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With the advance of the combinatorial chemistry, a large number of synthetic compounds have surged. However, we have limited
knowledge about them. On the other hand, the speed of designing new drugs is very slow. One of the key causes is the unacceptable
toxicities of chemicals. If one can correctly identify the toxicity of chemicals, the unsuitable chemicals can be discarded in early
stage, thereby accelerating the study of new drugs and reducing the R&D costs. In this study, a new prediction method was built for
identification of chemical toxicities, which was based on ontology information of chemicals. By comparing to a previous method,
our method is quite effective. We hope that the proposed method may give new insights to study chemical toxicity and other
attributes of chemicals.

1. Introduction

In drug discovery, detecting the toxicity of candidate drugs
is a very important procedure. Some approved drugs such as
phenacetin [1] and troglitazone [2], which have passed Phase
III clinical trials, have to be withdrawn from the market,
because their unexpected toxicities were detected. Pharma-
ceutical companies thus lost millions of dollars. In view of
this, it is necessary to detect the toxicity of chemicals before
they are selected as candidate drugs. However, evaluating
the toxicity of a certain chemical requires comprehensive
experimental testing, which costs millions of dollars and
takes many years. On the other hand, with the advance of
the combinatorial chemistry, a large number of synthetic
compounds have surged, inducing that detecting chemical
toxicities through traditional methods is an impossible task.
Thus, quick, effective, and non-animal-involved prediction
methods are urgently necessary.

In recent years, some prediction methods have been built
for detecting chemical toxicities. Most of them can only deal
with a single toxicity at the same time [3, 4], that is, predict a
certain chemical to be toxic or nontoxic for a single toxicity.
To detect all toxicities of a chemical, these methods have to
be executed many times. Recently, Chen et al. built a multi-
class predictionmethod using chemical-chemical interaction

information [5], which can provide a candidate toxicity
sequence ranging from the most likely toxicity to the least
likely one.Theirmethodwas applied to detect the toxicities of
chemicals listed in Accelrys Toxicity Database [6], in which
six types of toxicity are reported: (1) acute toxicity; (2) muta-
genicity; (3) tumorigenicity; (4) skin and eye irritation; (5)
reproductive effects; (6)multiple dose effects. In this study,we
employed the data in Chen et al.’s study [5] and adopted a new
kind of information of chemicals to identify chemical toxic-
ities. ChEBI ontology, integrated in a well-known database
ChEBI (Chemical Entities of Biological Interest) [7], reports
the ontology information of chemicals and is composed
of the following subontologies: (1) molecular structure; (2)
biological role; (3) application; (4) subatomic particle. Since
gene ontology [8], the ontology information for proteins has
been deemed to be a useful tool to investigate protein-related
problems [9–12]. It is believed that ChEBI ontology is also
a useful tool for studying chemicals and building effective
prediction methods to identify chemical attributes. Here, we
established a prediction method based on this information
and compared to the method reported in [5]. The results
indicate that this information is suitable to identify chem-
ical toxicity. And we hope that the proposed method may
stimulate extensive investigation based on this information,
thereby promoting the study of chemicals and drug discovery.
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2. Materials and Methods

2.1. Dataset. The toxicity information of chemicals was
retrieved from a previous study [5], which was collected
from the Accelrys Toxicity Database [6]. Six types of toxicity
are reported in this database; there are (1) acute toxicity;
(2) mutagenicity; (3) tumorigenicity; (4) skin and eye irri-
tation; (5) reproductive effects; (6) multiple dose effects.
Thus, the toxic chemicals in Accelrys Toxicity Database
can be assigned to six classes. To investigate the problem
of predicting chemical toxicity more throughout, we also
employed the nontoxic chemicals, which were also retrieved
from Chen et al.’s study [5]. These chemicals were collected
from DrugBank (http://www.drugbank.ca/) [13] and Human
Metabolome database (HMDB) (http://www.hmdb.ca/) [14].
Totally, 174,137 chemicals were collected and each of themwas
nontoxic or had at least one type of toxicity.

