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Abstract: DNA methylation and the alternative splicing of precursor messenger RNAs (pre-mRNAs)
are two important genetic modification mechanisms. However, both are currently uncharacterized
in the muscle metabolism of rabbits. Thus, we constructed the Tianfu black rabbit obesity model
(obese rabbits fed with a 10% high-fat diet and control rabbits from 35 days to 70 days) and collected
the skeletal muscle samples from the two groups for Genome methylation sequencing and RNA
sequencing. DNA methylation data showed that the promoter regions of 599 genes and gene body
region of 2522 genes had significantly differential methylation rates between the two groups, of
which 288 genes had differential methylation rates in promoter and gene body regions. Analysis of
alternative splicing showed 555 genes involved in exon skipping (ES) patterns, and 15 genes existed
in differential methylation regions. Network analysis showed that 20 hub genes were associated
with ubiquitinated protein degradation, muscle development pathways, and skeletal muscle energy
metabolism. Our findings suggest that the two types of genetic modification have potential regulatory
effects on skeletal muscle development and provide a basis for further mechanistic studies in
the rabbit.
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1. Introduction

The growth and development of muscle are closely related to nutrition, heredity,
gender, and age and involve a variety of metabolic mechanisms. Studies have shown
that the excessive accumulation of fat in obese humans can damage the AMPK signal
pathway [1] and cause disorders in the microvascular function of skeletal muscle, leading
to decreased insulin sensitivity [2]. Compared with those in normal mice, the excessive
accumulations of visceral fat in obese mice cause the disordered secretion of adipokines,
inflammatory reactions, abnormal distributions of skeletal muscle bundles, and muscle
atrophy [3]. This phenomenon indicates that fat and muscle have a synergistic effect. Rabbit
muscles have low cholesterol and high levels of unsaturated fatty acids. Simultaneously,
rabbit meat has high nutritional value and contains a high level of proteins and low levels
of fat and cholesterol. Therefore, rabbit meat is regarded as ideal for people with obesity
and cardiovascular diseases [4]. However, the molecular mechanisms involved in the
development and metabolism of the rabbit skeletal muscle are unclear.

DNA methylation is a chemical modification process in which a specific base in a
DNA sequence is covalently bonded to form a methyl group with a methyl donor of
S-adenosyl methionine (SAM) under the catalysis of DNA methyltransferases (DNMTs) [5].
DNA methylation is an important epigenetic mechanism, and most studies showed that
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changes in DNA methylation can influence energy metabolism in the muscle [6–8]. Studies
indicated that differentially methylated CpG sites in muscle tissues vary with age and that
gene body methylation sites are closely related to gene expression, influencing muscle
development [9–11]. Muscle development is often accompanied by variation in energy
metabolism. Different energy states can cause different development patterns in muscle.
High-fat diets can cause abnormal energy metabolism and change the methylation status of
genes in muscle. Short-term high-fat diets can change the level of DNA methylation in the
young skeletal muscle, involving the expression of genes from the inflammatory signaling
pathway [12]. Conversely, birth weight probably influences muscular methylation and the
metabolism of high-fat diets. Under the condition of a high-fat diet, people with normal
birth weight can produce a large number of methylation site differences than those with
low birth weight [13]. In addition, the abnormal DNA methylation in skeletal muscle can
be induced by different diet energy sources and may be one of the important factors leading
to metabolic diseases, such as obesity and type II diabetes [14]. These studies demonstrated
that energy metabolism can cause changes in the pattern of tissue methylation modification,
suggesting that the same methylation modification mechanisms likely exist in the rabbit
skeletal muscle.

DNA methylation sites exist in different functional regions of genes and can regulate
the expression levels of regulatory genes. Studies showed that the promoter and gene body
region methylation mechanisms play an important role in regulating gene expression and
function [15,16]. Exercise can change the energy metabolism of muscles and decrease gene
promoter methylation in the skeletal muscle of older people. Furthermore, the hypomethy-
lation of gene promoters is associated with oxidative stress response genes and muscle
development proteins, such as myosin, atrophic protein, and actin, thereby increasing the
expression level of these genes and leading to increased skeletal muscle sensitivity to in-
sulin and antioxidative stress capability [17]. Gene body methylation in the skeletal muscle
of pigs increases with age is negatively correlated with gene expression and regulates the
function of protein hydrolysis and degradation [18]. Gene promoter methylation directly
affects the processes of muscle proliferation and differentiation, influencing the mRNA
expression levels of myostatin (MSTN), stearoyl-CoA desaturase (SCD) gene, and fibroblast
growth factor (FGF) 21 [19–21]. Hence, age differences and diets with different energy
sources affect DNA methylation types in skeletal muscle, thereby increasing the accuracy
of biological gene responses. The same methylation modification mechanisms likely exist
in the rabbit skeletal muscle.

