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Breaking of the site-bond percolation universality
in networks
Filippo Radicchi1 & Claudio Castellano2,3

The stochastic addition of either vertices or connections in a network leads to the observation

of the percolation transition, a structural change with the appearance of a connected

component encompassing a finite fraction of the system. Percolation has always been

regarded as a substrate-dependent but model-independent process, in the sense that the

critical exponents of the transition are determined by the geometry of the system, but they

are identical for the bond and site percolation models. Here, we report a violation of such

assumption. We provide analytical and numerical evidence of a difference in the values of the

critical exponents between the bond and site percolation models in networks with null

percolation thresholds, such as scale-free graphs with diverging second moment of the

degree distribution. We discuss possible implications of our results in real networks,

and provide additional insights on the anomalous nature of the percolation transition with

null threshold.
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P
ercolation is among the simplest processes able to generate
continuous phase transitions1,2. The model used to describe
percolation assumes the presence of an underlying network

structure where either nodes (site percolation) or edges
(bond percolation) are randomly occupied with probability
p. Nearest-neighbor occupied elements form connected clusters.
In site percolation, for p¼ 0, no elements are present in the
system, so that all clusters have size zero. In bond percolation, for
p¼ 0, no nodes are connected in the system, so that all clusters
have size equal to one. In both models, for p¼ 1, only a single
cluster, coinciding with the whole network, is present. The term
percolation transition refers to the structural change, between
these two extreme configurations, observed as a function of the
occupation probability p. The change is usually monitored
through the relative size of the largest cluster, or percolation
strength, which is regarded as the order parameter of the
percolation transition. In the limit of infinitely large networks,
this observable is always equal to zero for any value of prpc,
while it is finite for p4pc. Whereas the percolation threshold pc

can be different in the two models, for a fixed underlying
network, bond and site percolation processes have been always
observed to behave identically around their respective threshold
values. The exponent describing the power-law growth of the
order parameter as a function of the distance from the critical
point is the same in both processes1. This statement is true also
for the critical exponents that describe the singular behavior of
other observables, such as the distribution of the cluster size, and
the average size of finite clusters. The specific values of the critical
exponents play an important role in the characterization of the
properties of the percolation transition, and they are used to
group networks in different universality classes. In lattices for
example, the values of the critical exponents depend only on the
dimensionality of the euclidean space1. Such a dependence
disappears above the upper-critical dimension, where the critical
exponents stabilize to their mean-field values1. In random
networks also, no differences have been reported between the
critical exponents of the bond and site percolation models3–6.
Theoretical approaches proposed so far indeed assume a perfect
equivalence between the models6.

In this paper we are going to show that this assumption is
incorrect. In graphs with null percolation threshold, as for
example random networks with diverging second moment of the
degree distribution, bond and site percolation strengths are
characterized by different critical exponents. The breaking of the
site-bond universality is accompanied with anomalies in the
critical behavior of other macroscopic observables.

Results
Bond percolation model. We first derive the basic equations that
support our statement, starting from the bond percolation model.
We assume the presence of an underlying undirected and
unweighted network composed of N nodes and E edges.
The structure of the network is fully described by the adjacency
matrix A. The generic element of this matrix equals one if the
two corresponding nodes share an edge, whereas equals zero
if no connection is present between the two vertices. The
probability bi that node i is part of the largest cluster of the
network is a function of A and the bond occupation probability
p. Such a probability obeys the equation

bi ¼ 1�
Y
j2N i

1� pci!j
� �

: ð1Þ

Here, N i is the set of neighbors of vertex i, while ci-j stands for
the probability that node j is part of the largest cluster discounting
the contribution of node i. Equation (1) is formulated according

to the following straightforward argument. If node j is in the set
N i of neighbors of vertex i, then pci-j is the probability that
the connection between i and j is occupied, and node j is part of
the spanning cluster thanks to a node different from i. Thus, the
probability that node i does not belong to the largest cluster, i.e.,
1� bi, is equal to the probability that none of its adjacent nodes,
that are connected to vertex i by an occupied edge, are part of
the largest cluster of the graph. Note that equation (1) is based on
the hypothesis that the probabilities ci-j of all neighbors of node i
are uncoupled, i.e., the so-called locally tree-like approximation6,
hence their product appears on the r.h.s. of the equation. For
consistency, the probability ci-j obeys