To obtain a well-defined dataset, the chemicals with
no ontology information were excluded, resulting in 4,177
chemicals. Thus, we obtained a dataset S consisting of 4,177
chemicals, in which 3,769 chemicals were toxic and 408
chemicals were nontoxic. As mentioned in the above para-
graph, each toxic chemical has at least one type of toxicity.
For convenience, let us tag the six types of toxicity using
𝑡
1
, 𝑡
2
, . . . , 𝑡

6
and nontoxicity using 𝑡

7
. Accordingly, the dataset

S can be separated into seven subsets formulated by

S = S
1
∪ S
2
∪ S
3
∪ S
4
∪ S
5
∪ S
6
∪ S
7
, (1)

where S
𝑖
consisted of chemicals having toxicity 𝑡

𝑖
. The

number of chemicals in each subset (i.e., number of chemicals
having each type of toxicity) is listed in Table 1, column 3,
from which we can see that the acute toxicity was a greatest
type of toxicity containingmost chemicals, followed bymuta-
genicity, multiple dose effects, and so forth, while the number
of nontoxic chemicals was least. Since some chemicals may
have more than one type of toxicity, that is, they may occur
in more than one set of S

1
, S
2
, . . . , S

6
, the sum of numbers in

seven subsetswas larger than the total number of chemicals in
S.Thus, it is a multilabel classification problem. Figure 1 gives
the number of chemicals having 1–7 types of toxicity. Like
many previous studies dealing with multilabel classification
problem [5, 15, 16], the proposed method would give a series
of candidate toxicities for each query chemical with the
sequence from most likely toxicity to the least likely one.

2.2. Construction of a Graph by Ontology Information of
Compound. The ontology information of compound was
retrieved from ChEBI (http://www.ebi.ac.uk/chebi/init.do)
[7]. We downloaded a file named as “chebi.obo” (accessed
November 2014) from its ftp website: ftp://ftp.ebi.ac.uk/pub/
databases/chebi/ontology/, which contains larger number of
ontology terms and their descriptions. Since the ontology
terms can be conceived as graph-theoretical structures, a
graph can be constructed according to the information of all
ontology terms, in which nodes represent ontology terms and
edges denote the relationship between two terms. By using
the entries “is a” and “relationship” in the obtained file to
indicate the relationship between two terms, we constructed
a large graph 𝐺 with 45,206 nodes and 113,549 edges.

Table 1: Distribution of chemicals in S and Sc.

Tag of
toxicity Type of toxicity Number of

chemicals in Sa
Number of

chemicals in Scb

𝑡
1

Acute toxicity 3144 2993
𝑡
2

Mutagenicity 1850 1814
𝑡
3

Tumorigenicity 881 871

𝑡
4

Skin and eye
irritation 954 935

𝑡
5

Reproductive effects 1099 1080
𝑡
6

Multiple dose effects 1600 1570
𝑡
7

Nontoxic 408 374
Total — 9936 9637
aS is a chemical set consisting of 4,177 chemicals, which was used to examine
our method.
bSc is another chemical set consisting of 3,955 chemicals, which was used to
compare our method with a previous method.
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Figure 1: A histogram illustrating the number of chemicals having
1–7 types of toxicity.

2.3. Prediction Method. Asmentioned in Section 2.2, a graph
was constructed according to the ontology information of
compounds. It can be observed that the corresponding
ontology terms of two adjacent nodes in 𝐺 have some special
relationship. And it can be further inferred that if two nodes
are with small distance in 𝐺, the corresponding ontology
terms have close linkage. In view of this, using the distance
in 𝐺 to quantitatively measure the relationship between two
ontology terms is reasonable. For two terms 𝑎

1
and 𝑎
2
, let us

denote the distance of the corresponding nodes in 𝐺 by 𝑑(𝑎
1
,

𝑎
2
).
For two chemicals 𝑐

1
and 𝑐
2
, let 𝑎

11
, 𝑎
12
, . . . , 𝑎

1𝑘
be the

ontology terms of 𝑐
1
and let 𝑎

21
, 𝑎
22
, . . . , 𝑎

2𝑙
be the ontology

terms of 𝑐
2
. It is obvious that if 𝑑(𝑎

1𝑖
, 𝑎
2𝑗
) (1 ≤ 𝑖 ≤ 𝑘, 1 ≤ 𝑗 ≤ 𝑙)

is small, 𝑐
1
and 𝑐
2
are highly related and have high probability

to share same structures, functions, and so on. Thus, we gave
the following formulation to measure the common features
of chemicals 𝑐

