs.
(B) Average Tar receptor activity in a homogenous array, as a function of MeAsp concentration, for an interaction strength of 2700 cal mol21 and G0

of 2600. Fitting the data to the Hill equation resulted in a Hill coefficient of 9.8.
doi:10.1371/journal.pone.0009454.g003
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The receptor interaction rules were readily modified in the

model to incorporate dependence of receptor cooperativity upon

methylation level, given by the term c in equations 2 and 3

(Materials and Methods). This term modified the coupling strength

between receptors to vary inversely with increasing methylation

level. Simulations with this modified receptor activity rule were in

agreement with experimental results (Figure 4D), with the biphasic

response curves as the previous simulation, but showing the

distinction that at the higher methylation levels, the modified

cooperativity reduced the initial low-dose deactivation response to

MeAsp, and proportionally increased the secondary response at

much higher MeAsp concentrations. This is because the reduced

cooperativity resulted in fewer Tsr receptors being deactivated

cooperatively by Tar as the latter respond at low concentrations.

Instead, most Tsr receptors were deactivated only as MeAsp

concentrations increased to high enough levels to directly

deactivate them.

Substantively, this simulation revealed a potential mechanism for

the complex emergent behavior noted by Sourjik and Berg, being

that cooperativity is inversely dependent on methylation level.

Complete Chemotaxis Pathway
The soluble components of the chemotaxis pathway play an

important role in the excitation and adaptation process, by

communicating receptor state to the flagellar motors, and

modulating the effect of stimuli on the circuit through changes

in receptor methylation state. Previous chemotaxis models have

generally represented the soluble components as bulk rate

equations. We examined whether the agent-based model could

readily represent the soluble chemotactic components, and

importantly, whether the fixed receptor and soluble signaling

components could be effectively integrated into a single model that

displays emergent behavior mimicking key attributes of the

biological chemotactic response, such as its wide dynamic range.

We developed a model incorporating both the fixed receptor

agent arrays from the previous experiments, and the soluble

components CheR, CheB, CheY, and CheZ. The latter were

represented as agents that move in a random walk around the

model, by choosing an adjacent random location on each

iteration. When any of these encounter another agent in an

adjacent lattice cell, a rule is activated that allows events such as

Figure 4. Receptor simulations, each data point derived from the average value of triplicate runs. (A) Hill coefficients for the activity of a
primary receptor bound by its ligand, as the ratio of primary to secondary receptor was varied, with experimental data from [17]. (B) Fractional total
receptor activity (Tar + Tsr) as a function of MeAsp concentration, in the absence (¤) or presence (&) of Ser attractant ligand, which deactivates the
Tsr receptors. In the presence of Ser, the baseline activity of the receptors is suppressed to ,30%, corresponding to the inactivation of the Tsr
receptors, and the sensitivity to MeAsp, defined as the ligand concentration at which the activity of the system is one half relative to baseline (K1/2),
increased ,6 fold, from 3.361026 M to 5.661027 M. The Tar receptors have a diminished ability to inhibit the overall activity of the receptor patch,
even though they initially account for a larger portion of the overall activity, in agreement with experimental results from [16]. (C and D) Plots of
combined Tar and Tsr receptor activity versus MeAsp concentration for methylation independent receptor coupling (C) and methylation dependent
receptor coupling (D). In (C), as the methylation level increases, there was a greater relative response from Tar binding to MeAsp, contrary to the
experimental data from Sourjik and Berg [16], and (D) brings the simulation data in line with the experimental data by introducing the term %, which
affects receptor cooperativity based on methylation level. (¤: Tar Methylation 2, &: Tar Methylation 3, m: Tar Methylation 4). Tsr was fixed at
methylation level 2 in all experiments.
doi:10.1371/journal.pone.0009454.g004
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transfer of a phosphoryl or methyl group from one protein to

the other to occur at a certain probability (Materials and

Methods).

Two other chemotaxis proteins CheA and CheW were also

represented. CheA and CheW presented an interesting case,

because in the cell they are initially soluble and free moving, but

can bind to form a single CheA2CheW complex with one or two

CheW proteins bound to one CheA. Also, CheW can bind to a

receptor protein, in which case CheW and any proteins complexed

with it become anchored to that receptor. If CheW has not yet

partnered with CheA, when a CheA wanders by, they can bind

to form a fixed complex. The end result is a series of

CheW2CheA2CheW bridges anchored to the receptor array

near the cell pole.

The interactions between receptors, CheW and CheA were

represented in Chemoscape as follows. When a CheW agent

encountered a fixed receptor agent, it could bind and become

fixed at that location. Whenever a CheA and CheW (whether

fixed or movable) encountered one another, they could bind and

become a single ‘‘CheA2CheW’’ complex agent that replaced the

individual agents. The CheA2CheW complex could also bind a

second CheW to form the complete CheW2CheA2CheW

complex. When simulations were begun, all CheA and CheW

agents were soluble and free moving, then stochastically self-

assembled as a bridge network on the receptor lattice. This

macromolecular self-assembly process is a natural consequence of

a few appropriate interaction rules in the agent-based model.