ci!j ¼ 1�
Y

k2N j n if g
1� pcj!k
� �

; ð2Þ

where the product on the r.h.s. of the last equation runs over all
neighbors of node j but vertex i. Given the adjacency matrix A of
the underlying graph, and fixed a value of the occupation
probability p, the solution of the bond percolation model can be
obtained first by numerically solving the set of 2E equations (2),
and then plugging these solutions into the set of N equations (1) to
estimate the value of the variables bi. The order parameter of the
transition can be finally computed as the average value of these
variables over the entire network, i.e., B ¼ 1=N

P
i bi. This

quantity represents the percolation strength B over an infinite
number of realizations of the bond percolation model on the
graph. Using the Taylor expansion of equation (2) around ci-j¼ 0,
it can be shown that the percolation threshold equals the inverse of
the largest eigenvalue of the non-backtracking matrix of the
graph7, and that slightly on the right of the critical probability,
every bi grows linearly with the sum of the components of the
principal eigenvector of the non-backtracking matrix
corresponding to edges pointing out from node i8.

Site percolation model. Under the locally tree-like approximation,
the probability si that node i belongs to the largest cluster in the
network is given by

si ¼ p½1�
Y
j2N i

1� ti!j
� �

�; ð3Þ

where ti-j stands for the probability that node j is part of the
largest cluster irrespective of vertex i. The probability si is written
as the product of two contributions: the probability p that the node
is occupied, and the probability that at least one of its neighbors is
part of the largest cluster independently of node i. For consistency,
the probability ti-j obeys

ti!j ¼ p½1�
Y

k2N j n if g
1� tj!k
� �

�; ð4Þ

where we have excluded node i from the product on the r.h.s. As in
the case of bond percolation, equations (4) form a set of 2E cou-
pled equations whose solution can be obtained numerically for any
value of p. The numerical solutions of equation (4) are then
plugged into equation (3) to obtain the values of the variables s,
and finally the order parameter of the transition is computed as
S ¼ 1=N

P
i si. Also in this case, the percolation threshold equals

the inverse of the largest eigenvalue of the non-backtracking matrix
of the graph9.

Relation between bond and site percolation. If we multiply both
sides of equation (2) by p, we recover equation (4), with only the
necessity of renaming pci-j-ti-j. The same is also true for
equation (1) which reduces to equation (3) with a multiplication
by p, and the additional change of variable pbi-si. As a
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consequence, the percolation strengths B and S are related by

S ¼ pB; ð5Þ
which tells us that, in locally tree-like networks, the order
parameters of the bond and site percolation models are linearly
proportional10. Equation (5) holds with very high accuracy in
many real networks, as long as their structure is sufficiently
compatible with the locally tree-like approximation (see Fig. 1,
Supplementary Figs 1-109, Supplementary Tables 1-3, and
Supplementary Note 1 for results on 109 real networks11). To
provide a quantitative test of this statement, we estimate the error
associated to equation (5) as V ¼

R 1
0 dp S pð Þ� pB pð Þj j, and use

the average clustering coefficient C as a proxy for the validity of
the tree-like ansatz. We find Vo0.1 for all the real networks we
analyzed (see Supplementary Tables 1-3), suggesting a good
accuracy of equation (5) overall. For most networks with
relatively low values of the clustering coefficient, equation (5)
works exceptionally well (i.e., Vo0.01). On the other hand, we
find also a positive dependence of V on C, indicating that the
accuracy of equation (5) decreases as the tree-like approximation
becomes less reliable (see Supplementary Fig. 110).