1
and 𝑐
2
:

𝑆 (𝑐
1
, 𝑐
2
) = min {𝑑 (𝑎

1𝑖
, 𝑎
2𝑗
) : 1 ≤ 𝑖 ≤ 𝑘, 1 ≤ 𝑗 ≤ 𝑙} , (2)

where 𝑑(𝑎
1𝑖
, 𝑎
2𝑗
) denote the distance of terms 𝑎

1𝑖
and 𝑎

2𝑗
in

the graph constructed in Section 2.2, which can be obtained



Computational and Mathematical Methods in Medicine 3

by Dijkstra’s algorithm [17]. The smaller the 𝑆(𝑐
1
, 𝑐
2
) is, the

closer the relationship 𝑐
1
and 𝑐
2
have.

The proposed prediction method highly relied on the
result of (2). To introduce the method clearly, it is necessary
to employ some notations. Let S be a training set consisting
of 𝑛 chemicals, say 𝑐

1
, 𝑐
2
, . . . , 𝑐

𝑛
; that is, S = {𝑐

1
, 𝑐
2
, . . . , 𝑐

𝑛
}.The

toxicity information of each 𝑐
𝑖
(1 ≤ 𝑖 ≤ 𝑛) can be represented

by

𝑇 (𝑐
𝑖
) = [𝑏

𝑖1
, 𝑏
𝑖2
, . . . , 𝑏

𝑖7
]
𝑇

(1 ≤ 𝑖 ≤ 𝑛) , (3)

where 𝑏
𝑖𝑗
(1 ≤ 𝑗 ≤ 7) was defined by

𝑏
𝑖𝑗
=

{

{

{

1 if 𝑐
𝑖
has toxicity 𝑡

𝑗

0 otherwise.
(4)

For a query chemical 𝑐, its score of having toxicity 𝑡
𝑗
was

calculated as follows.

(1) For each chemical 𝑐
𝑖
in the training set S, calculate

𝑆(𝑐, 𝑐
𝑖
) according to (2). Then, find all nearest neigh-

bors, say 𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑘
, without generalization, such

that 𝑆(𝑐, 𝑐
𝑖
) = min{𝑆(𝑐, 𝑐) : 𝑐 ∈ S} (1 ≤ 𝑖 ≤ 𝑘).

(2) For each 𝑡
𝑗
, the score of 𝑐 having toxicity 𝑡

𝑗
was

calculated by

𝑃 (𝑐 ⊳ 𝑡
𝑗
) =

𝑘

∑

𝑖=1

𝑏
𝑖𝑗
. (5)

It is easy to observe that the score of 𝑐 having toxicity 𝑡
𝑗
is the

number of chemicals among 𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑘
which have toxicity

𝑡
𝑗
. Since 𝑐

1
, 𝑐
2
, . . . , 𝑐

𝑘
are highly related to 𝑐, larger 𝑃(𝑐 ⊳ 𝑡

𝑗
)

indicates that many closely related training chemicals of 𝑐
have toxicity 𝑡

𝑗
, inducing that the probability of 𝑐 having

toxicity 𝑡
𝑗
is high. In particular, 𝑃(𝑐 ⊳ 𝑡

𝑗
) = 0 suggests that

the score of 𝑐 having toxicity 𝑡
𝑗
is zero, inducing that the

possibility of 𝑐 having this toxicity is zero.
Asmentioned in Section 2.1, the investigated problem is a

multilabel classification problem. Only giving the most likely
candidate toxicity is not enough. Fortunately, we can output
a series of candidate toxicities according to the scores of the
query chemical having 7 types of toxicity. The toxicity which
receives the highest score is the most likely toxicity, while the
toxicity receiving the second highest score is the second likely
toxicity and so forth. For example, if the rank of seven scores
for a certain query chemical 𝑐 is

𝑃 (𝑐 ⊳ 𝑡
1
) ≥ 𝑃 (𝑐 ⊳ 𝑡

4
) ≥ 𝑃 (𝑐 ⊳ 𝑡

2
) > 𝑃 (𝑐 ⊳ 𝑡

3
) = 𝑃 (𝑐 ⊳ 𝑡

5
)