Alternative splicing is an important genetic modification mechanism for transcript ing
the gene into different forms of mRNA [22]. Alternative splicing includes seven kinds of
alternative splicing forms, i.e., exon skipping (ES), retained intron (RI), mutually exclusive
exon (MXE), alternative 5′ splice site (A5SS), alternative 3′ splice site (A3SS), alternative
first exon (AFE), an alternative last exon (ALE). Human studies found that ES is the main
alternative splicing form (35%), followed by variable 3′ (16%) and variable 5′ (15%) termini.
Intron retention is the least frequent, accounting for only 1% of all alternative splicing
events [23]. Previous studies showed a close relationship between gene methylation and
alternative splicing, affecting a variety of important biological processes through genes
interaction and their involved signal pathways [24–26]. DNA methylation can influence
the structure of nuclear chromatin by interfering with transcription factors to silence
genes [27]. In addition, the probability of CG methylation sites in exons is higher than that
in introns, enhancing the recognition strength of alternative splicing signals and the coding
of different splicing precursor mRNA forms and resulting in the translation of proteins
with new functions [28,29]. Transcriptome sequencing shows that DNA methylation and
alternative splicing differences exist in tissues and individuals, resulting in different effects
on gene regions to adjust gene expression levels [30,31]. The genetic modification of genes
is the key to forming various functions of the coding protein, suggesting involvement in a
complex regulatory network. The metabolic pattern of the rabbit skeletal muscle may have
a potential molecular regulatory network, which is closely related to genetic modification.
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Therefore, this study aims to establish a high-fat diet-induced obese rabbit model and
analyze the changes in DNA methylation and alternative splicing data in the rabbit skeletal
muscle between the two groups. Subsequently, we have found that most of the genes have
significant differences in variation between the two data sets, and genes with two genetic
mechanisms of methylation and alternative splicing are our focus. Moreover, a potential
metabolic regulatory network is constructed in the skeletal muscle to provide a basis for
the genetic mechanism studies of rabbit meat quality and human metabolic diseases.

2. Materials and Methods
2.1. Construction of the High Fat Diet-Induced Obese Rabbit Model

Tianfu black rabbit breed was performed under a strictly systematic breeding process
and had high meat quality with lower intramuscular fat than other rabbits [32]. Then, it
can be treated as an ideal material for us to construct an obese model for investigating
the metabolism differences in rabbit skeletal muscle. Female rabbits (n = 24) at about
35 days of age were selected from the Tianfu black rabbit colony in the teaching and
research rabbit farm of Sichuan Agriculture University and randomly divided into two
groups, a control group (CON−G; n = 12) and a high-fat diet-induced group (HFD−G;
n = 12). The CON−G rabbits and HFD−G rabbits were fed with a commercial diet and a
mixed diet composed of a commercial diet plus 10% pork lard, respectively. All rabbits
were fed from 35 d to 70 d, and specific feed procedures were performed in accordance
with our previous study [33]. All the rabbits adopted the same breeding management
conditions and were vaccinated regularly. The three rabbits with significant body weight
and characteristics of obesity were selected as HFD−G rabbits, while the three rabbits with
normal weight and physiological characteristics were chosen for CON−G rabbits. All the
six rabbits from the two groups were killed by air injection into the auricular vein and
slaughtered to collect right biceps femoris muscle samples for the extraction of total RNA
and DNA.

2.2. Total RNA Extraction and RNA-Sequencing

Total RNA was extracted from skeletal muscle samples (stored at −80 ◦C) in ac-
cordance with the TakaRa MiniBEST Universal RNA Extraction Kit instruction manual
(TakaRa, Dalian, China). The concentration and purity of RNA were determined by using
the NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA).
Three RNA samples from each group were respectively prepared for the construction of
RNA libraries, using NEBNext® Ultra™ Directional RNA Library Prep Kit for Illumina®