Violation of the site-bond percolation universality. From
equation (5) a difference in the critical behavior between the bond
and site percolation models is straightforwardly deduced. In
infinitely large networks, as the occupation probability tends to
the critical threshold value from right, i.e., p! pþc , the
order parameter of the percolation transition decreases to zero
as a power of the distance from the critical point, that is
B � p� pcð Þbb and S � p� pcð Þbs . Whereas in the former
equations we stressed the possibility of a difference in the values
of the critical exponents for the bond and site percolation
models, we remark that there are not known examples of such
observation. On the contrary, it is firmly believed that the value of
critical exponents depends only on the geometry of the system
but not on the specific ordinary percolation model considered1.
By making use of the linear mapping of equation (5), we can write
p p� pcð Þbb � p� pcð Þbs . If the percolation threshold is strictly

larger than zero, as in the case of regular graphs, Erdös-Rényi
models, or random scale-free graphs with finite second moment
of the degree distribution, in the limit p! pþc , the prefactor p on
the l.h.s. of the previous equation acts as a multiplicative constant,
and bb¼bs. If instead pc¼ 0, as in the case of random scale-free
graphs with diverging second moment of the degree
distribution3,12,13, the former equation becomes pbb þ 1 � pbs .
The critical exponents of the percolation strengths of bond and
site percolation are thus related by

bs ¼ bbþ 1; ð6Þ
which tells us that, in locally tree-like graphs with null percolation
thresholds, the site-bond universality is broken, and the critical
exponents of the order parameters of the bond and site
percolation models assume different values.

To validate our theoretical predictions, we numerically study
the two percolation models in random graphs14,15 using the
Monte Carlo algorithm introduced by Newman and Ziff16. We
consider random network models that are sparse enough to
satisfy the locally tree-like ansatz, and extrapolate critical
exponent values of the transition for networks of infinite size
by making use of finite-size scaling analysis1. First, we verify that
for random graphs with nonvanishing percolation thresholds
identical values for the critical exponents in bond and site
percolation are indeed recovered (Supplementary Figs 111-118).
In particular, for networks with power-law degree distribution
but finite second moment, we obtain values of the critical
exponents consistent with previous theoretical predictions5,17.
These statements are valid not just for the critical exponent b, but
also for the one that regulates the divergence of the average
cluster size, as well as for the Fisher exponent of the distribution
of cluster sizes at criticality1. Results for scale-free graphs with
diverging second moment of the degree distribution, and thus
null percolation thresholds, are reported in Fig. 2. For the bond
percolation model, we recover the value of the exponent bb

predicted by the theory of Cohen et al.5 For the site percolation
model, we find instead results consistent with our equation (6)
(see also refs 6,18). These different values of the critical exponents
are confirmed in Fig. 3 by the good scaling collapse among curves
corresponding to different network sizes.

Interpretation of universality breaking. What is the physical
reason of the difference between the exponents b in the two
percolation models? To get insights, consider a star-like graph,
where a single node is connected to an infinitely large number of
vertices. This structure represents the extreme limit of a network
with diverging second moment of the degree distribution, and it
is often used to understand basic mechanisms induced by the
heterogeneity of the node degrees6. In the bond percolation
model, every node at the end of an active edge is automatically
part of the largest cluster. An increment in the occupation
probability p generates a linear increment of the relative size of
the largest cluster, that is BBp. In the site percolation model
instead, the largest cluster can grow only if the center of the star is
active. This happens with probability p. If the center of the star is
active, then the growth of the largest cluster is determined by the
total number of other vertices that are active, that is the rate of
growth of the largest cluster in the bond percolation model. Thus,
the relative size of the largest cluster in the site percolation model
behaves as SBp2, in accordance with equation (6).

