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Abstract

With the increasing number of immunoinflammatory complexities, cancer patients have a higher risk of serious disease
outcomes and mortality with SARS-CoV-2 infection which is still not clear. In this study, we aimed to identify infectome,
diseasome and comorbidities between COVID-19 and cancer via comprehensive bioinformatics analysis to identify the
synergistic severity of the cancer patient for SARS-CoV-2 infection. We utilized transcriptomic datasets of SARS-CoV-2 and
different cancers from Gene Expression Omnibus and Array Express Database to develop a bioinformatics pipeline and
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software tools to analyze a large set of transcriptomic data and identify the pathobiological relationships between the
disease conditions. Our bioinformatics approach revealed commonly dysregulated genes (MARCO, VCAN, ACTB, LGALS1,
HMOX1, TIMP1, OAS2, GAPDH, MSH3, FN1, NPC2, JUND, CHI3L1, GPNMB, SYTL2, CASP1, S100A8, MYO10, IGFBP3, APCDD1,
COL6A3, FABP5, PRDX3, CLEC1B, DDIT4, CXCL10 and CXCL8), common gene ontology (GO), molecular pathways between
SARS-CoV-2 infections and cancers. This work also shows the synergistic complexities of SARS-CoV-2 infections for cancer
patients through the gene set enrichment and semantic similarity. These results highlighted the immune systems, cell
activation and cytokine production GO pathways that were observed in SARS-CoV-2 infections as well as breast, lungs,
colon, kidney and thyroid cancers. This work also revealed ribosome biogenesis, wnt signaling pathway, ribosome,
chemokine and cytokine pathways that are commonly deregulated in cancers and COVID-19. Thus, our bioinformatics
approach and tools revealed interconnections in terms of significant genes, GO, pathways between SARS-CoV-2 infections
and malignant tumors.
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Introduction
Coronavirus disease-19 (COVID-19) caused by the SARS-CoV-
2 virus has become a global crisis where the World Health
Organization (WHO) declared it as a pandemic on 11 March
2020 [1]. This virus initially creates a respiratory illness that
can spread rapidly. In addition to losing thousands of human
lives, COVID-19 causes massive damages in the global economy.
When numerous coronaviruses were studied, only seven are
known that affects human health and severe diseases have
happened for three of them, including severe acute respira-
tory syndrome coronavirus (SARS-CoV), middle east respiratory
syndrome coronavirus (MERS-CoV) and, the current pandemic,
SARS-CoV-2 virus [2]. For SARS-CoV and MERS-CoV, two serious
global epidemics happened in 2003 and 2012 [3], respectively,
but did not declare them as a pandemic. However, SARS-CoV-
2 is a single-stranded RNA virus that showed 89.1% nucleotide
similarity and spread more easily than others. COVID-19 patients
with a number of pre-existing medical conditions (e.g., diabetes,
heart disease, cancer) are more likely to suffer severe COVID-
19 and poor therapeutic outcomes compared to normal infected
people. Indeed, this virus affects multiple organs severely in the
human body. Regarding cancer patients, a study was conducted
over 55,000 confirmed COVID-19 cases in China where the death
rate was 7.6% that indicated five times higher death risk than
COVID-19 patients without comorbidities (1.4%) [4].Due to the
relative weakness of patients for COVID-19, the question has
been risen about the effects of various cancers and associated
comorbidities. There is no adequate evidence about direct inter-
action among COVID-19 and various cancers. The frailty and
cancer therapeutics are not easily modifiable where the inter-
actions happened due to the cellular pathways of cancers and
SARS-CoV-2 that could be focused by therapeutic intervention.

Numerous works of COVID-19 and cancer gene expressions
happened to investigate and identify altered pathways that
could serve as resources for studying COVID-19 and its cancer
comorbidities. Also, it causes the changes of many potentially
shared molecular factors that could interact with cancers.
However, many existing and clinical databases cannot be
utilized due to the lack of available bioinformatics pipelines.
Therefore, we implemented a methodology that investigated
possible comorbidity interactions of COVID-19 with a number
of cancers relating to breast, lung, colon, kidney, liver, prostate,
bladder and thyroid by examining the gene expression profiling.
This analysis has been used to combine gene expressions,
gene ontology and molecular instances by manipulating

gene set enrichment analysis (GSEA) and semantic similarity,
respectively. Therefore, various significant genes, GO terms and
pathways were determined as the proximities and identified a
potential interacting biological process (BP) for each disease.

Materials and methods
Bioinformatics and integrative procedures [5] were used to inves-
tigate the relations among COVID-19 and various cancers that
are described as follows:

Data collection

The experimental datasets were obtained from the Gene
Expression Omnibus (GEO) database, National Centre for
Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.
gov/geo/) and Array Express Database of European Bioinformat-
ics Institute (EBI) (https://www.ebi.ac.uk/arrayexpress/). There
were two query results found for COVID-19. Four main principles
were used to identify appropriate microarray transcriptomics
datasets, which are given as follows:

1. Redundancy: Several datasets are generated using similar
conditions or explored with various methods. In these cir-
cumstances, no equivalent samples are not required more
than one time.

