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Abstract

Studies have shown that allogeneic (allo-) bone marrow derived mesenchymal stem cells (BM-MSCs) may enhance tissue
repair/regeneration. However, recent studies suggest that immune rejection may occur to allo-MSCs leading to reduced
engraftment. In this study, we compared allo-BM-MSCs with syngeneic BM-MSCs or allo-fibroblasts in engraftment and
effect in wound healing. Equal numbers of GFP-expressing allo-BM-MSCs, syngeneic BM-MSCs or allo-fibroblasts were
implanted into excisional wounds in GFP-negative mice. Quantification of GFP-expressing cells in wounds at 7, 14 and 28
days indicated similar amounts of allogeneic or syngeneic BM-MSCs but significantly reduced amounts of allo-fibroblasts.
With healing progression, decreasing amounts of allogeneic and syngeneic BM-MSCs were found in the wound; however,
the reduction was more evident (2 fold) in allo-fibroblasts. Similar effects in enhancing wound closure were found in
allogeneic and syngeneic BM-MSCs but not in allo-fibroblasts. Histological analysis showed that allo-fibroblasts were largely
confined to the injection sites while allo-BM-MSCs had migrated into the entire wound. Quantification of inflammatory cells
in wounds showed that allo-fibroblast- but not allo-BM-MSC-treated wounds had significantly increased CD45+ leukocytes,
CD3+ lymphocytes and CD8+ T cells. Our study suggests that allogeneic BM-MSCs exhibit ignorable immunogenicity and are
equally efficient as syngeneic BM-MSCs in engraftment and in enhancing wound healing.
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Introduction

Bone marrow derived mesenchymal stem cells (BM-MSCs),

which are also referred to as stromal progenitor cells, are self-

renewing and expandable stem cells. Numerous studies have

suggested that they are of potential therapeutic value. Transplan-

tation of ex vivo expanded allogeneic (allo-) BM-MSCs improves

repair to the infarcted heart [1] and brain [2] and enhance wound

healing [3] in animals. Allogeneic BM-MSCs derived from healthy

donors have been used to treat diseases in humans [4,5]. In

addition, MSCs have interesting immunologic properties in vitro.

They have been demonstrated by multiple investigators to

suppress stimulated T cells in co-culture experiments [6–12],

although the mechanisms are not fully understood. These in vitro

observations suggest that MSCs may evade alloimmune surveil-

lance, induce specific immunologic tolerance, and suppress graft-

versus-host-disease (GVHD) [4,13,14]. However, controversial

results were shown in recent in vivo studies [15,16]. Subcutaneously

implanted MSCs engineered to release erythropoietin to allogeneic

mice were found to cause shorter lasting increase in hematocrit

than to syngeneic mice, and allogeneic MSC implants had an

increased proportion of host-derived lymphoid CD8+, natural

killer T (NKT), and NK infiltrating cells compared with syngeneic

controls [15], suggesting that immune reaction to allo-MSCs may

caused reduced cell engraftment. When allo-MSCs were added to

a bone marrow transplant, they yielded no clinical benefit on the

incidence or severity of GVHD. However, the absence of clinical

effect was shown not due to MSC rejection because they still could

be detected in grafted animals [17]. Therefore, whether allogeneic

MSCs have reduced engraftment and therapeutic effect than

autologous MSCs needs to be elucidated.

In this study, we compared allo-BM-MSCs with syngeneic BM-

MSCs or allo-fibroblasts in engraftment and effect on the healing

of excisional wounds in mice. Our data demonstrated similar

engraftment patterns and enhancements in wound healing

between allogeneic and syngeneic BM-MSCs, though decreasing

amounts of engrafted cells were found in both types of MSCs with

progression of the wound healing process. However, reduction in

number of allo-fibroblasts in the wound was much more dramatic

(2 fold) which was associated with no improvement in wound

closure. Analysis of inflammatory cells in the wound indicated that

wounds treated with allo-fibroblasts but not allo-BM-MSCs had

significantly increased amounts of CD45+ leukocytes, T lympho-

cytes and CD8+ T cells. Our data suggest that allo-BM-MSCs do

not cause immune inflammation and are as effective as syngeneic

cells in enhancing wound healing.