(NEB, Ipswich, MA, USA) according to its recommendations. Subsequently, all the RNA
sequencing libraries were sequenced using the Illumina HiSeq X Ten platform. The raw
reads needed to remove unqualified sequencing reads, including reads containing adapters,
reads with a ratio of N greater than 5%, low-quality reads (the number of bases with a
quality value of Q ≤ 10 accounts for more than 20% of the entire read), and rRNA reads.
Data processing was performed by Chengdu Life Baseline S&T Co.Ltd. Clean reads with
high quality were obtained after filtering and data quality control of raw data. The Hisat2
software v2.0.0 (http://ccb.jhu.edu/software/hisat2/downloads/, accessed on 7 January
2019) was used to match clean reads by comparing them with the reference genome se-
quence (GCF_000003625.3) to assess overall sequencing quality [34]. The parameters of the
software were referred to in accordance with the step: –phred64 –sensitive –no-discordant
–no-mixed -I 1 -× 1000. Gene quantitative analysis was carried out using the Kallisto
software 0.43.0 through transcripts Per Million (TPM) and filtering out of genes (TPM < 1)
in all samples [35].

2.3. DNA Extraction and Whole-Genome Bisulfite Sequencing (WGBS)

DNA samples from rabbit muscle tissues were respectively extracted using the QI-
AGEN DNA Kit (QIAGEN, Dusseldorf, Germany) in accordance with its manufactured
guidelines. DNA concentration was determined using agarose gel electrophoresis and

http://ccb.jhu.edu/software/hisat2/downloads/
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the NanoDrop 2000 Spectrophotometer. To better avoid inter-individual variability and
preliminary discovery of important genes in skeletal muscle, the methylation sequencing
samples of skeletal muscle tissue from each group were consistent with the above tran-
scriptome sequencing muscle tissue samples. Simultaneously, the three DNA samples from
each group were mixed and prepared for the construction of two libraries. The genomic
DNA was broken by ultrasound into 300 bp fragments, which should be repaired at the
end of each fragment, added with an A base at the 3′ end, and connected to the sequencing
joint. Subsequently, the constructed libraries were treated with a bisulfite treatment, us-
ing the ZYMO EZ DNA Methylation-Gold kit (ZymoResearch, Los Angeles, USA), and
the DNA fragments were amplified using specific amplification conditions. Finally, the
bisulfite-treated libraries were constructed and sequenced using the Illumina Hiseq™ X
Ten system [36].

2.4. Processing and Comparison of the Bisulfite-Sequenced Libraries

Bisulfite-sequenced reads were filtered by removing adapter sequences and low-
quality reads containing more than 50% low-quality bases (quality score < 5). The clean
reads were obtained and aligned to the rabbit reference genome (GCF_000003625.3) with
using Bisulfite Sequence Mapping Program (BSMAP-2.0) software (http://code.google.
com/p/bsmap, accessed on 7 January 2019) in the conditional mode of the map to two
forward strands, i.e., BSW (++) and BSC (− +) [37]. The bisulfite conversion rate was
calculated and based on the comparison of a small genome without methylation. Here,
lambda phage DNA was used as the control group for calculation. The maximum bisulfite
conversion rate was got by comparing it with the control genome.

2.5. Analysis of Mean DNA Methylation Levels

The mean methylation levels were calculated using the bisulfite conversion rate =
(100 × Number of CG methylation reads/(Number of CG methylation reads + Number
of CG nonmethylation reads)). All coding sequences of genes were divided into seven
different transcriptional units regions, which were composed of gene upstream, exon,
intron, internal exon, internal intron, last exon, and gene downstream. The upstream
region was located at 2kbp before the transcription start site (TSS), and the downstream
region was located at 2kbp after the last exon region. DNA methylation levels in these
transcriptional units of the genome were calculated.

2.6. Screening for Differentially Methylated Regions (DMRs)

Differentially methylated regions (DMRs) were defined as the same DNA region with
significant methylation sites differences in the genome of samples between groups. DMRs
were evaluated by comparing the same position in genome fragments of each library from
two experimental groups. Statistical details were as follows: (1) find a window containing
at least 10 CpG (CHG or CHH) at the same location in the genome of samples from the two
experimental groups; (2) take 10 CpG as windows and 1 CpG as steps to move forward;
(3) calculate the mean methylation levels of the two CG samples within this window (each
C site covers at least four supporting methylated reads); (4) determine whether a difference
exists between samples through inspection (value difference of methylation level >0.1); and
(5) continue to step until no difference. Then, these preselected intervals were combined to
obtain the final DMRs.

