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clinical case reconstructed by Guido Majno (1975) 
from the Hippocratic records describes a wrestler 
who visits the iatreion (out-patient clinic) to be 

treated for a shoulder dislocation. With less invasive proce- 
dures no longer working to tighten the dislocation, the clinic 
adopts the drastic measure of inducing wound contraction by 
poking a hot needle through the skin of the armpit, and "in 
this way the cavity, into which the humerous is mostly dis- 
placed, is best scarred over and cut off" In Greek medicine 
circa 400 B.C.E., familiarity with wound contraction after 
burn injury already was commonplace. 

Closure of cutaneous wounds involves three processes: 
epithelization, connective tissue deposition, and contrac- 
tion. The contribution of each process varies according to 
the type of wound. In general, epithelization results in resur- 
facing of the wound; connective tissue deposition results in 
replacement of damaged dermis; and contraction brings the 
margins of open wounds together (Peacock, 1984; Clark, 
1988; Mast, 1992). In mammals with loose skin (meaning 
loosely attached to the underlying tissue layer), wound con- 
traction leads to wound closure with little scarring or loss 
of function. In humans, whose skin is more firmly attached 
to underlying tissues, the consequences of contraction are 
less beneficial, ranging from minimal cosmetic scar in some 
cases to loss of joint motion or major body deformation in 
others. Consequently, a distinction has been made between 
contraction as a normal process of wound closure, and con- 
tracture as the abnormal result of the contraction process 
where signifcant scarring or loss of function occurs (Hunt 
and Dunphy, 1979). The pathologic consequences of tissue 
contraction include a variety of conditions ranging from con- 
tracture of the fibrous capsule surrounding breast implants 
to constricture of hollow organs (e.g., the esophagus) after 
injury (Skalli and Gabbiani, 1988; Rudolph et al., 1992). 

In contemporary cell biology, research on wound contrac- 
tion focuses on the wound fibroblast. Skin fibroblasts nor- 
mally are sessile and quiescent, but shortly after cutaneous 
wounding, they become activated. Activated fibroblasts mi- 
grate to the fibronectin-fibrin wound interface, proliferate, 
and synthesize a new collagen-containing matrix called gran- 
ulation tissue. Around the same time, wound contraction be- 
gins. Once the wound defect is replaced, the expanded fibro- 
blast population stops dividing and regresses and extracellular 
matrix remodeling commences (Peacock, 1984; Clark, 1993). 
Despite the importance of wound contraction for wound 
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healing, the mechanism by which wound fibroblasts exert 
force on the surrounding extracellular matrix is only begin- 
ning to be understood. Moreover, although it has become 
evident that gene expression and proliferation of these cells 
is regulated by mechanical force, the mechanotransducers 
and signaling mechanisms involved remain highly speculative. 

Fibroblasts, Myofibroblasts, and Wound Contraction 

Research carried out in the mid-1950's implicated connective 
tissue cells in the generation of the tensile force responsible 
for contraction (Abercrombie et al., 1956). The newly formed 
granulation tissue was suggested as the "organ of contrac- 
ture" (Billingham and Russell, 1956). Other studies showed 
that the force-generating cells were localized at the wound 
margins rather than in the center of the granulation tissue 
(Watts et al., 1958). Subsequently, Gabbiani et al. (1972) di- 
rectly demonstrated that isolated strips of granulation tissue 
were able to undergo a smooth muscle-like contraction in vi- 
tro and found that cells within the granulation tissue exhibit 
some features of smooth muscle cells such as actin filament 
bundles (stress fibers). These "myo-fibroblasts" were pro- 
posed to be responsible for force generation, and their pres- 
ence has turned out to be a general feature of tissues under- 
going contraction (Skalli and Gabbiani, 1987; Rudolph et al., 
1992). 

Analysis of cytoskeletal markers showed that although 
myofibroblasts express c~-smooth muscle actin, these cells 
are derived from fibroblasts not smooth muscle cells (Eddy 
et al., 1988; Darby et al., 1990). During granulation tissue 
formation, migrating fibroblasts differentiate into myofibro- 
blasts (Darby et al., 1990; Welch et al., 1990). Judging from 
the presence of fibronexus junctions, myofibroblasts form 
very tight adhesions to the surrounding fibronectin-rich gran- 
ulation tissue (Singer et al., 1984; Tomasek and Haaksma, 
1991). The timing of the switch from fibroblast to myofibro- 
blast phenotype appears to depend at least in part on the ex- 
tent to which the wound resists contraction (Darby et al., 
1990; Welch et al., 1990). It now seems likely that migrating 
fibroblasts at the wound margins generate sufficient force to 
initiate wound contraction. As contraction proceeds and re- 
sistance increases, migrating fibroblasts differentiate into 
myofibroblasts and the actin cytoskeleton becomes organized 
along the lines of greatest resistance (Petroll et al., 1993). 

