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Despite rapid advances in disease gene identification, the predictive power of the genotype 

remains limited, in part due to poorly understood effects of second-site modifiers. Here we 

demonstrate that a polymorphic coding variant of RPGRIP1L (retinitis pigmentosa GTPase 

regulator-interacting protein-1 like), a ciliary gene mutated in Meckel-Gruber (MKS) and Joubert 

(JBTS) syndromes, is associated with the development of retinal degeneration in patients with 

ciliopathies caused by mutations in other genes. As part of our resequencing efforts of the ciliary 

proteome, we identified several putative loss of function RPGRIP1L mutations, including one 

common variant, A229T. Multiple genetic lines of evidence showed this allele to be associated 

with photoreceptor loss in ciliopathies. Moreover, we show that RPGRIP1L interacts 

biochemically with RPGR, loss of which causes retinal degeneration, and that the 229T-encoded 

protein significantly compromises this interaction. Our data represent an example of modification 

of a discrete phenotype of syndromic disease and highlight the importance of a multifaceted 

approach for the discovery of modifier alleles of intermediate frequency and effect.

The ciliopathies are a collection of disorders with overlapping clinical manifestations that 

include renal cystic disease, polydactyly, retinal degeneration and defects of the central 

nervous system1, and provide a useful model to investigate both the effects of variation at a 

single locus and the potential epistatic interactions between alleles at functionally related 

loci. This is because several ciliopathy-causing genes can either cause a distinct recessive 

form of ciliary disease or contribute modulators of penetrance and expressivity. In some 

instances, multiple allelism at a single locus can partially explain phenotypic variability. For 

example, null mutations in NPHP3 cause MKS2, while hypomorphic NPHP3 alleles cause 

Nephronophthisis (NPHP)3. Similarly, hypomorphic CEP290/NPHP6 mutations are 

observed frequently in Leber congenital amaurosis (LCA) in both humans and in a mouse 

model4,5, whereas loss-of-function mutations lead to a constellation of ciliopathies that 

include MKS, NPHP, Bardet-Biedl Syndrome (BBS) and JBTS6-9 without a clear 

explanation for the phenotypic variation.

Consistent with the suggestion of second-site modifiers, several alleles are reported to 

modify ciliary phenotypes; a hypomorphic mutation in MGC1203 contributes to the overall 

penetrance and expressivity of BBS10, while heterozygous variants in CEP290 and AHI1 

contribute to the phenotypic severity and pleiotropy of NPHP11. Finally, likely additive 

effects between alleles in bona fide BBS and MKS loci produce hybrid phenotypes of the 

two clinical entities7.

A paradigm emerging from the above studies is that genes mutated in one ciliopathy may 

contribute alleles across the entire clinical spectrum and that the assessment of total 

mutational load across the ciliary proteome12,13 will help dissect phenotypic causality and 

variability. Towards this end, we have initiated two complementary strategies – interactome 

studies on ciliary proteins and medical resequencing of known ciliopathy genes across a 

cohort of patients with diverse phenotypes (MKS and JBTS as severe, BBS as intermediate, 

NPHP and LCA as mild).

We first investigated RPGRIP1L, under the hypothesis that in addition to its association with 

MKS and JBTS14,15, it might also contribute alleles to other ciliary disorders. We screened 

166 unrelated patients of northern European descent (17 MKS, 15 NPHP (with and without 
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extra-renal phenotypes), 34 BBS, 100 LCA) and discovered 10 different novel 

nonsynonymous changes in 24 individuals (Table 1). We also detected two different 

common variants G1025S (rs2111119) and D1264N (rs3213758), both of which are present 

at similar allele frequencies when compared across our ciliopathy cohort, a cohort of 96 

control individuals of northern European descent, and 60 CEPH controls from HapMap 

(data not shown).

None of the observed alleles are sufficient to explain disease manifestation under a 

Mendelian model. However, most alleles were either unique to our patient population, or 

were enriched compared to ethnically matched controls, and mapped within known 

functional domains of RPGRIP1L (Table 1; Suppl. Fig. 1).