2.7. Differential Alternative Splicing Analysis

Based on the previous comparison with the genome, the replicate Multivariate Analysis
of Transcript Splicing (rMATS 4.0.2) software (http://rnaseq-mats.sourceforge.net, accessed
on 7 January 2019) was used to analyze the differential expression of five types of alternative
splicing and gene statistics between samples of two groups [38]. The parameters of the
software were referred to in accordance with the RNASeq−MATS.py−analysis U−t paired−a
8. P and FDR values were used to measure the significance of alternative splicing differences

http://code.google.com/p/bsmap
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between the two groups. We used FDR ≤ 0.05 as the threshold value to identify differentially
spliced genes (DSGs) between the two groups. We also used rMATs to analyze alternative
splicing events in a single sample relative to the genome annotation information.

2.8. Enrichment Analysis

DMR genes and variable splice genes were analyzed for enrichment analysis using
DAVID (https://david.ncifcrf.gov/tools.jsp, accessed on 10 June 2020) and the KEGG
database (Kyoto Encyclopedia of Genes and Genomes). R programs and Graphpad Prism
8.0 were used to construct diagrams.

2.9. Network Analysis

The interaction network was constructed using STRING 11.0 (https://version-11-0
.string-db.org/, accessed on 9 July 2020) and Cytoscape software 3.7.0 The hub genes were
screened for using the Cytohubba program of Cytoscape software 3.7.0. Cytohubba has
twelve algorithms < Degree, Edge Percolated Component (EPC), Maximum Neighborhood
Component (MNC), Density of Maximum Neighborhood Component (DMNC), Maximal
Clique Centrality (MCC) and centralities based on shortest paths, such as Bottleneck (BN),
Eccentricity, Closeness, Radiality, Betweenness, and Stress > for searching the hub genes in
the network [39].

3. Results
3.1. Differential Methylation of the Skeletal Muscle Tissue between the Two Groups

Approximately 80% of the reads of the whole-methylome bisulfite sequencing data
from skeletal muscle were uniquely mapped to the rabbit reference genome (Table 1).
We analyzed the deep sequencing distribution to check the validity of the methylome
data of skeletal muscle samples from CON−G and HFD−G (Figure S1). The sequence
characteristics of Cytosine (C) were divided into three types: CG, CHG, and CHH (H
stands for A or T or C base) [40]. The effective deep sequencing cumulative distribution of
C base types based on effective data in CON−G and HFD−G was shown in Figure S2. The
effective coverage rates of different C base types in the whole genome indicated that the
methylation results were reliable for subsequent studies.

Table 1. Whole-methylome bisulfite sequencing data from skeletal muscle in CON−G and HFD−G 1.

Group Clean
Reads

Clean
Bases (bp)

Mapped
Reads

Mapping
Rate (%)

Unique
Mapped

Reads

Unique
Mapping
Rate (%)

Bisulfite
Conversion

Rate (%)

CON−G 606,327,246 90,949,086,900 515,160,587 84.96 486,303,133 80.2 99.44
HFD−G 604,790,856 90,718,628,400 514,847,548 85.13 485,505,500 80.28 99.52

1 Bisulfite conversion rate = 1 −methylation rate of control DNA.

3.2. Distribution Ratios of Methylated C Bases between the Two Groups

The distribution ratios of methylated C bases mCG, mCHG, and mCHH differed
among samples of the two groups. The number and proportion of methylated C bases
(mCG, mCHG, and mCHH) reflected the characteristics of the genome-wide methylation
map in a skeletal muscle tissue sample of rabbits. The composition ratios of mCG, mCHG,
and mCHH in the CON−G and HFD−G were shown in Table 2. Proportionally, the
proportion of mCG in HFD−G (94.018%) was higher than those in CON−G (93.756%), and
the ∆mC proportion of mCG (0.637%) was higher than those of mCHG and mCHH (0.094%
and 0.269%, respectively). Results indicated that the higher difference of mCG methylation
occurred in the skeletal muscles of obese rabbits after the high-fat induction process.

https://david.ncifcrf.gov/tools.jsp
https://version-11-0.string-db.org/
https://version-11-0.string-db.org/
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Table 2. Number and proportion of methylated C bases in CON−G and HFD−G 1.

CON−G HFD−G HFD−G VS CON−G

mC Number Proportion (%) mC Number Proportion (%) ∆mC/All ∆mC
Proportion (%)

mCG 51,298,929 93.756 50,997,492 94.018 0.637
mCHG 903,726 1.652 859,466 1.584 0.094
mCHH 2,512,479 4.592 2,385,160 4.397 0.269

1 Methylated C (mC) screening method [41]. Binomial distribution test performed for methylated reads and non-methylated reads at
C sites. The table shows the number and proportion of methylated reads greater than or equal to their expected value in the binomial
distribution over a total effective coverage greater than or equal to 4.