The autophosphorylation activity of the CheA agent then

depended on the activity of the one or two receptors it was

connected to through CheW agents. In turn, soluble CheY agents

were phosphorylated by CheA when the two had an encounter,

where CheY phosphorylation served as the readout of the system’s

activation state.

Biologically, the phosphorylation of CheY determines flagellar

motor behavior (not represented in the model). Following a

stimulus that causes a change in the phosphorylation of the CheY

population, adaptation serves to return the system to its baseline

state when there is no further change detected in the environment.

There is an experimentally observed asymmetry in the adaptive

response such that the adaptation to attractant withdrawal occurs

more quickly than to attractant addition [22].

We performed simulations to examine whether our model,

combining both fixed and movable agents, could readily

reproduce the asymmetrical excitation and adaptation response.

For the soluble (movable) agents involved with the adaptation

response, CheB and CheR, a set of parameters were chosen that

resulted in a baseline receptor activity and methylation level with

enough range to respond to both positive and negative stimuli. In

order for the asymmetrical response to occur in receptor activity

(and hence CheY phosphorylation), the relative rate of CheB

demethylation had to be larger than the rate of CheR methylation,

which is consistent with in vivo observations [23]. The larger the

difference between these two rates, the larger the asymmetry in the

response. The difference in methylation and demethylation rates

also influenced the baseline level of receptor activity, i.e. the larger

the CheB demethylation rate, the lower the baseline receptor

activity, with the opposite effect for increasing CheR rate.

Other parameters necessary for the model included CheA

autophosphorylation probability, the probability that phosphory-

lated CheA would phosphorylate unphosphorylated CheY, and

the probability that CheZ would dephosphorylate CheY. Because

these values were not known a priori, they were set such that a

response to both positive and negative stimuli could be observed in

levels of phosphorylated CheA and CheY. Setting the CheA

autophosphorylation rate too low or too high resulted in CheY

phosphorylation levels that responded poorly to stimuli.

The resulting response to attractant addition followed by

attractant removal for a homogeneous population of Tar receptors

is shown in Figure 5, with the simulation parameters shown in

Table 1. While these were not the only values at which the system

would show an adaptive response, they produced the most

biological-like behavior of those tested.

One of the most striking observations about the biological

chemotaxis pathway is its ability to respond sensitively to ligand

addition over a very wide dynamic range of ligand concentrations, of

106 or more. Additional simulations tested three different assump-

tions about receptor cooperativity and their effect on the dynamic

range of response for the model: A) homogeneous receptor

populations where coupling strength was independent of methylation

levels, B) heterogeneous receptor populations where coupling

strength was independent of methylation levels, or C) heterogeneous

receptor populations where the coupling strength depended inversely

on the methylation level of interacting receptors.

The dynamic range was measured as the response of the system as

the concentration of MeAsp was increased by an order of magnitude

every 30,000 iterations, from 1028 M to 1 M (Figure 6). In the

heterogeneous receptor cases, the receptor population was 50% Tar

and 50% Tsr. It is interesting to note that while there was no activity

of the receptors in the homogeneous model at concentrations greater

than 1025 M MeAsp, the heterogeneous model had an extended

range of activity compared to the homogeneous model, and the

heterogeneous model with methylation dependent coupling strength

had an even larger dynamic range. This indicates that the effect

noticed by Sourjik and Berg, and represented in our model by

varying receptor cooperativity based upon their methylation state,

may be largely responsible for the system’s emergent property of

having a wide dynamic range of response to ligand addition. Our

results validate a hypothesis put forward by Bray that cooperativity

dependency on receptor methylation may lead to the wide dynamic

range observed in the system [24].

Discussion

From Rules to Models
In an agent-based model, rules are defined for how we think the

individual units of the model behave and interact. In our model,

the proteins in the chemotactic circuit are the primary atomic

units of the model, and biological knowledge is injected as rules for

their behavior. There is nothing explicitly specified in the model

for its aggregate or bulk behavior, as those are properties only

observed by running the model. For example, the population of

phosphorylated CheY protein over time can only be derived by

running the model itself, observing how the rules and assumptions

made at the protein level affect CheY-P concentration over time.

In Chemoscape, we expressed assumptions about how the

components were thought to work, and determined whether the

resulting bottom-up model matched reality. If performance was

off, then something about our assumptions were wrong, and

needed consideration or adjustment.

We have sometimes found ourselves subjected to the criticism that

agent-based models such as this one are ‘‘simplistic’’. They are

simplistic in the sense that we did not try to formulate a system of

equations for the system; instead we let the model do the work directly

from the assumptions we expressed about what occurs at the protein

level. While this may be a simpler approach in some instances than

writing a system of equations, these models can nonetheless be used to

represent the complex behaviors of real world systems. The simplicity

has a significant benefit of being intuitive and understandable. At the
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end of molecular biology talks a ‘‘model’’ summary slide for the

system studied is usually presented by the speaker. This slide typically

shows key molecules and their hypothesized interactions, in a

pictorial, bottom-up manner. In developing Chemoscape, the model

was developed in much the same way as one of those summary

diagrams, readily matching the thinking patterns of experimentalists

about the chemotaxis system.