We expect the same physical principle to play a fundamental
role in percolation processes on random graphs with degree
distribution P(k). The giant connected component, near its
point of creation, has degree distribution proportional to kP(k),
hence it consists mostly of vertices with high degree or hubs6

(Supplementary Fig. 119). Bond and site percolation models

Occupation probability

P
er

co
la

tio
n 

st
re

ng
th

0.0
0.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
a

0.0 0.2 0.4 0.6

0.6

0.8

0.8

1.0

1.0

0.0

0.2

0.4

b

Figure 1 | Percolation diagrams of real networks. (a) We consider the

graph corresponding to the giant component of the peer-to-peer Gnutella

network as of August 31, 2002 (refs 32,33). The black thin line represents

the site percolation order parameter S as a function of the site occupation

probability p. We calculate also the order parameter B for bond percolation

and multiply it by p to obtain the red dashed line. The average clustering

coefficient of the network is C¼0.0055. Such a low value indicates that the

tree-like approximation holds with sufficient accuracy for this network. We

further estimated the error V of the law S¼ pB, by considering the integral

V ¼
R 1

0 dp S pð Þ� pB pð Þj j. We find V¼0.0002. (b) We consider the graph

corresponding to the giant component of the Internet at the autonomous

system level in the period January 2004 to November 2007 (ref. 34). The

description of the various curves is identical to those appearing in panel a.

The clustering coefficient for this network is C¼0.2082. The error

associated to equation (5) is V¼0.0016.
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differ, however, in the way nodes with different degree become
part of connected clusters. In the bond percolation model, there is
a preference for selecting edges attached to hubs, as kP(k) is the
probability that a node at the end of a randomly selected edge has
degree equal to k. In the site percolation model instead, a node
with degree k is activated with probability P(k) so that there is a
weaker preference to select hubs. However, when a high-degree
vertex is activated, many edges are activated simultaneously, and
many clusters can be merged together. Such a microscopic
difference among the two models becomes apparent, with
different values of the critical exponent b, only if the number
of hubs is sufficiently large, as for example in scale-free graphs
with P(k)Bk� g and degree exponent 2ogo3. For g43 instead,
hubs are too rare to generate differences at the macroscopic level,
and the site-bond percolation universality is restored.

Anomalies of percolation in scale-free graphs. The study of
other macroscopic observables reveals that random networks with
null percolation thresholds show anomalies not just at the level of

the critical exponents of the order parameter, but in the nature of
the transition itself. In ‘standard’ percolation transitions, the
distribution of finite cluster sizes decreases at criticality as a
power-law with an exponential cut-off diverging as the system
becomes infinite1. In scale-free graphs with null percolation
threshold the power-law decay is only a preasymptotic effect,
visible only in finite-size systems. This is clearly seen in Fig. 4a,c,
showing a power-law tail which tends to disappear in the limit of
infinitely large networks. The vanishing of the power-law tail is
confirmed in Fig. 4b,d, showing that all the distribution weight
gets concentrated on clusters of size 1. This finding is in stark
contrast with all theoretical predictions proposed so far5,6,19,20,
which are inconsistent with each other, as they all provide
different estimates for the Fisher critical exponent. We emphasize
that their validity has been never systematically tested in
numerical experiments. Our results can be interpreted by
intuitive arguments. If the percolation threshold is zero, then
the critical configuration is given by a disconnected network
where all clusters have size one in bond percolation, and size zero
in site percolation. Analogous considerations about the critical
configuration have been deduced for self-similar graphs21,
although no difference between site and bond percolation was
studied. As a matter of fact, the Fisher critical exponent is not
clearly defined, because the entire cluster size distribution does
not decay as a power-law. The same argument implies also that
the average size of finite clusters does not diverge at criticality and
its associated critical exponent is equal to zero (Supplementary
Figs 120 and 121).

Discussion
The breakdown of site-bond percolation universality in locally
tree-like networks with null thresholds is a surprising result.
Although percolation processes have been extensively studied in
the last decades, to the best of our knowledge, there are no
previous findings of such discrepancy between the bond and site
percolation models. A relation analogous to equation (6) has been
found long ago in continuum percolation models for conductivity
in d-dimensional porous rocks22. We stress however that the
similarity is only formal, as here the relation is between standard
bond and site percolation, while (ref. 22) connects the b
exponents of an ordinary and a suitably modified continuum
percolation process in d-dimensional spaces. Our results could
therefore contribute to percolation theory by stimulating further
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Figure 3 | Finite-size scaling in scale-free graphs. We analyze the same