3.3. Analysis of DNA Methylation Levels and Differentially Methylated Regions (DMRs) between
the Two Groups

The distribution characteristics of DNA methylation levels in different functional
regions are helpful to understand the role of DNA methylation modifications in different
regions at the genome-wide level [42]. To facilitate our understanding of the internal
relationship between DNA methylation and gene expression, we calculated the mean
methylation levels of the seven different transcriptional units’ regions in all coding se-
quences of genes (Figure 1). Results showed that the mean CG methylation levels in
different regions of the HFD−G were slightly higher than those of the CON−G, while
the mean methylation levels of CHG and CHH in the HFD−G were lower than those of
the CON−G, suggesting that the mean methylation levels of the three types in different
regions of the gene may be closely related to high-fat diet induction. Furthermore, we
found that 5390 DMRs were distributed across the 21 pairs of autosomes and 1 pair of sex
chromosomes in CON−G and HFD−G with a total length of about 1,570,251 base pairs
(Table 3). These results indicated that the high-fat diet could induce the production of
evident methylation regions in the skeletal muscles of rabbits.
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Figure 1. Distribution of mean methylation levels in functional areas of the gene region. This figure
represented the methylation levels in the samples of CON-M and HFD-M groups. The entire gene was
divided into seven different transcriptional elements in the X-axis. The length of each transcriptional
element area was divided into an equal number of bin areas containing a certain number of bases.
Each dot represented the mean methylation level of a bin region. The curve represented a five-point
mean value of methylation level in each bin region. The vertical axis was the mean methylation level
(values range from 0 to 1). The purple dotted line was the TSS position (Transcription start site).
Different colored lines and dots represented different types of methylation levels between the two
groups, respectively.
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Table 3. Number and length of differentially methylated regions (DMR) per chromosome in CON−G and HFD−G.

chr1 chr2 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chr10

DMR number 1331 1401 1051 776 335 496 617 742 1149 419
DMR length 396,041 421,303 305,229 218,887 96,186 132,605 187,769 219,937 331,992 125,477

chr11 chr12 chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr20
DMR number 509 892 1538 735 585 736 688 683 697 269
DMR length 154,160 265,709 426,667 221,132 178,538 214,250 194,860 196,669 194,099 74,580

chr21 chrX Total
DMR number 264 476 5390
DMR length 71,604 156,157 1,570,251

Note: The number and length of DMR were the total numbers and total length of differential fragments in each chromosome.

3.4. Methylation of Genes Analysis between the Two Groups

In this study, we identified 599 promoter methylated genes (Demethylated genes: 266;
Methylated genes: 333) and 2522 gene body methylated genes (Demethylated genes: 1143;
Methylated genes: 1379) by comparing DMRs in the promoter and gene body regions of
the genome. To better understand the potential function of these genes, we performed
a functional enrichment analysis of methylated genes in these regions. The results of
functional enrichment analysis of genes methylated in the regions of promoter region
(Figure 2a and Table S1) revealed metabolism-related pathways such as the apelin sig-
naling pathway (ko04371, n = 12, p = 0.01281), ECM-receptor interaction (ko04512, n = 9,
p = 0.01995), vibrio cholerae infection (ko05110, n = 6, p = 0.02058), osteoclast differentiation
(ko04380, n = 11, p = 0.02433), and gastric acid secretion (ko04971, n = 8, p = 0.02546).
The results of functional enrichment analysis of genes methylated in the regions of gene
body region (Figure 2b) revealed metabolism-related pathways such as ribosome (ko03010,
n = 15. p = 0.0001656), regulation of actin cytoskeleton (ko04810, n = 59, p = 0.002279),
estrogen signaling pathway (ko04915, n = 32, p = 0.002765), phosphatidylinositol signaling
system (ko04070, n = 35, p = 0.003577), vascular smooth muscle contraction (ko04270,
n = 38, p = 0.004323), oxytocin signaling pathway (ko04921, n = 43, p = 0.004541), and rap1
signaling pathway (ko04015, n = 64, p = 0.005431). The Venn diagram showed that 288
genes were found to exist two types of methylation (promoter and gene body; Figure 2c).
Based on the intensity of the methylation rate and the function of the genes, 10 methylated
genes were screened out from the 288 dual-methylated genes. The 10 methylated genes
among the 288 dual-methylated genes for further research were based on their promoter
methylation rates at the Table 4.