The ability to intuit the model and the basis for its behavior is

perhaps the most powerful outcome observed from this chemo-

tactic modeling effort. This ability led to a rapid turnaround time

between new hypotheses and their implementation in the model.

When the results of the model weren’t as expected, we were able to

directly understand what went wrong and then improve it.

Emergent Behaviors
The assumptions we made about protein behaviors, which were

coded as rules for single agents, had profound effects on system-

wide emergent behavior. For example, one change in the rules

governing receptor cooperativity to be based upon methylation

state had a major impact upon the dynamic range of the

chemotactic system. It was not obvious in advance that making a

small modification like this would dramatically enhance dynamic

range. This result provided insight into the functioning of the

biological system based on single interactions taking place at the

biochemical level. The model’s insights may help focus subsequent

in vivo or in vitro experiments to further test its results.

From these results, we have come to believe that computational

models are most useful at framing biological problems and testing

our assumptions about them. If we assume that receptor

cooperativity is independent of methylation level, then the

receptor patch over-responds to a stimulus, meaning its dynamic

range is lessened - regardless of the specific, quantitative

parameters used in the model. The quantitative parameters may

shift the particular concentration at which the receptors become

saturated (all active) - but they don’t change the fundamental

emergent behavior. The agent-based model facilitated tracing

emergent traits back to their roots in the myriad individual

biochemical reactions taking place throughout a cell.

Figure 5. Graph from a single simulation run of a model with a homogeneous Tar receptor population. This model is showing the
excitation and adaptation response of fractional receptor activity (black) and average methylation level (blue) in response to the addition and
removal of 461026 M MeAsp at iteration number 30,000 and 60,000, respectively.
doi:10.1371/journal.pone.0009454.g005
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Explicit Spatial Representation and Self-Assembly
Agent-based models explicitly represent spatial relationships

between micro-scale system components. The Chemotactic

sensing system was a useful example in which to explore the

value of this spatially oriented approach. The precise organization

of signaling proteins within chemotaxis receptor clusters has not

been established, and is an area of active experimental inquiry (e.g.

[25], also reviewed in [26]). In this model, we examined a

structure in which direct contacts between the periplasmic

domains of adjacent trimers of receptor dimers define their

primary interactions [19], where the adjacency of trimers defined

tertiary interactions.

The model could be readily altered to explore the properties

of other receptor array geometries, such as signaling through

CheWNCheANCheW bridges that connect trimers of receptor

dimers [27], signaling in linear rows of receptor dimers

connected by CheWNCheANCheANCheW bridges [28], signaling

in two-dimensional lattices formed by direct contact between

cytoplasmic domains of receptor dimers [29] or direct contact

between CheA molecules attached to different receptors [30].

Another spatial constraint that might be considered are the

proposed adaptational assistance neighborhoods [31], in which

a CheR bound to one receptor dimer can methylate six

neighboring receptor dimers, whereas a CheB bound to one

receptor dimer can demethylate four or five neighboring

receptor dimers.

The model also represented spatially oriented processes of

molecular self-assembly, where CheA and CheW could join in

the cytoplasm to form new agents representing the complex, and

these could assemble to fixed receptors to form CheW2CheA

bridges between receptor trimers. An emergent property of this

self-assembly was the rate of CheA autophosphorylation, which

was dependent upon the resultant connectivity in the receptor

lattice. The connectivity was in turn dependent upon the ratio of

CheA to CheW used in the simulation (data not shown). Such

self-assembly processes play critical roles in biological systems,

and the ABM was a straightforward yet powerful way of

representing such a process.

Explicit Representation Facilitates Hypothesis and
Scenario Testing

The Chemoscape model explicitly and individually represented

all known chemotaxis signaling proteins along with the rules

governing their behavior. This provided the ability to readily

modify rules based on the variety of published experimental data

from mutant bacteria expressing chemotaxis proteins with altered

concentrations and/or biochemical activities. We could then

compare the model’s system-wide emergent behavior to that of the

mutant cells expressing these altered proteins. This allowed us to

rapidly test a variety of different scenarios and hypotheses (many of

which are not shown for brevity). The only other chemotaxis

simulation we know of with this capability is BCT [32–34], which

represents bulk concentrations using a series of about 90 ordinary

differential equations. In contrast to Chemoscape, BCT’s

differential equations were not spatially localized, and the system

was tuned by modifying the dissociation constants.

Parameter Definition
Our agent-based approach didn’t directly solve the hard

problem of model parameter selection. It is not known how

sensitive to perturbation in reaction rates or protein concentrations

the chemotactic system is. It may be that different parameters are

similarly capable of supporting chemotaxis. For instance, it is

known that the relative proportions of some chemotaxis proteins

can be substantially altered without compromising precise

adaptation [35,36]. In vivo, the absolute concentration of

chemotaxis proteins in an E. coli cell varies 10-fold, but the

relative proportions of the signaling proteins remain constant [37].