Methods

All animal procedures were approved under the guidelines of

the Health Sciences Animal Policy and Welfare Committee of the

University of Alberta.
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Isolation, purification and characterization of MSCs
The bone marrow was collected from the femurs and tibia of

5–7 week-old male C57-GFP transgenic mice (C57BL/6 TgN

[ACT6EGFP, Jackson Laboratory) and nucleated cells were

isolated with a Ficoll-paque density gradient. The nucleated cells

were plated in plastic tissue culture dishes and incubated in

minimal essential medium (a-MEM; Invitrogen) supplemented

with 17% fetal bovine serum (FBS). When reaching 80%

confluent, the adherent cells were harvested and subjected to

immunodepletion using antibody-coated magnetic micro beads

(Miltenyi Biotec) against CD34, CD14, Gr1, CD3 and CD19.

Characterization of the cells for their immunophenotypic markers

by fluorescent-activated cell sorting (FACS) showed that they were

negative for cell lineage markers CD45, CD14, CD34, CD19,

CD3, Flk-1 and positive for typical MSC surface proteins Sca-1,

CD105, CD29 and CD44 [14]. After culturing in induction media

[18,19], the cells differentiated into adipocytes, osteoblasts and

chodrocytes. Passage 3–5 cells were used for the experiments.

Isolation of dermal fibroblasts
The skin of 5–7 week old GFP mice (C57BL/6 TgN[AC-

T6EGFP] was incubated with Dispase I (Sigma) in keratinocyte-

SFM (Invitrogen) at 10 mg/ml for 13 hours at 4uC to remove the

epidermis. Fibroblasts were obtained from the dermis after

digestion with 0.75% collagenase and cultured in DMEM

supplemented with 10% FBS. Passage 3–5 cells were used for

the experiments.

Flow cytometry
Excised wounds together with a small amount of the

surrounding skin were dispersed enzymatically into single cell

suspensions as previously described [20]. In brief, the tissue was

incubated with dispase I at 1 mg/ml overnight at 4uC, minced and

incubated in a digestion buffer containing hyaluronidase (1 mg/

ml), collagenase D (1 mg/ml) and DNase (150 units/ml) (Sigma)

in a 37uC shaking water bath for 2 hours. The dispase and the

hyaluronidase digests were pooled and filtered through a 70 um

Nylon cell strainer. Cells were washed, pelleted, resuspended in

PBS containing 3% FBS. Murine blood was collected by cardiac

puncture. Peripheral blood mononucleated cells (PBMCs) were

isolated by density gradient centrifugation with Ficoll-Hypaque.

100 mL cell aliquots each containing at 16105 cells were first

blocked with Mouse BD Fc Block and then incubated with

phycoerythrin (PE)-conjugated monoclonal antibodies specific for

CD45, Gr-1, CD14, CD3, CD8a (BD Pharmingen), or control

isotype IgG on ice for 30 minutes. After washing with PBS, the

samples were analyzed by flow cytometry (Becton Dickinson) using

Cell Quest software.

Wound healing model
GFP+ BM-MSCs or GFP+dermal fibroblasts derived from

C57BL/6-GFP mice were transplanted to excisional wounds in

Balb/C (allogeneic) or C57BL/6 mice (syngeneic) (Figure 1).

Balb/C or C57BL/6 mice (8 week-old, female, body weight 19–23

grams, Jackson Laboratory) were randomly divided into groups

(n = 21) and the excisional wound splinting model was generated

as described previously [21]. In brief, after hair removal from the

dorsal surface and anesthesia, two 5-mm full-thickness excisional

skin wounds were created on each side of the midline. Each wound

received one million cells (GFP+ BM-MSCs or GFP+dermal

fibroblasts derived from C57BL/6-GFP mice): 0.76106 in 60 ml

PBS injected intradermally around the wound at 4 injection sites

and 0.36106 in 20 ml Growth Factor Reduced (GFR) Matrigel

(BD) applied onto the wound bed. A donut-shaped silicone splint

was placed so that the wound was centered within the splint. An

immediate-bonding adhesive (Krazy GlueH) was used to fix the

splint to the skin followed by interrupted sutures to stabilize its

position (Figure 1A) and Tegaderm (3 M) was placed over the

wounds which was further covered by bandage (3 M bandaging

type). The animals were housed individually. We tested the

adhesive on the skin in mice prior to this experiment and did not

observe any skin irritation or allergic reaction.