However, the rarity of most alleles precluded us from delineating their impact on the clinical 

phenotypes. One notable exception, A229T, is sufficiently frequent to empower such a 

study. To assess allele neutrality without a preconceived model of inheritance, we performed 

Transmission Disequilibrium Testing (TDT); we screened 145 BBS families for which DNA 

was available from both parents. Focusing on families in which only one of the two parents 

was an A229T heterozygote, we identified 18 informative trios and detected significant 

over-transmission of the threonine-encoding allele in patients (15/18 transmissions; 83.3%, 

p<0.01).

Despite the modest number of trios, the TDT suggested that the A229T change is not 

neutral. To probe this possibility further, we re-evaluated our original resequencing data. We 

found a surprising enrichment of the 229T allele in northern European patients in whom 

retinal degeneration is mandatory for diagnosis, such as in BBS or Senior-Loken Syndrome 

(SLS) (5.9%; 4/68 chromosomes, and 15%; 3/20 chromosomes respectively; Table 1, 

compared to a 2.8% allele frequency in unaffected northern Europeans; Table 2). We 

therefore wondered whether this variant might contribute to the retinal defect, which is a 

frequent, but not ubiquitous, ciliopathy phenotype. If this is true, then comparisons between 

NPHP (no retinal degeneration) versus SLS cohorts (NPHP and retinal degeneration) should 

be informative. Even though each of these phenotypes is rare in the general population, we 

were able to study two northern European cohorts: 66 unrelated patients with isolated NPHP 

and 84 patients with SLS. Remarkably, 229T was absent from the NPHP group, but was 

detected at an allele frequency of 5.4% in SLS patients (Table 2). The small size of this 

cohort precluded meaningful statistical analysis. Nonetheless, these data suggested that the 

absence of 229T might have a protective effect from RP.

To investigate this possibility, we queried whether the 229T allele frequency is significantly 

different in a larger case-control cohort of northern European ciliopathy patients (Suppl. 

Table 1). We categorized our patients into two groups, with retinal phenotypes being the 

sole distinguishing factor. Both groups exhibited significantly different 229T allele 

frequencies compared to controls (n=3016 control alleles); the allele was absent from the 

non-retinal degeneration group (n=230 alleles; p=1.92E-03) but was enriched in the retinal 

degeneration group (combined: 4.5%, n=974 alleles, p=6.45E-03; Table 2). Furthermore, in 

agreement with our earlier data, we observed significantly different 229T allele frequencies 

between the non-retinal pathology and retinal degeneration ciliopathy groups (p=7.35E-05; 
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Table 2). To evaluate the statistical significance of our findings further, we performed 

permutation analyses where the observed genotypes in the entire sample were assigned 

randomly without replacement in the three groups (ciliopathy +RP, ciliopathy −RP, 

controls). After 107 independent random assignments, we counted the number of times that 

the differences in minor allele frequency in each group matched or exceeded the actual 

differences. This study provided additional evidence that the association data did not occur 

by chance (Table 2). Importantly, we found A229T to be transmitted through at least three 

different haplotypes (three patients contained unique RPGRIP1L SNPs in cis with 229T), 

while the frequency of 229T was indistinguishable across cohorts collected at different sites 

(Suppl. Table 1), arguing against a stratification artifact.

Our genetic data suggest a role for 229T in the development of RP in ciliopathy patients. 

However, the low frequency of this allele in the population and its apparent modest effect in 

our cohorts limit the power of genetic studies. We therefore evaluated the potential 

consequences of A229T to protein function.

As a first test, we performed a genetic rescue experiment using an in vivo model. We have 

shown previously that suppression of ciliary and basal body proteins in zebrafish leads to 

measurable phenotypes in mid-somitic embryos, some of which are caused by defects in 

Wnt signaling16,17, a phenotype also observed in other experimental ciliopathy models18. 