2. Typology: Datasets required more accurate structural form
such as sequential data.

3. Relevance: Datasets must be linked to specific pathology
that gives certain importance about the biological relation-
ships. Several samples does not contain its own pathology,
hence they are imperfect for further analysis.

4. Species: Datasets must be gathered from clinical sources
and not derived from non-human species.

Gene Set Enrichment Analysis

GSEA is a functional process where a group of genes, their
enhanced expressions and the effects of case versus control
tissues are identified using statistical approaches. Also, they are
recognized by genes and protein set that associates with partic-
ular disease phenotypes based on similar biological functionali-
ties, chromosomal location and regulation [6]. However, the tran-
scriptomic and proteomic data are investigated in this condition.
Further, DNA microarray or next-generation sequencing (NGS)

http://www.ncbi.nlm.nih.gov/geo/
https://www.ebi.ac.uk/arrayexpress/
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Table 1. Selected COVID-19 datasets

Disease name Dataset Tissue/source Control Case

COVID-19 GSE147507 [7] Human lung 3 3
PBMC-COVID-19 [8] Peripheral blood 3 3

Table 2. Selected cancer datasets

Disease name Dataset Tissue/source Control Case

Breast cancer
(BC)

GSE98528 [9] Invasive lobular
carcinoma

9 39

GSE107300 [10] Lung metastatic
subline

6 6

GSE110332 [11] Breast cancer
cell SUM159

3 3

GSE124646 [12] Breast biopsy 10 90
GSE125989 [13] Breast biopsy 16 16

Colon cancer
(CC)

GSE78051 [14] Colorectal
cancer cells

3 3

GSE92921 [15] Colon tissue
biopsy

33 26

GSE94154 [16] Colorectal ade-
nocarcinoma
cells

3 3

GSE110425 [17] Colon cancer
cell

6 6

GSE115716 [18] pN1-LS174T
cells

9 18

Kidney cancer
(KC)

GSE105261 [19] Kidney biopsy 9 35

GSE117890 [20] Kidney tissue 6 5
Liver cancer
(LC)

GSE63067 [21] Liver tissue 7 11

GSE102079 [22] Liver tissue 14 243
Bladder &
prostate
cancer (BPC)

GSE118123 [23] Prostate cancer
cell

3 3

GSE122306 [24] Bladder cancer
cell

6 6

Thyroid
cancer (TC)

GSE3678 [25] Thyroid 7 7

GSE65144 [26] Thyroid 13 12
GSE85457 Thyroid 3 4

data is explored by comparing genes from two cells or tissues
and scrutinizing gene expressions depending on several states.
These gene sets are interrelated with the phenotypic differences
under the list of up- and down-regulated genes In this study,
we gathered two COVID-19 and various cancer samples from
GEO and EBI repository. The brief description of these datasets
is given as follows (see Tables 1 and 2):

Pathway

Molecular pathways are perturbed in diseased conditions and
identification of them enriched by the DEGs provides critical
signaling pathways and drug targets. We utilized KEGG database
[27] to identify COVID-19 pathways overlapped with different
cancers enriched by the DEGs.

Ontology

GO is a conceptual model where biological information can be
explored as a compatible and widespread structure. It represents
genes and their related attributes across all species. The main
purpose of GO is to represent, maintain, develop and annotate
gene and gene products in details. Three GO domains are con-
sidered such as BP, molecular function and cellular component.
However, pathological processes, experimental conditions and
temporal information are not captured properly in this process.
Alternatively, disease ontology (DO) denotes an open-source
model that represents expansive information about inherited,
developmental and acquired human diseases [28]. In this study,
DO terms were extracted for the corresponding diseases such
as COVID-19 DO ID: 00080600, breast cancer DO ID: 1612, colon
cancer DO ID: 219, obesity DO ID: 9970, liver cancer DO ID: 3571,
kidney cancer DO ID: 263, thyroid gland cancer DO ID: 1781,
urinary bladder cancer DO ID: 11054 and prostate cancer DO ID:
10283. These DO IDs were retrieved from https://disease-ontolo
gy.org/. But, the result of SARS-CoV-2 is not available, hence we
used DO ID of SARS coronavirus to compare DO with others.

Semantic similarity

Semantic similarity is a function that measures the proximity
between two terms annotating to the biological entities on a
given ontology. Numerous methods are employed to organize
common ancestor terms in view of the annotation statistics. In
this work, the relations included more significant terms among
genes, GO and DO than particular evaluations. The Wang method
fits in this purpose because graph-based method constructs the
topology and inherits by the selected ontology.