Wound analysis
Digital photographs of wounds were taken at days 0, 3, 7, 10

and 14 days. Time to wound closure was defined as the time at

which the wound bed was completely reepithelialized and filled

with new tissue. Wound area was measured by tracing the wound

margin and calculated using an image analysis program (NIH

Image). The investigators measuring samples were blinded to

group and treatment. The percentage of wound closure was

calculated as: (area of original wound 2 area of actual wound)/

area of original wound6100. The inside edge of the splint exactly

matched the edge of the wound, so that the splinted hole was used

to represent the original wound size. Mice were sacrificed at 7 and

14 days when skin samples including the wound and 4 mm of the

surrounding skin were harvested using a 10 mm punch biopsy.

One wound which was bisected into two pieces and one of them

was used for histology. The other wound was digested for FACS

analysis.

Figure 1. Experimental scheme.
doi:10.1371/journal.pone.0007119.g001
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Immunostaining and confocal microscopy
Tissue specimens were fixed in 3% freshly prepared parafor-

maldehyde (PFA) for 24 h and embedded in OCT. Six-micron-

thick tissue sections were pre-incubated with sodium borohydride

(1 mg/ml in PBS) to reduce auto-fluorescence and then incubated

with an monoclonal antibody against CD3 (R&D) which was

followed by detection with a Cy3-conjugated secondary antibody.

Nuclei were stained with Hoechst. Sections were examined with a

Zeiss LSM 510 confocal microscope.

Statistical analysis
All values are expressed as mean6SD. Student’s paired t test

was performed for comparison of data of paired samples and

ANOVA was used for multiple group comparisons followed by

Friedman’s post test. A probability (P) value ,0.05 was considered

significant.

Results

Effect of allogeneic or syngeneic BM-MSCs in wound
healing

We implanted equal numbers of BM-MSCs derived from

C57BL/6-GFP mice into excisional wounds in Balb/C (allogeneic)

or C57BL/6 (syngeneic) mice. Allogeneic or syngeneic BM-MSC-

treated wounds exhibited accelerated wound closure compared to

allogeneic dermal fibroblast- or vehicle medium-treated wounds

(P,0.01, Figure 2A&B). The enhancement appeared early at 3

days and became more evident 7 days after cell implantation. No

significant differences in wound closure were found between

allogeneic and syngeneic BM-MSC-treated wounds. Syngeneic

dermal fibroblasts, but not allogeneic fibroblasts, showed a modest

effect in enhancing wound closure (P,0.05, Figure 2A&B).

Engraftments of allogeneic or syngeneic BM-MSCs
To examine engraftments of BM-MSCs into the wound, we

performed immunofluorescence analysis of tissue sections for GFP-

expressing cells. At 7 days, abundant GFP-positive allogeneic or

syngeneic BM-MSCs were found through out the wound which

were closely associated with host cells in the tissue (Figure 3A). In

contrast, allo-fibroblasts, but not syngeneic-fibroblasts were largely

restricted to the injection sites where they were surrounded by a

layer of inflammatory cells and host fibroblast-like cells. The

topically applied fibroblasts on the wound bed largely failed to

incorporate into the tissue and many of them lost their nuclei

indicating cell death (Figure 3A). At 14 days, allogeneic or

syngeneic GFP-MSCs were localized to the wound bed and skin

appendages while only few GFP-fibroblasts were observed. At day

28, GFP-MSCs were rarely detected and no intact GFP-fibroblasts

were found in the wound. In analysis of six animals per group at

each time point, syngeneic BM-MSCs showed similar engraftment

patterns to allogeneic BM-MSCs. To quantify GFP-MSCs or

GFP-fibroblasts in wounds at different times, we excised the entire

wound along with a small amount of the surrounding skin and

dispersed it enzymatically into a single cell suspension. Counting of

cells in the suspension with a cytometer resulted in the number of

cells per wound (Table 1). Fractions of GFP-positive cells in the

single-cell suspension were determined by FACS analysis

(Figure 3B). Taking the initially implanted one million cells per

wound as 100%, after calculation, proportions of engrafted BM-

MSCs or fibroblasts at different times after transplantation were

obtained (Figure 3C). Consistent with the findings in immunohis-

tological analysis, similar amounts of allo-MSCs and syngeneic

MSCs, but significantly fewer allo-fibroblasts were indicated in

wounds at 1, 2 and 4 weeks (Figure 3C, n = 6 or 7, P,0.001).