The ability of human mRNA to rescue somitic phenotypes has proven useful for establishing 

the pathogenic potential of alleles by comparing the efficiency of rescue of wild type (wt) 

human messenger RNA (mRNA) compared to mRNA bearing the missense variant(s) under 

investigation7. We identified a single partial zebrafish transcript that, upon reciprocal 

BLAST analysis, showed the highest amino acid similarity between zebrafish and human 

(73% similarity, 55% identity), to which we designed a splice-blocking morpholino (MO). 

The MO was injected into wild-type (wt) embryos at the two-cell stage (50-100 embryos per 

injection) and scored at the eight to nine somite stage. Consistent with data from other 

ciliopathy genes7,10,16,17, we observed dose-dependent gastrulation defects that included a 

shortened body axis, thin somites with broad lateral extensions, minor kinking of the 

notochord, underdeveloped anterior structures and tail extension abnormalities, all of which 

enabled us to categorize embryos into two classes based on objective criteria (Class I or 

Class II; Fig. 1a; Suppl. Fig. 2a). These phenotypes resulted from loss of rpgrip1l, since RT-

PCR and sequencing analysis of embryos showed 10 ng of MO to cause ∼50% reduction of 

rpgrip1l mRNA (Suppl. Fig. 2b). Importantly, the phenotypes could be rescued by co-

injection of 50 pg of wt human mRNA (embryos scored blind to injection cocktails; Fig. 1b, 

Suppl. Table 2).

We therefore proceeded to compare the efficiency of rescue between human mRNA 

encoding each of 229A and 229T. In addition, we included two known pathogenic missense 

alleles, T615P and A695P, that cause JBTS14,15 as positive controls, as well as the neutral 

G1025S variant as a negative control. Embryos were co-injected with a cocktail of MO and 

each human mRNA (n=88-115 embryos per allele) and scored blind to the injection cocktail 

(Suppl. Table 2). We found that the 229T rescue gastrulation phenotype was significantly 

different from wt mRNA rescue (p<0.0001; Fig1b, Suppl Table 2). The assay was specific, 

since each of T615P and A695P were scored as pathogenic, but had no off-target effects; the 
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rescue of the 1025S-encoding mRNA was indistinguishable from the 1025G message 

(Fig1b).

To substantiate these assessments, we measured embryonic structures labeled in situ with 

pax2, krox20, and myoD riboprobes. On whole embryo flat-mounts age-matched to eight to 

nine somites, we calculated the ratio of the width (w) spanning the distal ends of the 5th 

somites to the length (l) of the notochord as demarcated by adaxial cell labeling (n=8-20 

embryos measured per variant). Consistent with our live embryo scoring, comparison of the 

mean w/l ratios between wt and mutant rescues indicated that both positive control alleles 

and A229T, but not G1025S, are pathogenic (Fig. 1c, d; Suppl. Table 3).

As a third line of in vivo evidence, we examined 5-day rpgrip1l morphant larvae (n=52-78 

embryos/injection). Consistent with other ciliopathy morphants19, we observed tail 

extension abnormalities in 35% of rpgrip1l morphants, which was rescued by co-injection of 

wt human RPGRIP1L message (Fig. 1e, f). However, mRNA encoding 229T was unable to 

efficiently rescue the tail phenotype (p=0.031), consistent with both the T615P and A695P 

rescues (p=0.001 and 0.004 respectively). These observations, in addition to the absence of 

tail phenotypes in morphants rescued with G1025S mRNA, substantiated further the 

specificity of our assay (Fig. 1e, f).

We next turned to the question of why A229T might have the observed effect on the retinal 

degeneration phenotype. We noted that mutations in one of the NPHP genes, NPHP5, are 

also associated with an increased incidence of SLS; all tested patients with NPHP5 null 

variants exhibit retinal degeneration compared to a 10% incidence of retinopathy in patients 

with mutations in other NPHP-associated genes20. NPHP5 interacts with RPGR20, a ciliary 

protein mutated in 70-80% of X-linked RP and 20-25% of simplex RP21-24. We therefore 

hypothesized that RPGRIP1L might also interact biochemically with RPGR and that the 