networks as in Fig. 2, and test the validity of equation (13). (a) Collapse plot

for the order parameter B of the bond percolation model in networks with
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Fig. 2b, which is slightly larger than the value 1/2 due to preasymptotic
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research in a direction not yet explored. Also, we remark that
scale-free graphs with diverging second moments of the degree
distribution are regarded as prototypical models of a large variety
of natural and man-made networks19,23. In this context, our
results could have direct consequences in all situations where
percolation plays a fundamental role, including spreading
processes in networks24–26, as well as resilience properties of
graphs to random breakdowns12,13,27. One may remark that
many real networks are characterized by high values of the
clustering coefficient28, and thus violate the tree-like
approximation at the basis of our mathematical framework. We
argue that a nonvanishing clustering coefficient is not a sufficient
ingredient to restore the percolation universality class in networks
with diverging second moment of the degree distribution. By
repeating our numerical experiments on the generalization of the
configuration model proposed by Newman29, that creates
random scale-free networks with nonvanishing clustering
coefficients, we find in fact that the anomalous phenomenology
still persists (Supplementary Fig. 122). Other ingredients seem
thus necessary to observe a nonvanishing percolation threshold
and consequently to restore the percolation universality class in
networks with diverging second moment of the degree
distribution. For instance, we expect that scale-free network
models characterized by spatial embedding30 or high density of
cliques31 will not exhibit such an anomalous behavior.

Methods
Order parameters and critical exponents. The main order parameter used in the
study of the percolation transition in networks is the so-called percolation strength,
defined as the number of nodes belonging to the largest connected cluster of the
network divided by the total number of vertices in the graph. In our paper, we
indicated this quantity as B for bond percolation, and S for site percolation. In the
limit of infinitely large systems, the order parameter B grows as a power-law
function of the distance between the actual value of the occupation probability
p and the critical threshold pc, that is

B � p� pcð Þbb : ð7Þ
The same behavior is valid for S, and the critical exponent is denoted as bs. As
already explained in the text, the value of the critical exponents bb and bs is the
same if the percolation threshold pc is strictly larger than zero. Whereas B and S are
based only on the size of the largest connected cluster in the network, there are
other important macroscopic observables that account for the size of the other
clusters, and critical exponents that are associated with them. In our paper, we
considered the distribution of the cluster size at criticality which leads to the
definition of the Fisher exponent t, and the average size of finite clusters with
associated critical exponent o.

Numerical simulations. Given an undirected and unweighted network with N
nodes and E edges composed of a single connected component, we study bond
percolation using the Monte Carlo method proposed by Newman and Ziff16. In
each realization of the method, we start from a configuration with no connections.
We then sequentially add edges in random order and monitor the evolution of the
size of the largest cluster in the network Z(p) as a function of the bond occupation
probability p¼ e/E, where e indicates the number of edges added from the initial
configuration, i.e., e¼ 0. We repeat the entire process Q independent times and
estimate the order parameter B as

B pð Þ ¼ 1
N Q

XQ

q¼1

Zq pð Þ; ð8Þ

where Zq(p) indicates the size of the largest cluster in the network observed, during
the qth realization of the Monte Carlo algorithm, when the bond occupation
probability equals p. The susceptibility wB is instead evaluated as

wB pð Þ ¼ N
1= N2Qð Þ

PQ
q¼1 Zq pð ÞZq pð Þ� B pð Þ½ �2

B pð Þ : ð9Þ

The numerical value of pc(N) is given by the value of p for which wB is maximum.
In our simulations, we also keep track of the size z of all other clusters present in
the network, and monitor the average size of finite clusters bh i ¼

P
i z2

i =
P

i zi ,
where the sum runs over all clusters excluding the largest one. Results shown in the
paper are obtained by considering Q¼ 10,000 in simulations of the percolation
process in real networks (Fig. 1), and Q¼ 1,000 (Figs 2 and 3) or Q¼ 100 (Fig. 4)
in artificial graphs.