A directed acyclic graph is defined as DAGK = (K, TK, EK),
where GO term K, the set of ancestor terms TK and edges EK

(semantic relations) are related to DAGK. The semantic value SK

is manipulated as

{
SK(K) = 1 t = K
SK(t) = max

{
we ∗ SK (t′) |t′ ∈ children of(t)

}
t �= K

, (1)

where t and t
′

specifies the generic and child term individu-
ally. According to the relation, the semantic contribution we is
assigned as 0 and 1 between t and t

′
and global semantic value

for K is calculated in Eq. 2.

SV(K) =
∑
t∈TK

SK(t) (2)

If DAGK = (K, TK, EK) and DAGL = (L, TL, EL) are measured using
two terms K and L, then the semantic similarity is given in Eq. 3.

sim(K, L) =
∑

t∈TK∩TL
[SK(t) + SL(t)]

SV(K) + SV(L)
(3)

Given are two term sets X1 = x11, x12, ..., x1m and X2 =
x21, x22, ..., x2n, where m and n are denoted as the length of the
first and second set, respectively. The best-match average (BMA)
method [29] generates the semantic similarity between the two

https://disease-ontology.org/
https://disease-ontology.org/
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Figure 1. Working pipeline.

sets (see Eq. 4):

simBMA (X1, X2)

=
∑m

i=1 max1≤j≤m sim
(
x1i, x2j

) + ∑n
j=1 max1≤i≤l sim

(
x1i, x2j

)
m + n

, (4)

with i,j indices on K1,L1 terms.

Designing of pipeline

Figure 1 shows the steps of the pipeline:

1. In the data extraction process, the selected COVID-19 and
cancer datasets were downloaded and explored matrix
information. The normalization was performed to convert
them into expression classes. Subsequently, DEGs were
identified as a linear and Bayesian method by comparing
the expression of healthy controls or treated COVID-19
patients.

2. These samples were manually gathered to conduct this
work. Then, we reviewed, selected and classified GEO sam-
ples (GSM) very meticulously rather than the automatic
selection process.

3. Differential expression can be used for identifying signif-
icant genes altered in a particular condition. To identify
DEGs, a linear and Bayesian method was applied [27].
We considered three statistical criteria, namely P-value,
adjusted P-value (False Discovery Rate) and absolute logFC
values to screen statistically significant DEGs.

4. In the GO term test, the class called topGOdata was created,
which picked GO terms and genes to implement filtering
function. The mapping had been engaged for annotation
where Fisher’s exact test was used to explore the relation-
ship between GO terms and genes.

5. After the mapping of the semantic similarity, the perfor-
mance among all the selected pathologies were compared
by means of genes, GO terms, DO terms for discrimination
of the intimacy among the designated datasets.

6. Cluster comparison was used to fetch significant patholo-
gies and enrichment test was dependent on DEGs and KEGG
pathways for COVID-19 and cancers.

7. Finally, the output of this process provided a statistical sum-
mary, genes-GO terms, GO graph topology, gene semantic
similarity matrix (and dendrogram), GO semantic similarity
matrix (and dendrogram), DO semantic similarity matrix
(and dendrogram), KEGG enrichment graph and the list of
the common pathways pathologies [30]. In addition, the list
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Table 3. Statistical summary of COVID-19 datasets used in this study. Columns 3, 4, 5 and 6 represent the number of unfiltered genes, the
number of significant DEG with threshold for P-value, adjusted P-value and logFC, respectively. Columns 7 and 8 show the number of raw GO
terms and significant GO terms with Fisher test, respectively.

Dataset Source tissue Raw genes P-value Adjusted P-value logFC GO terms Fisher test

GSE147507 Human lung 108 108 108 108 1117 446
PBMC-COVID-19 Peripheral blood
mononuclear cells 1745 1745 1745 1745 4386 1745

Table 4. Statistical summaries of cancer comorbidities datasets. Columns 3, 4, 5 and 6 specify the number of unfiltered genes, the number of
significant DEG with the threshold for P-value, adjusted P-value and logFC, respectively. Columns 7 and 8 show the number of raw GO terms and
significant GO terms by Fisher test, respectively. Data set legend: BC-GSE98528, GSE107300, GSE110332, GSE124646 and GSE125989; CC-GSE78051,
GSE92921, GSE94154, GSE110425, GSE115716; KC-GSE105261 and GSE117890; LC-GSE63067 and GSE102079; BPC-GSE118123 and GSE122306; and
TC-GSE3678, GSE65144 and GSE85457

Dataset Source tissue (case control) Raw genes P-value Adjusted P-value LogFC GO terms/ raw GSEA Fisher test