A229T allele might have a measurable effect on the affinity of this interaction. As part of 

our ongoing efforts to understand the pathobiology of RPGR, we had performed yeast two-

hybrid (Y2H) screens of human retinal cDNA as prey using full-length RPGRORF15 as bait 

and identified the carboxyl-terminal domain of RPGRIP1L (RPGR-interacting domain; 

RID); this interaction was validated by known-bait and known-prey analysis using different 

domains of RPGR as bait (Fig. 2a, b). To corroborate the findings, we generated an anti-

human RPGRIP1L antibody (Suppl. Fig. 3) and performed co-immunoprecipitations (IP) 

using bovine retinal extracts. In reciprocal IP experiments with RPGRIP1L or RPGR 

antibody, we detected the expected bands on immunoblots corresponding to RPGR or 

RPGRIP1L, respectively (Fig. 2c). Co-transfection of COS-1 cells followed by co-IP 

demonstrated that Xpress-tagged RPGR and GFP-RPGRIP1L proteins are part of the same 

complex (Fig. 2d). We then tested A229T and three reported JBTS variants14,15 that are 

shown to be pathogenic in our zebrafish assay. Triplicate experiments showed that the GFP-

tagged A229T mutant protein showed considerably lower (∼80%) ability to 

immunoprecipitate RPGR and has a profound effect on RPGR binding compared to the 

JBTS mutations (Fig. 2e, f). We also found that RPGRIP1L localizes to the cilium and basal 

body of mouse IMCD3 cells and to the inner segment/connecting cilium of mouse 

photoreceptors (Suppl. Fig. 4), in the same spatiotemporal context as demonstrated 
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previously for RPGR4,23,24. Hence, the abrogation of RPGRIP1L-RPGR interaction is 

likely to be relevant in photoreceptors.

Second-site modifications are emerging as prevalent phenomena in Mendelian disorders. For 

example, PLS3 is a protective modulator of SMN1 dysfunction associated with Spinal 

Muscular Atrophy (SMA)25; mutations in CNTF modify the age of onset in amyotrophic 

lateral sclerosis (ALS)26, while a mutation in MGC1203 can modify the global penetrance/

expressivity in BBS10. However, the penetrance and expressivity of tissue-specific defects 

within the context of syndromic disease pose a considerable challenge, especially for alleles 

of modest frequency in the general population and modest effect on the phenotype, which 

cannot be captured by traditional population-based genetic tools. Our data suggest that, in 

patients of northern European descent, the presence of the 229T allele of RPGRIP1L has 

predictive value for retinal degeneration. It will be important to consider the nature and 

position of mutations at the primary locus, since A229T probably exerts its effect in the 

context of mutations in specific ciliopathy proteins that can complex with RPGR in the 

retina; this is consistent with the previously proposed poison model of genetic epistasis27.

It is possible that some of the other alleles reported herein might also exhibit a similar effect; 

however, their rarity will necessitate the evaluation of larger cohorts. Notably, in vivo 

evaluation of each of the rare alleles using the zebrafish rescue assay suggested that most are 

pathogenic (Table 3, Suppl. Table 2, Suppl. Table 3, Suppl. Fig 5) and that they can 

potentially interact with alleles at various sites of the ciliopathy genetic spectrum (Table 1). 

Also, destabilization of the RPGRIP1L-RPGR complex is unlikely to be the sole cause of 

retinal degeneration. RPGRIP1L also associates with RPGRIP1 (Fig. 2c), null mutations in 

which cause early-onset, severe retinal degeneration28. Three of the alleles found in our 

cohort, A1183G, R1236C and D1264Y map within the RPGRIP1-interacting domain of 

RPGRIP1L; hence, their contribution to disease might be mediated by loss of RPGRIP1 

activity/function. Finally, RPGRIP1L and RPGR are members of a larger macromolecular 

complex whose composition and function will vary across tissue types and ciliary functions. 

Establishment of the content and the stoichiometry of such complex(es), coupled to the 

evaluation of ciliopathy alleles on the stability of the macromolecular complex in a tissue/

function-dependent manner will enable the currently poor allelic stratification of variability 

in disease phenotypes.