= 𝑃 (𝑐 ⊳ 𝑡
6
) = 𝑃 (𝑐 ⊳ 𝑡

7
) = 0,

(6)

it suggests 𝑡
1
(i.e., acute toxicity) is the most likely toxicity for

𝑐, followedby 𝑡
4
(i.e., skin and eye irritation) and 𝑡

2
(i.e.,muta-

genicity), while the other types of toxicity are not predicted to
be candidate toxicities for 𝑐. Furthermore, 𝑡

1
is called the first

prediction, 𝑡
4
the second prediction, and so forth.

Table 2: Performance of the methods on S and Sc.

Prediction
order

Our method
on Sa

Our method
on Scb

Chen et al.’s
method on Scb

1st 75.17% 75.40% 75.14%
2nd 43.52% 45.18% 49.87%
3rd 28.47% 29.76% 34.11%
4th 23.34% 24.15% 29.94%
5th 16.78% 17.98% 27.00%
6th 9.74% 10.24% 19.97%
7th 3.16% 3.16% 5.54%
a
S is a chemical set consisting of 4,177 chemicals, which was used to examine
our method.
bSc is another chemical set consisting of 3,955 chemicals, which was used to
compare our method with a previous method.

2.4. Accuracy Measurements. For a query chemical, the pro-
posed method can provide a series of candidate toxicities. In
view of this, we should calculate the accuracy for each order
prediction. The 𝑘th prediction accuracy can be computed by
[5, 15]

ACC
𝑘
=
𝐶𝑃
𝑘

𝑁
𝑘 = 1, 2, . . . , 7, (7)

where 𝐶𝑃
𝑘
is the number of chemicals whose 𝑘th prediction

is correct and𝑁 is the total number of chemicals that are pre-
dicted by the method. Since it is difficult to know the number
of toxicities for a query chemical, the first prediction accuracy
is themost importantmeasure to evaluate the performance of
the method. In addition, an effective prediction method for a
multilabel classification problem should rank the candidate
toxicities well; that is, prediction accuracies should follow a
decreasing trend with the increasing of the prediction order.

Besides, to evaluate the performance of prediction
method on the whole, another measurement was also
adopted [5, 15]. It measures the proportion of the true toxici-
ties covered by the first𝑚 predictions of chemicals, which can
be calculated by

𝑊
𝑚
=
∑
𝑁

𝑖=1
Ψ
𝑚

𝑖

𝑁
𝑖

, (8)

where Ψ𝑚
𝑖
is the number of true toxicities of the 𝑖th chemical

which are listed among its first 𝑚 predictions and 𝑁
𝑖
is the

total number of true toxicities of the 𝑖th chemical. Generally,
𝑚 is always taken as the smallest integer bigger than or equal
to the average number of toxicities of chemicals processed by
themethod; that is,𝑚 = ⌈∑

𝑁

𝑖=1
𝑁
𝑖
/𝑁⌉. It is obvious that larger

𝑊
𝑚
indicates the true toxicities are arranged in the front of

candidate toxicities.

3. Results and Discussion

3.1. Performance of the Method. For the 4,177 chemicals in
S, the prediction method was executed to identify their
toxicities evaluated by jackknife test [15]. The seven predic-
tion accuracies thus obtained by (7) are listed in Table 2,
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Table 3: Chemicals with closest relationship of CID104975.