GSE118123 Prostate cancer cell 54675 4255 6 2 172 56
GSE122306 Bladder cancer cell 54675 3086 6 17 133 70
GSE98528 Invasive lobular carcinoma 46446 3522 0 50 127 63
GSE107300 Lung metastatic subline 47302 8500 3326 8816 100 55
GSE110332 Breast cancer cell SUM159 22277 3340 594 58 170 70
GSE124646 Breast biopsy 22283 5878 3183 1005 134 52
GSE125989 Breast biopsy 22277 1778 104 2097 122 31
GSE78051 Colon cancer cell 47323 3642 77 0 68 38
GSE92921 Colon tissue biopsy 54675 8359 1558 525 150 90
GSE94154 Colorectal adenocar-cinoma cells 54675 12141 4360 328 103 72
GSE110425 Colon cancer cell 47323 1743 0 1 133 60
GSE115716 pN1-LS174T cells 47323 6438 360 171 164 27
GSE105261 Kidney biopsy 48107 8090 2359 816 159 54
GSE117890 Kidney tissue 47309 5905 56 13925 212 142
GSE63067 Liver tissue 54676 4448 0 227 248 168
GSE102079 Liver tissue 54613 16539 8578 1263 179 74
GSE3678 Thyroid biopsy 54675 6290 1615 1215 227 121
GSE65144 Thyroid biopsy 54675 16368 10748 10911 151 74
GSE85457 Thyroid biopsy 54613 7777 297 16055 329 189

Table 5. Summary of results along with the pipeline steps for the selected pathologies. The features from left to right are denoted as selected
disease, source, number of data sets, number of selected data sets and number of upregulated and downregulated DEGs

Disease Origin/tissue Dataset Selected dataset DEG up DEG down

COVID-19 Lung and blood 2 2 1239 614
Breast cancer Breast 260 5 5603 6443
Colon cancer Colon 120 5 372 674
Kidney cancer Kidney 80 2 7145 7613
Liver cancer Liver 80 2 788 718
Thyroid cancer Thyroid 240 3 15004 13187
Bladder & prostate Bladder & prostate 80 2 11 8

of DEGs constructed gene networks corresponding to the
information related to pathways/pathologies.

Then, we represented this work using two R scripts that are
available at https://github.com/shahriariit/COVID-Cancer-Como
rbidities. To build this bioinformatics pipeline, we used sev-
eral Bioconductor packages [31] such as: “GEOquery” [32] for
downloading GEO data and transformation of expression set
class; “LIMMA” [33] for microarray data analysis, linear mod-
els and identifying DEGs on microarray data; “genefilter” [34]
for keeping basic tasks of filtering genes; “topGO” for verify-
ing GO terms and topology of DAG; “GOSemSim” [35] for the

semantic similarity assessment among the diseases; “DOSE”
[36] for the semantic similarity assessment among DO terms;
and “clusterProfiler” [37] for the enrichment analysis with KEGG
pathways.

Results
Statistical analysis of transcriptomic data

To identify common dysregulated DEGs between COVID-19 and
cancers, we comprehensively analyzed the available transcrip-
tomics datasets. The statistical summary of the COVID-19 and
their cancer comorbidities have been presented in Tables 3

https://github.com/shahriariit/COVID-Cancer-Comorbidities
https://github.com/shahriariit/COVID-Cancer-Comorbidities
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Figure 2. Example of the GO graph with GSEA on GSE147507 data set. The rectangles represent the top five GO terms after the test. The red and orange colors indicate

the most significant GO terms.

and 4, respectively. The 4th and 5th column of Table 4 provides
the number of DEGs that retains the statistical threshold of
P-value < 0.05. We extracted up- and down-regulated genes
based P-value and absolute Log2 fold change (logFC ≥ 1) for GSEA
analysis where logFC denotes the direction of gene expression.
In the 6th column, the number of significant DEGs is presented
that gives the specific logFC threshold and used them for GO
mapping. In the 7th column, the number of annotated GO terms
of DEGs are provided. Later, Fisher’s exact test was employed to
extract statistically significant terms based on gene counting.
The classical enrichment analysis was performed to evaluate
the over-representation of these terms within the DEGs group.
We summarize GO terms in the last column of Tables 3 and 4.
For example, GO graph on GSE147507 represents the hierarchy
and zoom on significant GO terms at Figure 2.

KEGG pathway

To clarify the significance of the DEGs from transcriptomic
datasets, we have performed gene ontologies and pathway
analysis. The pathway-based analysis represents how complex
diseases associates with other underlying molecular mecha-
nisms [27]. Moreover, the following framework is provided on
the BP involved in each COVID-19 study.

• GSE-147507: reproduction, MAPK cascade, angiogenesis,
blood vessel development, cell activation

• PBMC-COVID-19: multicellular organismal process, devel-
opmental process, anatomical structure development, mul-
ticellular organism development, system development

GO enrichment and construction of GO terms tree

We compared the DEGs identified from genome-wide transcrip-
tomic datasets of COVID-19 and selected cancers and identified
several common dysregulated genes (MARCO, VCAN, ACTB,
LGALS1, HMOX1, TIMP1, OAS2, GAPDH, MSH3, FN1, NPC2, JUND,
CHI3L1, GPNMB, SYTL2, CASP1, S100A8, MYO10, IGFBP3, APCDD1,
COL6A3, FABP5, PRDX3, CLEC1B, DDIT4, CXCL10 and CXCL8)
that are found common between COVID-19 and cancer (see
Figure 3). To provide insights into the functional interactions
of the identified genes, a protein–protein interaction network is
created around the common DEGs using GeneMania web-utility
considering co-expression, physical interaction, pathway, co-
localization, generic interaction, predicted and shared protein
domains.