Also, cells that simultaneously over express all chemotaxis proteins

up to six-fold remain chemotactic [38]. These observations

indicate that it might be more important to get the ratios of

components right rather than absolute concentrations.

Because of these observations, we did not try to find a direct

relationship between agent abundance on a two-dimensional grid to

protein abundance in an actual cell; instead we focused on models

that implemented the correct biological ratios of these components.

In a discrete agent-based model, beyond a certain critical population

size threshold, it is the ratios of population components that matter

for emergent behaviors, not their absolute concentrations. Rather

than trying to exhaustively explore this parameter space, we focused

on the underlying forms of rules that govern protein interactions at

the biochemical level, and their resultant emergent behavior.

The bacterial cytoplasm is a crowded environment quite unlike a

buffered solution in a test tube [39,40], and it is likely that the actual

rates of macromolecular signaling reactions in vivo are different than

the rates measured in vitro [41–43]. It has been suggested that even

with large amounts of time series data, many model parameters can

be poorly constrained and modelers should focus on the predictions

of a model instead of parameters [44]. We found several areas in

which there were little if any published data that would guide

parameter choice. With Chemoscape, we were able to readily test

hypothesis and settle on values that lead to emergent behavior

reproducing experimental observations. While that doesn’t mean we

found the correct parameter values, it does indicate the likelihood that

our qualitative approach - such as the number and type of rules that

govern agent interactions - is on target, and can be used to explain

how the complex of chemotaxis behaviors stem from the simple, local

interactions that occur amongst the components.

Biological Insights from Chemoscape
Biological insights revealed by the model include the observa-

tion that receptor cooperativity could explain the increased

Table 1. Reactions and corresponding probabilities
implemented in Chemoscape.

Reaction Type Probability of occurrence

CheW + CheARCheW2CheA 0.01

Receptor + CheWRReceptor2CheW 0.001

CheW2CheA + CheWRCheW2CheA2CheW 1

aCheA 0

b 0.03

CheAp + CheBRCheA + CheBp 0.25

CheAp + CheYRCheA + CheYp 1

CheR + ReceptorRCheR + Receptorm+1 0.05

CheBp + ReceptorRCheBp + Receptorm21 0.15

CheYp + CheZRCheY + CheZ 0.2

CheBpRCheB 0.005

CheYpRCheY 0.0001

The probabilities determine the chance of the corresponding reaction in cases
where it is possible, so with bimolecular reactions, the corresponding agents
must first encounter one another in an adjacent cell before a reaction is
considered at the given probability level.
doi:10.1371/journal.pone.0009454.t001
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sensitivity of a heterogeneous receptor system to the attractant

MeAsp in the presence of a second attractant Ser, and that

methylation-dependent receptor coupling strength could explain

the complex response curves shown in vivo for mixed receptor

populations and varying methylation levels [16]. In addition, the

model showed that in order to qualitatively reproduce the in vivo

adaptative behavior, it is important that phospho-transfer from

CheA to CheY occur at a higher rate than dephosphorylation of

CheY by CheZ. Finally, the model revealed the qualitative

importance of both receptor heterogeneity and methylation-

dependent receptor coupling strength on providing a broad

dynamic range of response for the system.

The probability of CheZ dephosphorylating CheY after they

bind is quite high in vitro (,99%) [45], which differs significantly

from the probability used in Chemoscape for CheZ agents causing

dephosphorylation of CheY agents upon encounter (20%). This

discrepancy could imply that soluble agent collisions occur more

frequently in the current Chemoscape model than they do in vivo,

which then had to be offset by the lower probability setting we

used for the dephosphorylation reaction.

Figure 6. Dynamic range of responses, as a result of ligand addition at varying concentrations. Receptor activity (A), CheA
phosphorylation (B), CheY phosphorylation (C) and receptor methylation (D) levels for various ligand increments. Tick marks indicate the iterations at
which there was a change in ligand concentration, and were performed at the following iteration numbers and concentrations: (0: 0 M; 30,000:
1028 M; 60,000: 1027 M; 90,000: 1026 M; 120,000: 1025 M; 150,000: 1024 M; 180,000: 1023 M;. 210,000: 1022 M; 240,000: 0.1 M; 270,000: 1 M). The
activity of the system reached 0 (saturation) for a homogeneous receptor population (black) at MeAsp concentration of 1025 M, for a heterogeneous
population (red): 0.1 M, and for a heterogeneous population (blue) with methylation dependent coupling strength, the activity did not reach 0
during this simulation. The plots for activity levels for receptors, CheA and CheY were smoothed using locally weighted least squares in ‘R’.
doi:10.1371/journal.pone.0009454.g006
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Related Efforts
Chemoscape is not the first attempt at modeling the