Compound ID Tag of toxicity Ontology information Shortest path to CHEBI25957

CID995 𝑡
1
, 𝑡
2
, 𝑡
3
, and 𝑡

6
CHEBI:28851 CHEBI:25957, CHEBI:25959, CHEBI:25961, and

CHEBI:28851
CID2236 𝑡

1
, 𝑡
2
, 𝑡
3
, and 𝑡

6
CHEBI:2825 CHEBI:25957, CHEBI:25959, CHEBI:25961, and CHEBI:2825

CID6763 𝑡
1
, 𝑡
2
, and 𝑡

3
CHEBI:37454 CHEBI:25957, CHEBI:25959, CHEBI:25961, and

CHEBI:37454

CID13257 𝑡
2

CHEBI:35860 CHEBI:25957, CHEBI:25959, CHEBI:25961, and
CHEBI:35860

column 2. It can be observed that the first prediction accuracy
was 75.17%, the second one was 43.52%, and the third
one was 28.47%. Furthermore, seven prediction accuracies
always followed a decreasing trend with the increasing of the
prediction order, indicating the proposed method arranged
the candidate toxicities of all tested chemicals quite well.
In addition, the average number of toxicities of chemicals
in S was about 2.38. Thus, the first three predictions of
all chemicals in S were collected, obtaining the accuracy
of 61.87% by (8), which means the proportion of the true
toxicities of chemicals in S covered by their first three
predictions. All of these indicate that the proposed method
is quite effective for identification of chemical toxicities.

3.2. Understanding the Method by Listing an Example. To
better understand ourmethod, this section listed an example.
CID104975 is a chemical with toxicity 𝑡

2
(mutagenicity)

and 𝑡
3
(tumorigenicity). Its ontology term is CHEBI:25957.

According to themethod, we computed the distance between
CHEBI:25957 and ontology terms of other chemicals in S,
thereby calculating the relationship between CID104975 and
other chemicals by (2). Four chemicals, listed in Table 3,
were found to be closely related to CID104975; they are
CID995, CID2236, CID6763, and CID13257. Their toxicities
and ontology terms are listed in Table 3, column 2 and
column 3, respectively. By themethod, the toxicity 𝑡

1
received

3 votes, 𝑡
2
4 votes, 𝑡

3
3 votes, 𝑡

6
2 votes, and other toxicities no

votes. Accordingly, we obtained that the candidate toxicities
for CID104975 were 𝑡

2
, 𝑡
1
, 𝑡
3
, and 𝑡

6
. It is obvious that the

first and third predictions were correct, while the second
prediction was incorrect.

3.3. Comparison of Other Methods. In this section, we
employed another kind of chemical information, which
has been applied for identification of chemical toxicities
in Chen et al.’s study [5]. Their method used chemical-
chemical interaction information, which has been deemed to
be useful information for study of chemical-related problems
[5, 15, 18, 19], to build the prediction method, and gave good
performance.

To compare our method and Chen et al.’s method in a fair
circumstance, a chemical set, consisting of 3,955 chemicals,
was extracted from S, called Sc, such that each chemical in Sc
has both ontology information and interaction information;
that is, each chemical can be predicted by these twomethods.
The number of chemicals in Sc on each type of toxicity is

listed in Table 1, column 4, from which we can see that the
distribution of 3,955 chemicals on seven types of toxicity is
similar to chemicals in S. Also some chemicals have two or
more toxicities. Our method and Chen et al.’s method were
all executed on Sc with their performance being evaluated
by jackknife test. Listed in Table 2, columns 3 and 4, are
seven prediction accuracies. It can be seen that the first
prediction accuracy of ourmethodwas 75.40%, which is little
higher than 75.14% of Chen et al.’s method. However, with the
increasing of prediction order, the prediction accuracies of
Chen et al.’s method were higher than those obtained by our
method. It is reasonable because the ontology information
of chemicals is not very complete at present, which induces
thatmany relations of ontology terms have not been detected.
Furthermore, we also calculated the measurement defined
in (8). Since the average number of toxicities of chemical in
Sc was about 2.44, the first three predictions of chemicals
in Sc, which were obtained by two methods, were collected,
thereby obtaining the accuracy of 61.70% for our method
and 65.31% for Chen et al.’s method. It is also caused by
the aforementioned reason. Although, if one considers more
than one toxicity for a certain chemical, our method is not
better than Chen et al.’s method, the first prediction accuracy
of our method is higher than that of Chen et al.’s method,
which is the most important one because one always pays
more attention to the most likely toxicity for a chemical. In
view of this, we believe that our method has superiority for
identification of chemical toxicities.

4. Conclusions

This study gave a new predictionmethod to identify chemical
toxicities. By utilizing the ontology information of chemicals
reported in ChEBI, one can predict the toxicities of a certain
chemical with quite high quality. It is hopeful that this
method may promote the study of chemicals.
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