Similarly, the common genes of COVID-19 (lung and blood
tissues) and individual cancers are shown in Tables 6 and 7,
respectively, which are obtained from the comparison between
COVID-19 and cancer comorbidities.

Semantic similarity analysis of the KEGG pathways

We performed the semantic similarity of the pathways enriched
by the DEGs in order to prioritize and evaluate their prox-
imity. Figure 4 shows the semantic similarity matrix for
DEGs of the selected pathologies. The COVID-19 (PBMC) is
highly connected to BC5_GSE124646, BC4_GSE110332 and
TC3_GSE65144 when the values of semantic similarity are
above 0.7. While COVID-19 (lung data) is highly associated with
LC1_GSE63067 at the same semantic similarity values. When
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Figure 3. Network on common differential expressed genes between COVID-19 and its cancer comorbidities.

we consider semantic similarity value above 0.6 and less 0.7,
then COVID-19 (lung) and COVID-19 (PBMC) are associated
with several cancers like LC2_GSE102079, KD2_GSE105261,
CC4_GSE94154, BC6_GSE125989, BC2_GSE98528, TC2_GSE3678
and CC3-_GSE92921 individually. At 0.5 semantic similarity
score, COVID-19 (PBMC) is related to LC1_GSE63067. This matrix
showed that TC1_GSE3468, BC3_GSE107300, BC2_GSE98528 and
BP1_GSE1181123 provided low semantic similarity value with
other cancers.

Figure 5 represents the semantic similarity matrix of GO
terms. Over the value of 0.7 and less than 0.8, all datasets are
found well-clustered among themselves except COVID-19 (lung)
and LC1_GSE63067. When the semantic similarity value was 0.8
and less than 0.9, LC2_GSE102079, TC1_GSE3467, TC3_GSE65144
and KD2_GSE105261 are also well-clustered with several cancer
pathologies. When the semantic similarity value was 0.9
or above 0.9, TC1_GSE3468, TC2_GSE3678, CD1_GSE893333,
BC4_GSE110332 and KD2-_GSE105261 are represented well-
clustered.

Figure 6 shows DO terms for SARS-CoV where COVID-19,
breast cancer, kidney cancer, liver cancer and thyroid cancer
are related with 0.09 threshold. Again, colon cancer contains

0.07 similarity value that is less connected than others. Instead,
DO terms for SARS-CoV-2 are not available in the DO repository
where it shows blank values in the generated graph. Hence, we
used terms of SARS-CoV in this work.

However, Figures 7 and 8 show KEGG pathway association
with selected datasets. This analysis is useful to understand how
complex diseases may be related to each other through their
underlying molecular mechanisms [27]. It represents the rela-
tionships between KEGG pathways of COVID-19 and associated
cancer data sets. These pathways enriched by DEGs are shown
in the dot plot where each row represents them associated
with COVID-19 and various cancers. The domination of genes is
determined by the dimension of the circles in the pathway and
the range of the circles is computed the statistical validation for
P-value = 0.05.

Common recurring pathways between COVID-19 (lung) and
others pathologies are found including viral protein interaction
with cytokine and cytokine receptor, Toll-like receptor signaling
pathway, Influenza A, prion diseases, cytokine–cytokine receptor
interaction, Rheumatoid arthritis, IL-17 signaling pathway, TNF
signaling pathway and NOD-like receptor signaling pathway,
among others.
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Table 6. Common GO terms among COVID-19 (lung) and cancers

GSE ID GO ID GO term GSE ID GO ID GO term

Common GO terms between COVID-19 and breast cancer Common GO terms between COVID-19 and lung cancer

BC1_GSE95165 GO:0002376 Immune system process LC1_GSE63067 GO:0001775 Cell activation
BC4_GSE110332 GO:0002376 Immune system process GO:0001816 Cytokine production
BC5_GSE124646 GO:0002376 Immune system process GO:0001932 Regulation of protein

phosphorylation
BC6_GSE125989 GO:0002376 Immune system process GO:0001934 Positive regulation of protein

phosphorylation
BC7_GSE135427 GO:0002376 Immune system process GO:0002252 Immune effector process

GO:0002520 Immune system development GO:0002263 Cell activation involved in
immune response

BC8_GSE89333 GO:0001568 Blood vessel development GO:0002274 Myeloid leukocyte activation
GO:0001775 Cell activation GO:0002275 Myeloid cell activation involved

in immune response
GO:0001932 Regulation of protein

phosphorylation
GO:0002366 Leukocyte activation involved in

immune response
GO:0001934 Positive regulation of protein

phosphorylation
GO:0002376 Immune system process

GO:0001944 Vasculature development GO:0002443 Leukocyte mediated immunity
GO:0002376 Immune system process GO:0002444 Myeloid leukocyte mediated

immunity

Common GO terms between COVID-19 and colon cancer GO:0002446 Neutrophil mediated immunity