experimental results of Sourjik and Berg [16,17], which have

inspired numerous theoretical analyses that seek insight into the

underlying mechanisms of receptor cooperativity. One model [46]

depends on poor incorporation of Tsr into mixed trimers of

receptor dimers and destabilization of trimers of dimers by ligand

binding, but subsequently published experimental observations

[47] contradict both assumptions. Another model [48] generates

results consistent with many observations by postulating a network

in which CheA dimers each interact with three CheW molecules

to connect trimers of receptor dimers, but is inconsistent with the

ratio of CheA to CheW found in the cell [37]. Several groups

created mathematical models of receptor activity that are

quantitatively consistent with many experimental results. Some

of these rely on the MWC model of allostery and differential

equations [49]. Others use lattice receptor models and mean field

approach [50,51], but depend on weak or no interaction between

Tar receptors to explain the mutant strains in Sourjik and Berg

[16]. Chemoscape extends the lattice model to include multiple

receptor types with a more flexible geometry than a completely

filled array, as well as incorporating downstream reactions.

Significantly, we found that a simple set of rules governing

cooperativity in a heterogeneous receptor field could explain most

if not all of the biologically observed results.

Several previous efforts share some characteristics of our agent-

based model, such as StochSim, in which proteins are represented

as individual software objects [21,52]. Earlier versions of the

software did not include spatial representation, but were later

extended to allow for receptor arrays in discrete two-dimensional

grids. A more recent software project named Smoldyn was used in

models of CheY diffusion in an E. coli cell [53]. In these models

some proteins were represented individually, but other compo-

nents were modeled using differential equations (e.g. methylation/

demethylation reactions in StochSim, and the receptor array in

Smoldyn). Another project was Agent Cell [3], which used an

agent-based model to represent individual bacteria, but did not

model intracellular processes with an ABM. Our model appears to

be the first that used a generalized agent-based modeling system to

model all major membrane and cytoplasmic components (except

the flagellar motors), providing a unified system that accounted for

the known behavior of each one and demonstrated behaviors

strikingly like the biological system.

Conclusions
ABM is a relatively new modeling approach in the biological

sciences, and so we should expect to discover areas of weakness or

in need of refinement. Established approaches work very well for

large categories of problems. Rather than present ABM in

competition with these approaches at the purely quantitative

level, we suggest that this promising but nascent field be

appreciated for qualitative insights and hypothesis testing, with a

longer term goal to match the rigor and numerical accuracy of

more developed approaches. While Chemoscape has limitations

due to the newness of ABM for this application, we have found

many positive aspects of this approach for intracellular modeling,

such as its biological intuitiveness, the rapid ability to translate

hypotheses into testable models, and the straightforward repre-

sentation of spatial relationships.

Materials and Methods

All models were developed with the Ascape package, which is ‘‘a

framework designed to support the development, visualization,

and exploration of agent-based models’’ [54]. In this Java-based

framework, everything is an agent. A group, or collection, of

agents is contained in a scape. Rules describe the behavior of

agents towards each other and with the environment. Scapes

themselves are agents, and so can be part of other scapes,

facilitating the building of scape hierarchies. An overview of

Ascape can be found in Inchiosa and Parker [55]. The

Chemoscape source code is available for download at http://

bioinfo.unc.edu/Downloads/.

Cells, Agents, and Scapes
The models consist of a virtual 2D environment in which all

interactions are embedded. Models are limited to two dimensions

due to the capabilities of Ascape. The environment consists of a

discrete lattice of ‘‘cells’’ (not to be confused with biological cells)

where each cell has a hexagonal geometry, representing the space

inside of a bacterium. The environment is populated with agents

representing proteins. A hexagonal geometry is used because it

approximates certain geometrical properties of the receptor array

in the biological system, such as maximal packing of cylindrical

structures (e.g. receptor dimers), experimental observations of

hexagonal receptor arrays in bacteria that over express receptor

proteins [56], and allowing for three receptors, representing a

trimer of dimers, to simultaneously contact each other in a

repeating pattern.

Agents in Chemoscape, representing proteins, are differentiated

into two categories, those that are soluble and free to move in the

cytoplasm (foreground) and those that are membrane-embedded

(part of the background). Agents in the foreground can move over

the background layer, while agents in the background are not able

to move. Only one agent at a time may occupy the foreground of a

cell, while multiple agents may be associated with the background.

Agent behavior is defined by a set of rules to model protein

behaviors, such as diffusion in the cytoplasm (random movement

around the scape), modification (e.g. phosphorylation) of other

proteins (interaction with other agents), or autophosphorylation

(self-update). A summary of the rules implemented is in Table 2.

Agents interact with each other either when they are occupying

the foregrounds of adjacent cells, or occupying the foreground and

background of a single cell. Overviews of the model are shown in

Figure S1 and Movie S1.

Protein Representation
Protein types are defined in object oriented programming terms

as object classes, encapsulating protein state and behavior, with

specific proteins in a simulation represented as class instances (e.g.

agents). We define a protein super class containing functions

common to all proteins such as random walk behavior, while

specific protein types are implemented as subclasses that inherit

these common behaviors (Figure S2). The hierarchy allows rules

for specific components of the system to be changed to test new

ideas, leaving the behavior of the rest of the modules unaffected.