Different from allo-fibroblasts, similar amounts of syn-fibroblasts

to syn-MSCs at 1 and 2 weeks, and greater amount of syn-

fibroblasts than syn-MSCs at 4 weeks (Figure 3C, n = 6, P,0.05)

were found in the wound.

Inflammatory cells in wounds treated with allogeneic or
syngeneic BM-MSCs

To examine whether allo-MSCs caused immune reaction, we

quantified inflammatory cells in the single-cell suspension by

FACS analysis. Samples were immuno-stained with monoclonal

antibodies against CD45 (for leukocytes), Gr-1 (for granulocytes),

CD14 (for monocytes), CD3 (for T lymphocytes) or CD8 (for CD8

T cells). Significantly increased leukocytes and T cells were found

in wounds treated with allo-fibroblasts but not allo -BM-MSCs at 1

Figure 2. Effects of BM-MSCs on wound closure. (A) Excisional wounds in allogeneic (allo-) Balb/C or syngeneic (syn-) C57BL/6 mice received
implantation of C57BL/6 derived GFP+ BM-MSCs (MSC), dermal fibroblasts (FB) or control vehicle medium (sham). Representative photographs of
wounds at day 7 (with transparent Tegaderm dressing) are shown. Within the splint, the red area represents the unhealed area and the surrounding
white area indicates the newly grown tissue from the wound edge. (B) Measurement of wounds (at day 3 and 7, n = 12 to 14; at day 10 and 14, n = 6
or 7). ANOVA, vs sham *P,0.01, # P,0.05.
doi:10.1371/journal.pone.0007119.g002

Allogenicity of MSCs

PLoS ONE | www.plosone.org 3 September 2009 | Volume 4 | Issue 9 | e7119



and 2 week compared to wounds treated with vehicle medium

(Figure 4A–C). Moreover, CD8 T cells were also significantly

increased in wounds received allo-fibroblasts at 2 weeks

(Figure 4C). No significant differences in proportions of leukocytes,

granulocytes, monocytes, T cells and CD8 cells were found

between allo-MSC- and vehicle medium-treated wounds at both 1

and 2 weeks (Figure 4B&C, n = 6 or 7, P,0.01). However,

significantly reduced CD3 T cells were found in syngeneic MSC-

treated wounds (Figure 4C). Consistent with the findings in FACS

analysis, immunofluorescence analysis showed that wounds treated

with allo-fibroblasts had increased presence of CD3 T cells while

wounds treated with syngeneic MSCs had reduced abundance of

T cells compared to wounds treated vehicle medium (Figure 4D).

To examine whether implantation of allogeneic MSCs or

fibroblasts caused systemic changes in inflammatory cells, we

quantified fractions of the above leukocyte subsets in the blood by

FACS analysis, and found no significant differences compared to

sham groups.

Discussion

Following acute injuries such as myocardial infarction and

cerebral strokes, on time delivery of BM-MSCs to the damaging

tissues is crucial to achieve optimum therapeutic effects. However,

autologous MSCs are technically unsuitable for such conditions

due to delay in ex vivo cell expansion. Allogeneic BM-MSCs have

been shown to improve structural and functional recoveries to the

infarcted myocardium and brain in animals [1,2,4,5]. Genetically

modified allogeneic BM-MSCs to overexpress anti-apoptosis gene

Akt could further augment the therapeutic effect of the cells to the

Figure 3. Engraftment of BM-MSCs into the wounded skin. (A)
Allo-fibroblasts or allo-MSCs in wounds. Representative fluorescence
microscopic images of day 7 wound sections showing that the injected

Table 1. Number of cells per wound (6106).

sham
(Balb/C)

sham
(BL/6) allo-FB syn-FB allo-MSC syn-MSC

1 wk 1.960.22 1.860.18 2.260.29* 2.360.26# 2.760.27* 2.560.25#

2 wk 1.560.15 1.460.19 1.760.27 2.160.22# 2.160.23* 1.960.23#

4 wk 1.460.19 1.360.23 1.760.22* 1.560.24 1.460.20 1.260.21

The number of cells per wound was derived from counting of cells in a single
cell suspension derived from digestion of an entire wound. Values represent
means6SD, n = 6 or 7. In Balb/C recipient mice, * P,0.05 (vs sham Balb/C); in
C57BL/6 recipient mice, # P,0.05 (vs sham C57BL/6).
doi:10.1371/journal.pone.0007119.t001