CC3_GSE92921 GO:0001775 Cell activation GO:0002682 Regulation of immune system
process

GO:0001816 Cytokine production GO:0002684 Positive regulation of immune
system process

GO:0001817 Regulation of cytokine
production

LC2_GSE102079 GO:0002252 Immune effector process

GO:0002376 Immune system process GO:0002376 Immune system process
GO:0002682 Regulation of immune system

process
GO:0002682 Regulation of immune system

process

GO:0002684 Positive regulation of immune
system process

Common GO terms between COVID-19 and thyroid cancer

Common GO terms between COVID-19 and kidney cancer TC2_GSE3678 GO:0001775 Cell activation

KD2_GSE105261 GO:0001775 Cell activation GO:0002376 Immune system process
GO:0002252 Immune effector process GO:0006955 Immune response
GO:0002253 Activation of immune response GO:0007166 Cell surface receptor signaling

pathway
GO:0002376 Immune system process TC2_GSE3678 GO:0000165 MAPK cascade
GO:0002682 Regulation of immune system

process
GO:0001568 Blood vessel development

GO:0002684 Positive regulation of immune
system process

GO:0001775 Cell activation

KD2_GSE105261 GO:0001775 Cell activation GO:0001932 Regulation of protein
phosphorylation

GO:0002376 Immune system process GO:0001944 Vasculature development
GO:0006955 Immune response GO:0002274 Myeloid leukocyte activation
GO:0007166 Cell surface receptor signaling

pathway
GO:0002376 Immune system process

GO:0009605 Response to external stimulus TC3_GSE65144 GO:0001775 Cell activation
GO:0010033 Response to organic substance GO:0002376 Immune system process

KD3_GSE117890 GO:0001775 Cell activation GO:0002682 Regulation of immune system
process

GO:0002376 Immune system process TC4_GSE85457 GO:0001568 Blood vessel development
GO:0002682 Regulation of immune system

process
GO:0001944 Vasculature development

GO:0002376 Immune system process
GO:0002682 Regulation of immune system

process
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Table 7. Common GO term among COVID-19 (PBMC) and cancers

GSE ID GO ID GO term GSE ID GO ID GO term

Common GO terms between COVID-19 and breast cancer Common GO terms between COVID-19 and colon cancer

BC1_GSE95165 GO:0002376 Immune system process CC2_GSE79462 GO:0007275 Multicellular organism
development

GO:0007275 Multicellular organism
development

GO:0009653 Anatomical structure
morphogenesis

GO:0032501 Multicellular organismal process GO:0030154 Cell differentiation
GO:0032502 Developmental process GO:0032501 Multicellular organismal process

BC2_GSE98528 GO:1901564 Organonitrogen compound
metabolic process

GO:0032502 Developmental process

GO:0042221 Response to chemical GO:0042221 Response to chemical
GO:0030154 Cell differentiation GO:0048513 Animal organ development
GO:0048869 Cellular developmental process CC3_GSE92921 GO:0001775 Cell activation
GO:0032502 Developmental process GO:0002376 Immune system process

BC3_GSE107300 GO:0010033 Response to organic substance GO:0006955 Immune response
GO:0032501 Multicellular organismal process GO:0007166 Cell surface receptor signaling

pathway
GO:0042221 Response to chemical GO:0007275 Multicellular organism

development
BC4_GSE110332 GO:0002376 Immune system process GO:0009605 Response to external stimulus

GO:0006955 Immune response GO:0010033 Response to organic substance
GO:0007166 Cell surface receptor signaling

pathway
CC4_GSE94154 GO:0002376 Immune system process

GO:0007275 Multicellular organism
development

GO:0006955 Immune response

GO:0009605 Response to external stimulus GO:0007166 Cell surface receptor signaling
pathway

GO:0010033 Response to organic substance GO:0009605 Response to external stimulus
BC5_GSE124646 GO:0002376 Immune system process GO:0010033 Response to organic substance

GO:0006955 Immune response GO:0032501 Multicellular organismal process
GO:0007166 Cell surface receptor signaling

pathway
CC5_GSE110425 GO:0010033 Response to organic substance

GO:0007275 Multicellular organism
development

GO:0042221 Response to chemical

GO:0009653 Anatomical structure
morphogenesis

CC6_GSE115200 GO:0007275 Multicellular organism
development

GO:0010033 Response to organic substance GO:0030154 Cell differentiation
GO:0030154 Cell differentiation GO:0032501 Multicellular organismal process
GO:0032501 Multicellular organismal process GO:0032502 Developmental process

BC6_GSE125989 GO:0002376 Immune system process GO:0042221 Response to chemical
GO:0006928 Movement of cell or subcellular

component
CC7_GSE115716 GO:0050896 Response to stimulus

GO:0007166 Cell surface receptor signaling
pathway

GO:0051716 Cellular response to stimulus

GO:0007275 Multicellular organism
development

Common GO terms between COVID-19 and kidney cancer

GO:0007399 Nervous system development KD1_GSE51571 GO:0006928 Movement of cell or subcellular
component