Chemical Reaction Representation
Several reaction types are supported in the model, as outlined in

Table 1. Unimolecular reactions are the simplest, such as

stochastic autophosphorylation of CheA. For agents capable of

this type of reaction, on each iteration of the simulation there is

some chance that the state variable corresponding to the reaction

may be changed. This is based upon the generation of a pseudo-

random number in the range [0,1] from a uniform distribution

and the probability of the reaction occurring. If the pseudo-

random number is equal to or less then the chance of the reaction
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probability, than the reaction is performed and the appropriate

state variables are updated.

Bimolecular reactions involve two agents, and can result in a

change of state for one or both of the participating agents. For

each iteration, every agent capable of interacting with other agents

checks whether there is another agent in the proximity for a

reaction. If there is, a pseudo-random number is generated in the

same way as for unimolecular reactions to determine whether a

stochastic interaction will occur. For example, phosphorylated

CheA can interact with and transfer a phosphoryl group to CheY,

resulting in the CheA changing to the unphosphorylated state and

CheY changing to the phosphorylated state. The following

example shows pseudo-code governing CheA-CheY reactions, in

which a phosphoryl group is transferred from CheA to CheY. The

rule is defined from the standpoint of CheA.

if reacting agent = CheY then

if self is phosphorylated AND CheY is not phosphorylated

then

generate random number a : = [0,1]

if a,reaction chance then

transfer phosphoryl group from self to CheY

end if

end if

end if

Another type of reaction occurs when two agents bind together

to form a protein complex, such as CheA2CheW binding. This

type of reaction is similar to the bimolecular reactions, except

when a stochastic interaction occurs, a rule is executed that

combines the agents into a new, single agent representing the

complex. Both of the interacting agents are removed from the

lattice and replaced by a new complex agent representing the

bound agents. In the case of CheA2CheW complexes, the new

agent complex can contain either one or two CheWs, because one

CheA can bind up to two CheW’s.

There are also reactions in Chemoscape that cause an agent to

move from the foreground, where it is mobile, to the background,

where its position is fixed. This happens when a CheW agent binds

to a Receptor agent. Because receptors have fixed locations in the

model, when CheW binds to a receptor, it becomes fixed to the

same cell location. CheA agents can also become affixed to

receptor bound CheW in the following two ways. CheA in the

foreground can bind to a receptor-bound CheW agent (that is not

currently bound to another CheA agent) and CheA already

associated with a single CheW agent can bind with another

receptor-bound CheW (that is also not currently bound to another

CheA agent). Free CheA agents will only move to a background

cell that is adjacent to a CheW agent and also contacts two

receptor agents from two distinct trimers of receptor dimers,

allowing for the formation of a CheW2CheA2CheW bridge.

For modeling efficiency, we represent the small molecule receptor

ligands, such as MeAsp and Ser, as bulk concentration values that are

continuous across the scape, whose concentrations are able to change

at each iteration. In typical experiments, a change in concentration is

made, then held at a fixed value for a large number of cycles (e.g. 500

or more) to observe the system as it responds to the new concentration

and stabilizes. On each iteration, the state of receptor proteins is

calculated in part based upon the bulk concentration of ligand, as

discussed under ‘‘Receptor Activity,’’ below.

Reaction Timescales
In chemotaxis, the ligand binding reaction rates are ,106 fold

higher than phosphorylation reactions [57]. If individual ligand

reactions were to be represented, it would slow the model

substantially. To address this, we use a model in which ligands

constantly come on and off of a receptor [53], with the receptor

changing its state on a slower timescale. Hence, ligand binding is

represented as a time-averaged fraction of ligand occupancy of the

receptor, as follows:

F (½Ligand�)~ ½Ligand�
Kdz½Ligand� ð1Þ

Here, Kd depends upon receptor state, with Kd = 12 mM for active

receptors, and Kd = 1.7 mM for inactive receptors, based on [58].

Chemotaxis Model
The basic model contains agents in experimentally determined

stoichiometric ratios of 3.4 receptors:2.4 CheY:1.6 CheW:1

Table 2. Chemoscape rules and their effects.

Rule Effect

Random Walk Move around the scape randomly.

Interact Two adjacent agents can interact with each other. Bimolecular reactions are modeled this way.

Ligand Binding Receptors determine the fraction of time bound to ligand.

Receptor Activity State Update Receptors decide their activity status for the next iteration, based on fraction of time ligand is bound,
methylation level, and activity of neighboring receptors.

Methylate CheR can methylate receptor agent, through Interact rule.

Demethylate Phosphorylated CheB can demethylate a receptor in the active state.

Autophosphorylate CheA can autophosphorylate, based on the activity of receptors it is associated with.

Phosphotransfer Phosphorylated CheA can interact with CheY and CheB to transfer a phosphoryl group to them.