In Vitro Models of  Wound Contraction 

Several in vitro models of wound contraction have been de- 
veloped using fibroblasts cultured in collagen or fibrin ma- 
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trices. Elsdale and Bard (1972) ~howed that fibroblasts cul- 
tured in collagen matrices acquire tissue-like phenotypic 
characteristics not typically observed in cells in monolayer 
culture. They reported that with matrices floating in the cul- 
ture medium, cell motility resulted in collapse of the matrix 
into a "dense, opaque body less than one-tenth of the original 
size" A similar reorganization process was observed when 
fibroblasts were cultured in fibrin (Niewiarowski and Gold- 
stein, 1973). Subsequently, Bell et al. (1979) began studying 
collagen-matrix reorganization as an in vitro model of wound 
contraction. 

Fig. 1 illustrates three common variations of the in vitro 
collagen matrix contraction model. These are: (I) floating 
matrix contraction (reduction in diameter); (II) anchored 
matrix contraction (reduction in height); and (III) stress 
relaxation. These models differ markedly in their mechani- 
cal features. In / ,  tension is distributed isotropically. In II, 
tension is distributed anisotropically. In III, mechanical 
stress develops during the period when the matrix is an- 
chored and then stress dissipates after the matrix is released. 
(In engineering jargon this process would be called strain 
recovery rather than stress relaxation.) The next two sections 
will focus on contraction of floating vs. anchored matrices. 
Subsequently, stress relaxation will be discussed. 

Contraction of Floating vs. Anchored 
Collagen Matrices 

Current evidence suggests that contraction of floating vs. an- 
chored collagen matrices is similar with regard to tractional 
remodeling, integrins, and extracellular factors (see below). 
The major difference is in the end result. Contraction of a 
floating collagen matrix results in a mechanically relaxed tis- 
sue, while contraction of an anchored collagen matrix results 
in a stressed tissue. 

Harris et al. (1981) showed that contraction occurs as a 
consequence of motile activity by cells trying to migrate 
through the matrix. This process was called "tractional 
remodeling" to distinguish it from a smooth muscle-like con- 
traction. That is, contraction occurs as fibroblasts spread and 
elongate, not as already elongated cells retract their exten- 
sions (Grinnell and Lamke, 1984). Cells reorganize prox- 
imally located collagen fibrils first and subsequently the rest 
of the matrix as tractional forces are propagated throughout 
the continuous, intertwined collagen fibril network (Guidry 
and Grinnell, 1987). 
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Adhesive interactions between cells and collagen required 
for contraction are mediated by a2/31 integrins (Schiro et al., 
1991; Klein et al., 1991). Tensile force was found to depend 
on an intact actin cytoskeleton (Bell et al., 1979; Bellows et 
al., 1982; Guidry and Griunell, 1985) and myosin light 
chain kinase (MLCK) activity (Ehrlich and Griswold, 1984; 
Van Bockxmeer et al., 1984; Ehrlich et al., 1991). 

Collagen matrix contraction requires serum (Steinberg et 
al., 1980; Guidry and Grinnell, 1985), which indicates that 
cell contractility can be regulated by extracellular factors. 
The activity of serum can be replaced or enhanced by puri- 
fied growth factors. For instance, transforming growth factor 

(TGF-/~) stimulates contraction of both floating and an- 
chored collagen matrices (Montesano and Orci, 1988; Fine- 
smith et al., 1990; Fukamizu and Grinnell, 1990). TGF-/~ 
also has been reported to promote fibroblast differentiation 
into myofibroblasts (Ronnov-Jessen and Petersen, 1993; Des- 
mouli et al., 1993). Platelet derived growth factor (PDGF) 
stimulates matrix contraction (Clark et al., 1989; Gullberg 
et al., 1990), but by a mechanism independent of TGF-/3 
(Tingstrom et al., 1992). Factors that inhibit matrix contrac- 
tion include fibroblast growth factor (Finesmith et al., 1990; 
Dubertret et al., 1991) and interferon 3' (Gillery et al., 
1992). In general, the downstream signaling mechanisms by 
which growth factors regulate matrix contraction are un- 
known, but protein kinase C probably is involved (Danowski 
and Harris, 1988; Guidry, 1992), 

Collagen Matrix Contraction and the Cell Phenotype 

The fibroblast phenotype that develops as a consequence of 
collagen matrix contraction differs dramatically depending 
on whether the matrices are floating or anchored. Contrac- 
tion of floating collagen matrices gives rise to a mechanically 
relaxed tissue whose cells have morphological and prolifera- 
tive features resembling dermis, whereas anchored matrices 
develop into a stressed tissue resembling granulation tissue. 
Strain gauge measurements have shown that the force exerted 
by fibroblasts in anchored collagen matrices is comparable 
with that generated in contracting skin wounds or during 
tooth eruption (Kasugai et al., 1990; Delvoye et al., 1991; 
Kolodney and Wysolmerski, 1992). 