allogeneic GFP+fibroblasts (allo-FB) were confined to the injection site
and surrounded by a layer of inflammatory and fibroblast-like cells
(arrow heads, left panel). Weak GFP signals were detected in some of
allo-fibroblasts. After immunostaining for GFP, topically applied allo-
fibroblasts (green) were shown to be poorly incorporated into the
tissue (middle and right panels of upper row) and in many of them
nuclei were not shown (arrow heads, middle panel of upper row),
indicating cell death, while similarly applied allo-MSCs (green) were
closely integrated into the wound (lower row, representative images
from three mice). Wound beds are indicated by arrows. Nuclei were
stained blue with Hoechst. scale bar, 50 mm. (B) Wounds treated with
allogeneic or syngeneic BM-MSCs or vehicle medium (sham) in Balb/C
or C57BL/6 mice at 1 or 2 weeks were enzymatically dissociated as
discribed in ‘‘Materials and Methods’’ and single-cell suspensions were
analyzed by flow cytometry to detect percentages of GFP-positive cells.
One representative result is shown. Cells from sham wounds were used
for negative controls and gate setting. (C) Cell engraftment. Taking the
initially implanted one million cells per wound as 100%, proportions of
engrafted BM-MSCs or fibroblasts at different times after transplanta-
tion are shown. *P,0.001 (allo-fibroblast vs MSC, n = 6 or 7).
doi:10.1371/journal.pone.0007119.g003
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infarcted heart [22]. These studies have suggested that allogeneic

BM-MSCs are of potential value in cell therapies or cell-based

gene therapies. However, recent studies suggest that immune

rejection may occur to allo-MSCs leading to reduced graft survival

[15,16]. To examine whether autologous MSCs have a better

engraftment and therapeutic effect, we implanted equal numbers

of allogeneic or syngeneic BM-MSCs into excisional wounds in

mice, and allo-fibroblasts and syn-fibroblasts were used as a

controls. Our data indicated that allo-MSCs had similar

engraftment and therapeutic effect in wound closure compared

to syngeneic BM-MSCs. The numbers of allo-MSCs and

syngeneic MSCs in the wound declined similarly with progression

of the wound healing process. However, the reduction in the

number of allo-fibroblasts in the wound was more evident than

syn-fibroblasts. This result is consistent with our findings in

immunohistochemical analysis of the wound where allo-fibro-

blasts, but not syngeneic-fibroblasts or allo-MSCs, were found to

largely be confined to the injection sites by a layer of inflammatory

cells and host fibroblast-like cells, and cause increased infiltration

of CD3 T cells in the wound, displaying signs of immune reaction.

In consistence with our observation, the amount of engrafted

allogeneic MSCs in the infarcted myocardium was found to

decrease dramatically at two weeks post transplantation [23]. Our

data suggest that the reduction in the number of engrafted MSCs

in healing wounds may largely be caused by changes in the

microenvironment with progression of the wound healing process

rather than immune reactions to MSCs. Consistent with our

findings, in a recent study allogeneic BM-MSCs were found to be

as efficient as syngeneic BM-MSCs in promoting wound healing

[24]. It is likely that with progression of the wound healing process,

cytokines and ECM molecules favorable to MSC survival and

engraftment have decreased. It has been known that engraftment

of BM-MSCs to normal non- hematopoietic tissues is extremely

low.