Dephosphorylate CheZ interacts with phosphorylated CheY to dephosphorylate it.

Auto-dephosphorylate CheB and CheY that are phosphorylated have fixed probabilities of auto-dephosphorylating each
iteration.

Form Complex Two agents can combine to form a protein complex. Specifically, CheA can combine with up to two
CheWs, forming a new agent representing a CheACheW complex.

Bind CheW can associate with a single receptor agent. When this happens, the CheW agent is removed
from the lattice.

doi:10.1371/journal.pone.0009454.t002

JA Miller: Agent-Based Model

PLoS ONE | www.plosone.org 12 May 2010 | Volume 5 | Issue 5 | e9454



CheA:0.5 CheZ:0.08 CheB:0.05 CheR [37]. In simulations where

the methylation state of the receptors was held constant, CheB and

CheR were not included. Table 2 summarizes the reaction types

included in the model and the values used for their probability of

occurrence on each iteration. The default scape size for

simulations was 100 columns by 60 rows. For some simulations,

we adjusted specific parameters as described below. The default

probability values for reactions were arrived at by varying

parameter values to find those that best reproduced biological

observations (e.g., coupling strength that reproduced experimen-

tally observed Hill coefficient), and/or guided trial and error for

parameters that produced reasonable model behavior (e.g., CheA

autophosphorylation probability, CheR/CheB methylation/de-

methylation rates, etc).

Receptor Lattice
A portion of the scape was defined where receptors could be

placed, termed the receptor lattice, representing the biological

finding that in vivo receptors tend to cluster in patches on one pole

of the cell [59]. The default receptor array spans 60 columns and

consists of 1083 receptors. Receptor agents, representing receptor

dimers, could only be placed in multiples of three, representing the

biologically-determined structural unit of a trimer of dimers.

Given an area where receptors were located, a predefined mask of

possible trimer locations was calculated. This pattern ensured that

each receptor had two intra-trimer neighbors (receptors located in

adjacent lattice cells) and 2 inter-trimer neighbors (receptors

separated by a single lattice cell), except on the boundary of the

receptor array and in cases of a sparsely packed receptor lattice. At

the start of each simulation, the receptors were laid down

according to the pattern described above. The other cytoplasmic

agents were then randomly placed on the scape at the start of the

simulation.

This representation of a receptor lattice is similar to the receptor

array in [21]. Some differences in Chemoscape are that a receptor

does not have to be present at every position in the array and not

all receptors have to be of the same type.

Receptor Activity
Our model of receptor activity consists of a two-dimensional

lattice of interacting receptors based on the framework presented

in [21]. Receptor activity is based on the free energy difference

between the active and inactive state of the receptor, and is a

linear combination of four energy terms: 1) baseline energy offset,

2) ligand binding, 3) methylation level, 4) activity state of

neighboring receptors. Shimizu et al. [21] based their ligand

binding and methylation free energy parameters on experimental

observations, detailed in [58], and the neighbor interaction free

energy term by optimizing over the signal to noise ratio in their

model. For a receptor lattice with square geometry and four

interacting neighboring receptors, Shimizu et al. used free energy

parameters of 0 kcal mol21, 1.2 kcal mol21, 21.2 kcal mol21,

and 21.9 kcal mol21 for the four terms, respectively. Shimizu

et al. also noted that at high values of interaction energy, the system

behaves with an all or none ‘‘flipping’’ behavior. We attempted to

use the same free energy parameters, but found our system started

showing all-or-none behavior at a lower interaction energy value

than Shimizu et al. The difference in models may be due to the use

of hexagonal versus square lattice geometry. Also, using the

formulation of Shimizu et al., we noticed an edge effect on receptor

activity in our model, where receptors on the edge of the lattice

were more likely to be inactive due to fewer interacting neighbors.

We could diminish this effect by considering the net number of

active or inactive receptors, instead of the absolute number of

active receptors.

Our final receptor activity equation is:

DG~G0zF (l) . Elz(mi{2) . Emz
X

(an . c(mn)) . Ej

p~
1

1zeDG=RT

ð2Þ

where p is the probability that the receptor will be active in the

next time step.

In initial simulations, we set G0 to be zero so that the activity in

half methylated receptor populations is 50% of the activity of fully

methylated receptor populations in vitro [60]. The term F(l) is from

Equation 1, and incorporates the effect of time-averaged ligand

binding.

The constant El determines the strength of effect of ligand

binding, and was set to 2200 cal mol21 for all reported

simulations. This value was chosen because it resulted in most

of the receptors being deactivated in simulations reproducing

experimental results for our choice of Em [61]. The coefficient

Em modulates the strength of the effect that methylation m of

receptor i has on the activity probability, where (mi22) is set so

that at a methylation state of 2, the system is at baseline activity.

Em is set to 2400 cal mol21, based on model performance. In

Chemoscape we assume that the specific methylation sites have

a small effect compared to the total number of methyl groups, so

we count only the number of methyl groups per receptor [61].