In floating collagen matrices, fibroblasts develop stellate 
morphology with long processes and a cytoskeletal mesh- 
work (Bell et al., 1979; Bellows et al., 1981). In marked con- 
trast, cells in anchored matrices become bipolar and orient 
along lines of tension (Stopak and Harris, 1982; Bellows et 
al., 1982). Cells develop prominent stress fibers and fibro- 
nexus junctions and resemble myofibroblasts (Farsi and 
Aubin, 1984; Mochitate et al., 1991; Tomasek et al., 1992). 
Therefore, fibroblasts can contract a tissue matrix in vitro 
without differentiating into myofibroblasts, and the appear- 
ance of myofibroblasts correlates with development of stress 
in the matrix. 

Fibroblasts in floating vs. anchored collagen matrices 
show profound differences in cell proliferation. After contrac- 
tion of floating collagen matrices, there is a marked decline 
in cellular DNA synthesis (Sarber et al., 1981; Nishiyama 
et al., 1989; Nakagawa et al., 1989a). The cells become ar- 
rested in Go (Kono et al., 1990), and cell regression begins 
(Nakagawa et al., 1989b). Cells in anchored matrices, on the 
other hand, continue to synthesize DNA and increase in cell 
number (Nishiyama et al., 1989; Nakagawa et al., 1989a,b). 
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Also, subjecting fibroblasts in floating collagen matrices to 
external stress results in increased cell growth (Jain et al., 
1990). 

The low proliferative capacity of fibroblasts in floating col- 
lagen matrices appears to reflect decreased responsiveness of 
the cells to growth factors (Nakagawa et al., 1989a; Nishi- 
yama et al., 1990, 1991). Recent studies have shown that 
PDGF receptors on fibroblasts in floating collagen matrices 
lose their capacity to autophosphorylate in response to 
PDGF (Lin and Grinnell, 1993). 

In addition to changes in cell proliferation, fibroblasts in 
floating collagen matrices also show decreased collagen bio- 
synthesis and increased release of collagenase compared 
with cells in anchored matrices (Nusgens et al., 1984; 
Unemori and Werb, 1986; Paye et al., 1987; Fukamizu and 
Grinnell, 1990). Changes in collagen and coUagenase bio- 
synthesis by fibroblasts in floating matrices depend on tran- 
scriptional as well as posttranscriptional mechanisms (Mauch 
et al., 1988; Lambert et al., 1992; Eckes et al., 1993). These 
findings suggest that mechanical organization of the tissue 
can regulate extracellular matrix biosynthesis and remodel- 
ing as well as cell proliferation. 

Stress Relaxation 

If floating collagen matrices resemble dermis and anchored 
matrices resemble granulation tissue, then stress relaxation 
represents the transition from granulation tissue to dermis 
(or scar), albeit on a time scale that is markedly sped up. Un- 
like the slow (hours to days) contraction of floating or an- 
chored collagen matrices, contraction of stressed collagen 
matrices occurs in minutes. The fibroblasts themselves con- 
tract as indicated by the retraction of cell pseudopodia and 
collapse of actin filament bundles (Mochitate et al., 1991; 
Tomasek et al., 1992). In this case, the mechanism appears 
to involve a smooth muscle-like contraction rather than trac- 
tional remodeling. Intact stress fibers are required and the 
process is regulated by serum factors (Tomasek et al., 1992). 
Recently, thrombin has been found to substitute for serum 
and shown to stimulate myosin light chain phosphorylation 
(Kolodny and Elson, 1993) through a G-protein regulated 
pathway (Pilcher, B. K., and J. J. Tomasek. 1993. Mol. Biol. 
Cell. 4:300a). 

Accompanying stress relaxation, fibroblasts show tran- 
sient ectocytosis of annexin-containing vesicles (Lee et al., 
1993), release of cell surface fibronectin (Mochitate et al., 
1991), and inactivation of PDGF receptors (Lin and Grin- 
nell, 1993). Cell proliferation and collagen synthesis de- 
cline rapidly as the cells switch from an activated to resting 
phenotype (Iwig et al., 1981; Mochitate et al., 1991). The 
signaling mechanisms controlling these different events have 
yet to be determined, but one of the earliest fibroblast re- 
sponses to stress relaxation (5-10 min) is activation of a cy- 
clic AMP/protein kinase A signaling pathway (He, J., and E 
Grinnell. 1993. Mol. Biol. Cell. 4:364a). 

Changes in cell proliferation and biosynthetic activity af- 
ter stress relaxation provide insight into the possible mecha- 
nism of myofibroblast disappearance at the end of wound 
healing. As long as the tissue is under mechanical stress, cell 
proliferation and biosynthetic activity will persist. Once me- 
chanical stress is relieved, usually by a combination of 
wound contraction and biosynthetic activity, cells will switch 
to a non-proliferative phenotype and begin to regress even 

in the continued presence of growth factors. This view is 
consistent with commonplace surgical experience that in- 
creased skin tension contributes to increased scarring (Arem 
et al., 1976; Burgess et al., 1990). Moreover, it helps explain 
the role of external pressure in reducing wound contracture 
(Larson et al., 1971; Rockwell et al., 1989). 
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