Methods

Ciliopathy patients, controls, and mutational analysis

Control DNAs were obtained from healthy individuals with no clinical ciliopathy criteria 

(retinal degeneration, polydactyly, renal abnormalities, mental retardation or other central 

nervous system defects) from four collection points (Suppl. Table 1). Blood samples were 

obtained following informed consent. We amplified the exon sequence and intron/exon 

junctions of RPGRIP1L (NM_015272) from DNA extracted from lymphoblast cell lines or 

lymphocytes according to standard protocols. PCR products were sequenced with BigDye 

Terminator v3.1 chemistry on an ABI 3100 or ABI 3730 (Applied Biosystems), sequences 

were analyzed with PolyPhred, and variants were confirmed by resequencing and visual 
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assessment of chromatograms. Primer sequences and PCR conditions are available upon 

request.

Statistical analyses

We used plink v1.04 (http://pngu.mgh.harvard.edu/purcell/plink/) for TDT analysis in BBS 

trios, and the PEPI404x package for Fisher's exact test. All other analyses were performed in 

Microsoft Excel.

DNA constructs

We generated full-length or specific domains of RPGR by PCR from retinal cDNA and 

subcloned them into the pcDNA 4 expression vector (Invitrogen). Full-length RPGRIP1L 

was amplified from human retinal cDNA, cloned into expression vector pEGFP-C1 (in vitro 

assays) or pCS2+ (in vivo assays) and confirmed by direct sequencing. Mutagenesis was 

performed using the QuickChange Site-Directed Mutagenesis kit (Stratagene), according to 

manufacturer's instructions.

Zebrafish embryo manipulation and morpholino injection

A splice-blocking MO (Gene Tools) was diluted to appropriate concentrations in deionized, 

sterile water (2, 4, 6, 8, and 10ng/nl for the dose response, and 10ng/nl for rescue 

experiments) and was injected into wt zebrafish embryos at the two-cell stage as 

described10. To rescue the MO phenotype, we transcribed mRNA from linearized pCS2+-

RPGRIP1L vector with the SP6 mMessage machine kit (Ambion). We carried out in situ 

hybridization on whole embryos fixed with 4% paraformaldehyde with riboprobes against 

pax2, krox20, and myoD using standard protocols. Images were captured at 10X 

magnification and measurements were taken of the width spanning the 5th somites from the 

anterior end, and the length of the notochord as defined by myoD staining of adaxial cells. 

Embryos used for assessment of tail phenotypes at 5dpf were reared in 1-phenyl-2-thiourea 

(PTU)-treated embryo media, and anesthetized with Tricaine for imaging at 4X 

magnification. MO efficiency was determined by extracting total RNA from embryos with 

Trizol (Invitrogen) according to manufacturer's instructions. Oligo-dT-primed total RNA 

was reverse transcribed using SuperScriptIII reverse transcriptase (Invitrogen) and cDNA 

was subsequently PCR amplified and sequenced using standard procedures.

Yeast two-hybrid screen

We carried out the yeast two-hybrid (Y2H) analysis using the Matchmaker Gal4-two hybrid 

system (Clontech), according to manufacturer's instructions. We amplified the full-length 

cDNA of mouse RpgrORF15 or its different domains and cloned into the bait vector 

pGBKT7. The adult human retinal cDNA library was cloned into the ‘prey’ pGADT7 vector 

(Clontech) and used for the screen. Known-bait and known-prey analysis was carried out as 

described29.

Antibodies

Characterization of the ORF15CP antibody has been described24. Anti-RPGRIP1L antibody 

was generated by immunizing rabbits with the human 
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peptide 1300HALQSVYKQYRDDLE1314 (Yenzym). RPGRIP1 antibody was a gift from Dr. 

Tiansen Li (Harvard Medical School); Antibodies against Xpress-tag and acetylated α-

tubulin were procured from Invitrogen and Chemicon, respectively.