BC7_GSE135427 GO:0002376 Immune system process GO:0007275 Multicellular organism
development

GO:0007275 Multicellular organism
development

GO:0009653 Anatomical structure
morphogenesis

GO:0009653 Anatomical structure
morphogenesis

KD3_GSE117890 GO:0001775 Cell activation

BC8_GSE89333 GO:0001775 Cell activation GO:0002376 Immune system process
GO:0002376 Immune system process GO:0006955 Immune response
GO:0006955 Immune response GO:0007166 Cell surface receptor signaling

pathway
GO:0007166 Cell surface receptor signaling

pathway
GO:0007275 Multicellular organism

development

(Continued)
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Table 7. Continued

GSE ID GO ID GO term GSE ID GO ID GO term

Common GO terms between COVID-19 and breast cancer Common GO terms between COVID-19 and lung cancer

BP1_GSE118123 GO:0009605 Response to external stimulus LC1_GSE63067 GO:0001775 Cell activation
GO:0010033 Response to organic substance GO:0002376 Immune system process
GO:0042221 Response to chemical LC2_GSE102079 GO:0002376 Immune system process

BP2_GSE122306 GO:0007275 Multicellular organism
development

GO:0006955 Immune response

GO:0009605 Response to external stimulus GO:0007275 Multicellular organism
development

GO:0010033 Response to organic substance GO:0009605 Response to external stimulus

Common GO terms between COVID-19 and thyroid cancer

TC1_GSE3467 GO:0032501 Multicellular organismal process
TC3_GSE65144 GO:0001775 Cell activation

GO:0002376 Immune system process
GO:0006928 Movement of cell or subcellular

component
GO:0006955 Immune response
GO:0007166 Cell surface receptor signaling

pathway
GO:0007275 Multicellular organism

development
GO:0010033 Response to organic substance

TC4_GSE85457 GO:0002376 Immune system process
GO:0006928 Movement of cell or subcellular

component
GO:0006955 Immune response

Discussion

Bioinformatics is a very important and fast-growing field that
can investigate the cause and interaction of various diseases in
the medical sciences. The main purpose of this work is to explore
the association between COVID-19 and its cancer comorbidities
to understand the complexities of cancer patients if they are
infected by the SARS-CoV-2. The entire research process relies
on the different methods and techniques used for knowledge
extraction in bioinformatics. Therefore, we examined the most
recent COVID-19 and numerous cancers transcriptomic data
in the publicly accessible repositories. In this integrated bioin-
formatics framework, numerous packages were implemented
from the Bioconductor repository using R. GSEA is used to study
COVID-19 in terms of the pathways and different ontologies such
as GO and DO terms. We also began this test from the set of DEGs
and defined GSEA taking into account the most relevant GO
terms. In order to show the proximity between different diseases
according to chosen ontologies, the usefulness of semantics
similarity was again used. Furthermore, GSM documents were
noted manually and samples were divided into control and case
instead of automatic selection of GEO samples. Then, we created
models using manually curated datasets instead of the auto-
matic selection with GEO samples. In order to show the proxim-
ity between different diseases according to chosen ontologies,
we used semantic similarity approach again. Then, all results
containing genes, GO and DO terms were compared to evaluate
semantic similarity. There is still no effective method to define
the functional similarities based on gene annotation informa-
tion from dissimilar data sources. Hence, GO terms are effective
to address the consistent explanations about genes in different

data sources. Instead, DO provides an open source ontology for
the incorporation of biomedical data in human disease. It pro-
duces a consistent description of gene products with disease per-
spectives for supporting functional genomics. Several metrics
like P-value and logFC thresholds are used in this work. For the P-
value of 0.05 and absolute logFC of 1, the variances among sets of
DEGs and GO terms are extracted. Consequently, we determined
KEGG pathway graph that showed the connectivity of COVID-19
and other diseases. Our analysis identified a number of common
dysregulated genes between COVID-19 and cancers. Among the
identified common genes, MARCO and OAS2 were identified as
dysregulated in breast cancer as consistent with previous report
[38, 39]. Previous studies suggested OAS2 as prognostic markers
of breast cancer [39]. Another gene, VCAN was identified as
a new prognostic gene in gastric cancer [40]. The critical role
of ACTB was also found in lung cancer [41]. Overexpression of
LGALS1 gene was reported in oral cancer and has been detected
as key players for various tumor including prostate, thyroid,
bladder and ovarian cancer [42]. Higher expression of HMOX1
gene was revealed in cancer corroborating our findings [43].
TIMP1 was established as anti-apoptotic roles in colon cancer
and suggested that it might be critical for cell proliferation, inva-
sion and metastasis of colon cancer [44]. Again, the rest of the
identified genes has represented key roles in the development
and progression of cancer as consistent with previous findings.
In order to shed light on biological pathways commonly altered
in COVID-19 and cancer, we identified several pathogenetic pro-
cesses and molecular pathways that may potentially clarify the
potential mechanisms of COVID-19 in cancer patients. Our study
highlighted immune system processes and cytokine-mediated
inflammations as key BPs of COVID-19 and cancer. The chronic
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Figure 4. Semantic similarity matrix for differential expressed genes. The two-letter suffix before the GSE codes referred to the following: BC, breast cancer; CC, colon

cancer; PMVC1 and PMVC2, COVID-19; KD, kidney cancer; LC, liver cancer; TC, thyroid cancer; and BP, bladder prostate cancer. The number after the two letters indicates

the logFC threshold.