In this study, we found significantly increased leukocytes, T cells

and CD8 lymphocytes in wounds received allo-fibroblasts but not

allo-MSCs. Injected allo-fibroblasts were confined to the injection

site where they were surrounded by host inflammatory cells and

fibroblast-like cells. In contrast, allo-MSCs had migrated into the

entire wound. These results suggest that allogeneic fibroblasts but

not allogeneic BM-MSCs cause immune inflammatory reactions

which lead to reduced engraftment. In agreement with our results,

increased inflammation and fibrosis were found in wound received

allogeneic fibroblasts in previous studies [25,26], but allo-MSCs

could be detected in the infarcted myocardium two months post

transplantation which were accompanied by decreased leukocyte

infiltration in the tissue [1]. Moreover, allogeneic osteogenic cells

derived from BM-MSCs were found to be able to survive in vivo

despite expression MHC class II in the cells after differentiation

[27]. Taken together, these data indicate that allogeneic MSCs

have lower immunogenicity than dermal fibroblasts. The mech-

anisms underlying the differential immunogenicity of allogeneic

MSCs and allogeneic dermal fibroblasts have not been fully

understood. Previous studies suggest that the low immunogenicity

of MSCs might attribute to their specific cell surface features,

including low surface densities of MHC class I molecules and

undetectable expression of MHC class II as well as costimulatory

Figure 4. Leukocytes in wounds. Single-cell suspensions of the
normal skin or wounds treated with allo-fibroblasts, allogeneic (allo-) or
syngeneic (syn-) BM-MSCs or vehicle medium (sham) in Balb/C or
C57BL/6 mice at 7 or 14 days were analyzed by flow cytometry after
immunostaining. (A) Representative results of analysis of day 14 wound
single cell suspensions for CD45+ leukocytes or CD3+ T cells (read
peaks). Grey peaks represent negative controls. (B&C) Shown are

means6SD of percentages of leukocytes or leukocyte subsets in the
normal skin or wounds at 7 (B) or 14 (C) days (n = 6 or 7, *P,0.01). (D)
Representative confocal microscopic images showing CD3+ T cells (red)
in wounds at 14 days. Nuclei were stained blue with Hoechst. scale bar,
20 mm.
doi:10.1371/journal.pone.0007119.g004

Allogenicity of MSCs

PLoS ONE | www.plosone.org 5 September 2009 | Volume 4 | Issue 9 | e7119



molecules such as CD80, CD86 and CD40 [6,28]. However,

dermal fibroblasts have also been known to have a similar

expression pattern these cell surface molecules [25,29]. Therefore,

the surface antigenic properties appear unlikely to be an important

mechanism for the differential immunogenicity of these two types

of stromal cells. Instead, immunosuppressive activities of MSCs

may play a more important role. Several studies have shown that

MSCs suppress the proliferation and activities of a broad range of

immune cells, including T cells, antigen-presenting cells, natural

killer (NK) cells and B cells, probably through release of cytokines

including indoleamine 2,3-dioxygenase, transforming growth

factor beta-1, prostaglandin E, and nitric oxide [6,28,30].

Moreover, we found that MSCs and dermal fibroblasts differen-

tially expressed numerous cytokines in our previous study. MSCs

released higher levels of cytokines involved in cell growth and

tissue repair/regeneration such as insulin-like growth factor-1,

vascular endothelial growth factor-a, erythropoietin and stromal

cell-derived factor-1, while dermal fibroblasts secreted greater

amounts of pro-inflammatory cytokines such as interleukin-6 [31].

These data suggest that MSCs may posses special activities that

suppress excessive inflammation and maintain homeostasis of the

immune system through physical and/or chemical interactions

with immune/inflammatory cells, thereby mediating host immune

tolerance to allogeneic cells, particularly to themselves [30]. The

molecular network for these cellular activities remains to be

elucidated.

In contrast to most studies, a previous study showed that allo-

MSC grafts had increased CD8 and NKT cells compared to

syngeneic MSC grafts [15], suggesting that immunogenicity of

allogeneic MSCs causes host immune rejection. Many factors may

contribute to this controversial finding, such as the purity and

identity of ‘‘MSCs’’ used in the study. Bone marrow cells adherent

to plastic tissue culture dishes are highly heterogeneous particu-

larly in mice, and often contain hematopoietic cells [32]. The cells

used in the study were CD902 and constitutively expressed MHC

class II and CD80 [15], which were different from typical BM-

MSCs, which have been defined as CD90+, and MHC class II-

and CD80-negative cells [5,14]. It is unclear whether these cells

are different in allogenicity. In the present study, using purified

BM-MSCs and a straight forward approach, we provide evidence

to show that the immunogenicity of allogeneic BM-MSCs is very

modest.

Previous studies suggest that the therapeutic effect of BM-MSCs

in acute myocardial infarction occurs early within days following

implantation which may largely be attributed to paracrine factors

released by the cells [33,34]. In this study, we found that

enhancement in wound closure was evident as early as three days

following administration of BM-MSCs. It suggests that BM-MSCs

may mainly affect activities in early stages of the wound healing

process such as cell recruitment and angiogenesis, and therefore

early delivery of MSCs is crucial to achieve optimum effect in

repair/regeneration.
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