Mammalian cell culture, transient transfection, co-immunoprecipitation (coIP) and 
immunolocalization

We propagated COS-1 cells in DMEM plus 10%FBS, supplemented with Penicillin, 

Streptomycin and L-Glutamine. Co-IP experiments from retina and transfected cells have 

been described24. Immunolocalization studies in cells and in the retinal sections were 

carried out as reported previously4,30.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Functional assessment of the RPGRIP1L A229T variant in vivo
a. Zebrafish embryos injected with rpgrip1l splice-blocking morpholino (MO) display 

gastrulation defects at the eight-nine somite stage; lateral and dorsal views of live embryos 

are shown. Embryos were categorized phenotypically based on the presence of a shortened 

body axis (anterior and posterior ends indicated with blue triangles) and small head/eyes 

only (magenta lines indicate eye size) (Class I; mild); or shortened body axis and small 

head/eyes in addition to at least one of the following: broad and thin somites (white line 

indicates somite span), notochord kinking, and tail extension defects (black asterisk) (Class 

II; severe).

b. Live scoring of embryos co-injected with MO and human RPGRIP1L mRNA indicates 

that A229T is pathogenic in our assay as indicated by the comparison of WT rescue 

efficiency to mutant rescue efficiency. MO, morpholino alone; WT, wild-type human 

RPGRIP1L mRNA. Known JBTS mutations T615P and A695P are positive controls; neutral 

variant G1025S (rs2111119) is a negative control. Statistical significance (mutant rescue vs. 

WT rescue) is depicted as (***), p<0.0001 (χ2); see Suppl Table 2 for all χ2 and p-values.

c. Representative examples of whole-mount embryos hybridized in situ with pax2, krox20, 

and myoD riboprobes.

d. Two-dimensional morphometric quantification of the efficiency of human RPGRIP1L 

mRNA to rescue rpgrip1l MO phenotypes. Whole embryos with eight-nine appreciable 

somites (n=8-20/injection) labeled with pax2, krox20, and myoD riboprobes were flat-

mounted, photographed and measured in two dimensions. The width/length ratio was 

calculated as the width (w) spanning between the distal ends of the 5th anterior somites 

(horizontal arrow in panel c) vs. the length (l) of the notochord as indicated by the staining 

of adaxial cells (vertical arrow in panel c). Statistical significance (mutant vs. WT rescue) is 

depicted as (*), p<0.05 and (***), p<0.0001 (two-tailed student's t-test); see Suppl Table 3 

for all p-values.
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e. rpgrip1l morphant larvae display tail development defects at 5 days post-fertilization 

(dpf). Morphant larva (MO) with tail curvature and posterior structural disorganization can 

be rescued efficiently with WT human RPGRIP1L mRNA, however RPGRIP1L message 

harboring the 229T encoding allele does not completely rescue the tail phenotype.

f. Quantification of the efficiency of tail phenotype rescue in 5dpf larvae. Whereas WT 

RPGRIP1L message completely rescued the tail phenotypes, A229T as well as positive 

controls T615P and A695P result in the persistence of affected tail structures in injected 

larva. G1025S was used as a negative control. Statistical significance (mutant rescue vs. WT 

rescue) is depicted as (*), p<0.05 (χ2).
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Figure 2. RPGRIP1L interacts with RPGR and missense variant A229T abrogates this 
interaction
a. Known-bait and known-prey analysis. Yeast two-hybrid analysis using indicated RPGR 

bait-encoding constructs and RPGRIP1L [carboxyl-terminal (C) or full-length (FL)] prey 

encoding constructs revealed interaction of RPGR exons 1-11 with carboxyl-terminal or 

full-length RPGRIP1L. Laminin was used as negative control, whereas p53/T-antigen (T-

Ag) interaction served as a positive control.

b. RPGR-RPGRIP1L interaction was validated further by examining the activation of the 

LacZ gene in the β-galactosidase assay corresponding to (a).

c. Interaction of RPGR and RPGRIP1L in vivo. Bovine retinal extracts were subjected to 

immunoprecipitation (IP) using anti-RPGR, RPGRIP1, RPGRIP1L antibodies, normal 

immunoglobulin (IgG), or pre-immune serum (Pre-Imm). Precipitated proteins were 

analyzed by SDS-PAGE and immunoblotting (IB) using anti-RPGRIP1L (left) or RPGR-

ORF15CP antibody (right). Arrow (left) indicates RPGRIP1L-imunoreactive band and the 

straight line in the right panel depicts the RPGR isoforms pulled down by RPGRIP1L. 