inflammation has been recognized as a causative factor for the
progression of cancer [45]. Immune systems, cytokines overpro-
duction and cytokine-mediated signaling provided key features
in lung inflammation in response to COVID-19 infections [46],
which are consistent with our findings. This study identified
wnt signaling pathways, IL-17 signaling pathway, TNF signaling
pathways as key signaling pathways associated with COVID-
19 and cancers which is consistent with previous reports that
identified these altered pathways in COVID-19 [46]. Specifically,
the “cytokine storm” seen in COVID-19 patients is the result
of severe immune response by the host that deteriorate the
conditions of the patients [46]. In line with this evidence, we
may suggest the dysregulated immune systems play a criti-
cal role in COVID-19 patients with cancers. Several previous
studies employed whole genome transcriptomic data, identified
gene signatures and elucidated immunopathological features
and potential marker focused on COVID-19 [46–52], which were
consistent with our findings; However, molecular associations
between COVID-19 and different cancers have not been found
yet. For the first time, we elucidated molecular cell pathways
shared between COVID-19 and cancer individually.

It demonstrated the likelihood of reusing the data available
from the analytical perspective. For further research, various
works related to comorbidities and transcriptomics have been
published. However, owing to legal or ethical concerns they are

not open to the media at all times. In this study, we represented
the datasets with more cell types and resources that investigated
robust results than single cells and resources. Several challenges
were considered while developing this pipeline. Firstly, it was
not only concerned about control versus patients but also scru-
tinized genetic variants to show the risk of this disease and its
variants. Secondly, the standard of data is not similar in all cases.
For instance, it took a lot of effort to prepare GEO series data.
Therefore the microarray data quality (e.g., the arrayQualityMet-
rics package) was retained and ideal for semi-automated analy-
sis. However, this approach provides an automated way of gath-
ering, comparing and evaluating microarray data. In this study,
we have implemented a comprehensive bioinformatics pipeline
where several common pathogenetic processes are detected and
shared by COVID-19 and cancer that may aid the clinicians and
bench scientists to further dismantle the complex interconnec-
tions of the patients. The pipeline can also be used to investigate
COVID-19 and other comorbidities, which is freely accessible for
clinical researchers to use.

Conclusion
We have developed an R pipeline that incorporates bioinformat-
ics methods to identify the infectome, diseasome and comor-
bidities relationship among the infections and diseases. In this
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Figure 5. Semantic similarity matrix of GO terms. The number after each pair of entries represent the logFC threshold.

Figure 6. Semantic similarity matrix for DO terms (SARS-CoV)

study, a large set of transcriptomic datasets of COVID-19 and
different cancers have been utilized and identified molecular
associations between them using our developed pipeline. Our
analysis showed common dysregulated genes shared between
COVID-19 and cancers. We detected immune systems processes
as major dysregulated pathways in COVID-19 and common can-
cers. Such study is also helpful in evidence-based guidelines on

COVID-19 in patients with cancer as our suggested pipeline com-
bines an integrated structure for discovering COVID-19 molec-
ular pathways and various pathologies. Our pipeline can also
be used for infectome, diseasome and comorbidities analysis of
other diseases by using a large set of transcriptomic data. We are
unable to test this technique with further records because of the
lack of COVID-19 data, which will be available for the research
on COVID-19 by the scientist. We now suggest to incorporate
more genome-wide transcriptomic data once it will be available
to get more comprehensive understanding of the COVID-19 in
cancer comorbid patients. Our pipeline can be an enormous
opportunity for clinicians and scientists to provide new insights
into COVID-19 pathways in cancer patients despite constraints
on the availability of more transcriptomic data.

Key Points

• This work developed a bioinformatics pipeline and
has been applied to detect infectome, diseasome and
comorbidities between COVID-19 and cancer diseases.

• Bioinformatics analysis of COVID-19 and its malignant
comorbidities are required to evaluate their roles for
clinical and further implications of COVID-19.

• Several approaches such as gene set enrichment anal-
ysis and semantic similarity are used to investigate
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Figure 7. KEGG pathway enrichment analysis for COVID-19 lung tissues.

COVID-19 and its malignant comorbidities in this
work.

• Numerous transcriptomic datasets are explored com-
mon genes, gene ontology, DO and pathways.
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