Simulations for the site percolation model are performed in a similar way as
described above for the bond percolation model. The initial configuration is given by
a network with no nodes, i.e., n¼ 0. Vertices are then sequentially introduced in the
network in a random order. The occupation probability is defined as p¼ n/N, with n
number of nodes added in the Monte Carlo algorithm. The definitions of the order
parameter, the susceptibility and the average cluster size are identical to those of the
bond percolation model. These quantities are respectively denoted as S, wS and sh i.

Random networks. The generation of a single instance of the Erdös-Rényi model
with N nodes and average degree kh i is obtained by connecting each pair of nodes
with probability kh i= N � 1ð Þ.

To generate a random network with N nodes and power-law degree distribution

P kð Þ � k� g; if k 2 3;
ffiffiffiffi
N
p� �

¼ 0; otherwise

�
; ð10Þ

we make use of the so-called uncorrelated configuration model14,15. The support of
the degree distribution is chosen in such a way that the resulting network has no
degree-degree correlations, and is always composed of a single connected
component. In the generation of a single instance of the network model, we first
assign degrees to the nodes according to the prescribed P(k). Then, we attach pairs
of nodes at random, preserving their pre-imposed degrees, but not allowing for
multiple connections and self-loops.

To generate a random network with N nodes and nonvanishing clustering
coefficient, we make use of the generalization of the uncorrelated configuration
model proposed by Newman29. We first assign each node to a number of triangles
randomly extracted from the power-law distribution

P tð Þ � t� g; if t 2 2;
ffiffiffiffi
N
p� �

¼ 0; otherwise

�
: ð11Þ

The support of the distribution is chosen in such a way that the resulting network
has no degree-degree correlations, and is always composed of a single connected
component. After each node has assigned a number t, we then attach triplets of

100 101 102 103 104

Cluster size

Cluster size

10−12

10−10

10−8

10−6

10−4

10−2

100
P

ro
ba

bi
lit

y 
di

st
rib

ut
io

n
P

ro
ba

bi
lit

y 
di

st
rib

ut
io

n
a

N = 104

N = 105

N = 106

N = 107

N = 108

104 105 106 107 108

104 105 106 107 108

Network size

Network size

10−2

10−2

10−1

10−1

1−
C

(1
)

1−
C

(1
)

b

10−10

10−8

10−6

10−4

10−2

100c d

100 101 102 103

Figure 4 | Distribution of finite-cluster sizes in scale-free graphs. We

analyze the same networks as in Figs 2 and 3. (a) Probability distribution to

observe a cluster of a given size in the bond percolation model for

p¼ pc(N). Each curve corresponds to a different network size. The tail of

the various distributions decays as a power-law for large values of the

cluster sizes with exponent compatible with 5/2 (the dashed line is a

guide to the eye) (b) Weight of clusters of size one, C(1), in the

distribution of finite-cluster sizes. As the system size grows, C(1) tends to

one in a power-law fashion (the red dashed line represents the best

power-law fit of the empirical points and has decay exponent equal to

0.20). (c,d) Same as in panels (a,b) but for the site percolation model.

In panel (c) the black dashed line serves as a guide to the eye for a

power-law decay with exponent 5/2. In panel (d) the red dashed line

represents the best power-law fit of the empirical points and has decay

exponent equal to 0.18.
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nodes at random, preserving their pre-imposed number of triangles t, but not
allowing for multiple connections and self-loops. The procedure generates a graph
with power-law degree distribution with degree exponent g, and average clustering
coefficient C ’ 0:24 for all sizes N. The clustering coefficient C of the network is
defined as the average value of the clustering coefficients of all the nodes in the
graph. The clustering coefficient Ci for node i is defined as

Ci ¼

P
r;s

Ai;rAi;sAr;s

P
r;s

Ai;rAi;s
; ð12Þ

with Ai,j¼ 1 if nodes i and j are connected, and Ai,j¼ 0, otherwise.
Results appearing in the paper are obtained on single network instances.