Asterisk (*) marks a non-specific immunoreactive band.

d. RPGR-RPGRIP1L interaction in transfected cells. COS-1 cells were transiently 

transfected with constructs encoding Xpress-tagged RPGR, GFP-RPGRIP1L or Xpress-tag 

alone. Proteins were extracted and subjected to immunoprecipitation (IP) using the anti-GFP 

antibody. Precipitated proteins were analyzed by SDS-PAGE and immunoblotting using 

anti-Xpress antibody. Input lane contains 20% of the protein extract used for IP. Arrow 

indicates the Xpress-immunoreactive band.

e. Interaction of RPGR with wild-type (WT) and mutant RPGRIP1L. COS-1 cells were 

transiently transfected with constructs encoding WT or mutant RPGRIP1L fused to GFP and 

Xpress-tagged RPGR. Panels ‘a’ and ‘b’ indicate the 20% of the GFP-RPGRIP1L and 

Xpress-RPGR input protein extract used for IP. Precipitation of GFP-RPGRIP1L using the 

GFP antibody was used as a positive control (panel ‘c’). Association of wt and mutant GFP-

RPGRIP1L with Xpress-RPGR is represented in Panel ‘d’. T677I represents a bona fide 

pathogenic allele, but which likely does not contribute to retinal degeneration.
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f. Quantitative analysis of the band intensities are represented as percent of mutant 

RPGRIP1L immunoprecipitated by RPGR. Association of wt GFP-RPGRIP1L with RPGR 

was considered as 100%. The results represent an average of three independent experiments.
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Table 3

Functional assessment of RPGRIP1L missense variants in an in vivo zebrafish model

Conservation In vivo modeling in zebrafish

Variant Domains* Species** Live scoring Quantitative

S199G CCI Ptr, Bta, Cfa, Mmu, Oan, Dre pathogenic pathogenic

A229T CCI Ptr, Mmul, Eca, Bta, Cfa, Rno, Mmu, Mdo, Dre pathogenic pathogenic

L447S CCIV Ptr, Mmul benign benign

L546F CCV Ptr, Mmul, Eca, Bta, Cfa, Rno, Mmu, Mdo, Oan, Gga, Dre pathogenic pathogenic

T615P C2 Ptr, Mmul, Eca, Bta, Cfa, Mmu, Mdo pathogenic pathogenic

V647I C2 Ptr, Mmul, Mdo, Oan, Gga, Dre, Spu pathogenic benign

T677I C2 Ptr, Mmul, Eca, Bta, Cfa, Rno, Mmu, Oan pathogenic pathogenic

A695P C2 Ptr, Mmul, Eca, Bta, Cfa, Rno, Mmu, Mdo, Oan, Dre, Spu pathogenic pathogenic

R937L Ptr, Mmul, Cfa pathogenic pathogenic

A1183G RID Ptr, Mmul, Eca, Bta, Cfa, Rno, Mmu, Mdo, Oan, Gga pathogenic pathogenic

R1236C RID Ptr, Mmul, Eca, Bta, Cfa, Rno, Mmu, Mdo, Oan, Spu pathogenic pathogenic

D1264Y RID Eca, Bta, Cfa, Rno, Mmu pathogenic pathogenic

*
CC- Coiled coil domain; C2- protein kinase C (PKC) conserved region 2 motif; RID- domain with homology to the RPGR-interacting domain of 

RPGRIP1.

**
Ptr- Pan troglodytes; Mmul- M. mulatta; Eca- E. caballus; Bta- B. taurus; Cfa- C. familiaris; Rno- R. norvegicus; Mmu- M. musculus; Mdo- M. 

domestica; Oan- O. anatinus; Gga- G. gallus; Dre- D. rerio; Spu- S. purpuratus
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