The fourth term sums the contributions of the effects from

cooperative interactions over all of the neighbors of receptor n.

The coefficient Ej describes the strength of cooperative

interactions between neighboring receptors. We attempted to

base our value of Ej on a parameter that would reproduce the

high Hill coefficients observed by Sourjik and Berg in

homogeneous over-expressed receptor populations with 2

methylations. We were unable to achieve high Hill coefficients

in simulations where the baseline activity of the receptors was

50%, as is the case for a receptor population with a methylation

level of 2 and G0 of 0. When we set G0 to 2600 cal mol21,

offsetting the baseline activity, we are able to reproduce high

Hill coefficients for a methylation level of 2. an represents the

activity of neighboring receptor n, and is set to 1, 21 for active

and inactive neighbors, respectively.

The term c(mn ) allows for the strength of cooperative

interactions to depend on the methylation level of neighboring

receptors and was set to one for most simulations, given by:

c(mj)~1z(2{mj)v ð3Þ

where v modulates the effect of methylation on interaction

strength. v= 0 indicates that methylation has no effect on

interaction strength. In simulations where interaction strength

depended on methylation level, we set v= 0.2 so that receptors

with two methyl groups contribute the normal amount to the

effect of neighboring interactions. As the methylation state of

the receptor increases, it has a smaller influence on its

neighbors, and as the methylation state decreases, it has a

larger influence on its neighbors. This mechanism has been

postulated to explain certain experimental observations, includ-

ing dynamic range [24] and receptor activity in mixed receptor

populations [50].

To measure the Hill coefficient for receptor activity, we perform

nonlinear least squares curve fitting of the model’s average

receptor activity to the following equation [17]:
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(M0{Mf ) 1{
½Ligand�H

½Ligand�HzKH
1=2

" #
zMf ð4Þ

where M0 is the pre-stimulus activity, Mf is the residual activity in

the presence of a saturating dose of stimulus, K1/2 is the ligand

concentration at half activity, and H is the Hill coefficient.
CheA activity. Because the rate of CheA autophos-

phorylation is several hundred times faster in the presence of

CheW and receptor than in their absence [62], and because the

simulations performed did not involve mutant bacteria lacking

CheW or receptor, autophosphorylation of free CheA is treated as

insignificant. CheA activity is therefore based on the activity of the

receptors to which it was connected. The chance that an

unphosphorylated CheA will phosphorylate is determined by the

following equation:

phosphorylation chance~aCheAzb . l ð5Þ

where aCheA represents the base chance that a CheA agent would

autophosphorylate and is set to 0, b modulates the effect of being

attached to a receptor, where in the active state it is set to 0.03,

and l= 0,1,2 is the number of active receptors to which the CheA

agent is attached.
Extended pathway proteins. For extended pathway

simulations, we include the following proteins that are known to

be downstream from the receptors in bacteria: CheA, CheW,

CheY, CheR, CheB, and CheZ. CheY and CheB have the

potential to become phosphorylated when they occupy a lattice

cell that contains a CheA agent in the background. CheZ has the

opportunity to dephosphorylate a CheY agent when occupying an

adjacent lattice cell. CheR or phosphorylated CheB have the

ability to methylate or demethylate, respectively, a receptor

occupying the same lattice cell.
Receptor activity measurements. For simulations in which

receptor activity was reported for different ligand concentrations,

the receptor activity was determined as follows. A datapoint

containing information about the state of the system, including the

number of active receptors and ligand concentration, was recorded

once every 100 iterations. For each change in ligand concentration,

the receptor activity of the system will adjust and then stabilize. To

measure the stabilized value after each change in ligand

concentration, either 700 or 1500 iterations are allowed for the

system to reach stability. We then averaged the receptor activity

from the next 3 or 5 data points, taken over 300 to 500 iterations. All

simulations for which bulk parameters such as Hill coefficient are

derived from the average of three repeated simulations, with the

error bars indicating the minimum/maximum value of the three

simulations. The plots from Figure 5 and Figure 6 are shown for

individual (not aggregate) runs.

Supporting Information

Figure S1 2-D random walk. Overview of the running model,

with movable agents representing soluble proteins as circles, and

immobile agents representing receptors as hexagons.

Found at: doi:10.1371/journal.pone.0009454.s001 (5.13 MB TIF)

Figure S2 The class structure of agents in Chemoscape. At the

top level is the protein agent, which implements behavior general

to all protein agents, such as the ability to move stochastically and

to interact with other proteins. Below that are the individual

protein types. Each class implements behaviors specific to that

protein type. For example, CheY can be phosphorylated, and can

interact with CheA. The ‘‘receptor’’ type is a special subclass that

is rendered immobile, and implements several subclasses for each

of the major chemotaxis receptor types.

Found at: doi:10.1371/journal.pone.0009454.s002 (0.03 MB

PDF)

Movie S1 Chemoscape receptor activity movie.

Found at: doi:10.1371/journal.pone.0009454.s003 (18.65 MB

MOV)
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