Finite-size scaling analysis. On a finite network of size N, the order parameter
B follows the scaling

B ¼ N � bb=n F p� pcj jN1=n
� 	

; ð13Þ

where bb is the critical exponent that regulates the power-law behavior of B in the
infinite-size limit, n is the critical exponent associated with the correlation length of
the system, and F is a scaling function. The exponent n can be determined by
monitoring how the pseudo-critical threshold pc(N) changes as a function of the
network size. This quantity is determined by looking at the location of the peak of
the susceptibility wB. The pseudo-critical threshold decays towards the percolation
threshold pc as

pc Nð Þ� pc ¼ aN � 1=n: ð14Þ
If one measures the value of the order parameter B at p¼ pc(N), the argument of
the universal function does not longer contain any dependence on either N and p,
so that B � N � bb=n , and the ratio of the critical exponents bb and n can be
determined from the decay of the order parameter B for different network sizes. By
definition, the susceptibility wB diverges at pseudo-criticality as N1�bb=n . The same
exact technique can be also used to determine the power-law scaling of the average
cluster size bh i. In the case of standard percolation transitions, the average cluster
size is expected to diverge at (pseudo-) criticality as bh i � No=n . Critical exponents
for the site percolation model are numerically determined in the same way as
described above.

Percolation thresholds and critical exponents. For a finite random network
obeying the locally tree-like ansatz, and with degree distribution P(k), the pseudo-
critical percolation threshold is determined as

pc Nð Þ ¼ kh i
k2h i� kh i ; ð15Þ

with kh i ¼
P

k kP kð Þ and k2h i ¼
P

k k2P kð Þ respectively equal to the first and
second moments of the degree distribution P(k)3,13. This expression is computed
with the so-called heterogeneous mean-field theory. It allows us to determine the
percolation threshold pc for networks with infinite sizes, and also the value of the
critical exponent n depending on how pc(N) approaches pc as N grows. If the degree

distribution is given by equation (10), then we have kh i ¼ c
P ffiffiffi

N
p

k¼3 k1� g and

k2h i ¼ c
P ffiffiffi

N
p

k¼3 k2� g , with c normalization constant. We have therefore different
predictions based on the value of g, i.e., depending on whether the second moment
of the distribution is diverging or not as N increases. For the percolation threshold,
we have

pc
¼ 0; if 2og � 3
40; if g43

�
: ð16Þ

For the critical exponent n, we instead have

n ¼
2= 3� gð Þ; if 2ogo3
g� 1ð Þ= g� 3ð Þ; if 3og � 4

3; if g � 4

8<
: : ð17Þ

g¼ 3 is a pathological case where we do not expect a power-law decay of pc(N) to
pc, but rather an exponential one. The prediction in the regime 2ogo3 is obtained
by accounting for the divergence of the second moment of the degree distribution
with cutoff given by

ffiffiffiffi
N
p

. The prediction in the regime 3ogr4 has been obtained
by Wu et al.17 For gZ4 instead, the exponent n equals its mean-field value.

The estimates of the critical exponent b for the percolation strength are instead
given by

b ¼
1= 3� gð Þ; if 2ogo3
1= g� 3ð Þ; if 3og � 4
1; if g � 4

8<
: : ð18Þ

These predictions have been obtained by Cohen et al.5 In the regime gZ4, b assumes
its mean-field value. The results of our simulations show the prediction in the regime
2ogo3 to be valid only for the bond percolation model, i.e., bb¼ 1/(3� g). For the
site percolation model, we have instead bs¼ bbþ 1¼ (4� g)/(3� g).

According to our arguments, the exponents t and o, respectively used to
characterize the distribution of cluster sizes and the average cluster size, are not
defined in the regime 2ogo3, where these quantities do not obey power-law
scalings. They are instead well defined for g43, where Cohen et al.5 predicted

t ¼ 2g� 3ð Þ= g� 2ð Þ; if 3og � 4
5=2; if g � 4

�
; ð19Þ

and

o ¼ 1; if g43 : ð20Þ

Again, the values of the critical exponents for g44 are given by their mean-field
expectations. We stress also that the critical exponents are related by precise
hyperscaling relationships. For example, we must have 2b/nþo/n¼ 1.
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