3.5. Analysis of Alternative Splicing between the Two Groups

Different splicing events enable a gene to produce different types of transcripts;
different transcripts can perform different molecular functions. Five types of alternative
splicing types were found in the skeletal muscle of CON−G and HFD−G rabbits by
comparing mRNA and genome sequencing. These five alternative splicing types were
composed of exon skipping (SE), intron retention (RI), alternative 5′ splice site (A5SS),
alternative 3′ splice site (A3SS), and mutually exclusive exon (MXE) in Figure 3. Exon
skipping had the largest number of splicing events among all five types, with 795 total
splicing events in 555 genes. The results demonstrated that a high-fat diet can induce
different types of variable shear events in the skeletal muscle tissue of rabbits.
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2.773 1.068 202.6769 175.4434 −0.20818 Down 

PNMA family member 1 (PNMA1) 2.1 1 7.949022 7.626103 −0.05983 Down 

Serpin family E member 1 (SERPINE1) −2.138 1.034 313.767 182.1212 −0.78479 Down 

Eukaryotic translation initiation factor 3 

(EIF3J) 
−3.524 4.524 426.54 424.0606 −0.00841 Down 

Intraflagellar transport 46 (IFT46) −2 −0.979 172.7577 170.0518 −0.02278 Down 

3.5. Analysis of Alternative Splicing between the Two Groups 306 

Different splicing events enable a gene to produce different types of transcripts; dif- 307 

ferent transcripts can perform different molecular functions. Five types of alternative 308 

splicing types were found in the skeletal muscle of CON−G and HFD−G rabbits by com- 309 

paring mRNA and genome sequencing. These five alternative splicing types were com- 310 

posed of exon skipping (SE), intron retention (RI), alternative 5′ splice site (A5SS), alter- 311 

native 3′ splice site (A3SS), and mutually exclusive exon (MXE) in Figure 3. Exon skipping 312 

had the largest number of splicing events among all five types, with 795 total splicing 313 

Figure 2. Enrichment analysis of genes methylated in the regions of promoter and gene body between CON−G and
HFD−G. (a) KEGG enrichment analysis of genes in promoter and gene region, respectively. (b) Venn diagram of differential
genes methylated in the regions of promoter and gene body from the two groups.
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3.6. Functional Enrichment Analysis of Genes with Related to ES Alternative Splicing

To better understand the role of genes related to differentially alternative splicing in the
skeletal muscle of CON−G and HFD−G rabbits, we performed a functional enrichment analysis
of genes related to ES alternative splicing and differentially methylation by using the online
DAVID software. These genes were involved in six pathways (p < 0.05, Table 5), i.e., hypertrophic
cardiomyopathy (HCM), focal adhesion, regulation of actin cytoskeleton, glycosylphosphatidyli-
nositol (GPI)-anchor biosynthesis, mRNA surveillance pathway, and spliceosome.
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Table 4. The key methylated genes were selected among the 288 skeletal muscle dual-methylated genes (promoter (P-DMR)
and gene body (G-DMR) regions) in rabbits from the two groups.

Description and Genes
Log2Ratio

(HFD-M/CON-M)
Means-Gene

Expression Levels Log2FC (HFD-
M/CON-M)

Up-Down-Regulation
(HFD-M/CON-M)P-DMR G-DMR CON-M HFD-M

Solute carrier family 25
member 47 (SLC25A47) 3.036 1.807 40.74781 41.64461 0.031407 Up

Homeobox B5 (HOXB5) −2.907 1.034 7.40671 10.85412 0.551339 Up
Late endosomal/lysosomal
adaptor, MAPK, and MTOR

activator 3 (LAMTOR3)
−2.722 −1.068 207.7547 228.8373 0.139441 Up

Tetratricopeptide repeat
domain 29 (TTC29) −2.03 −1.512 0.50368 0.511492 0.022204 Up

Centromere protein H
(CENPH) −1.914 −1.256 325.2772 354.271 0.123183 Up

UTP18 small subunit
processome component

(UTP18)
2.773 1.068 202.6769 175.4434 −0.20818 Down

PNMA family member 1
(PNMA1) 2.1 1 7.949022 7.626103 −0.05983 Down

Serpin family E member 1
(SERPINE1) −2.138 1.034 313.767 182.1212 −0.78479 Down

Eukaryotic translation
initiation factor 3 (EIF3J) −3.524 4.524 426.54 424.0606 −0.00841 Down

Intraflagellar transport 46
(IFT46) −2 −0.979 172.7577 170.0518 −0.02278 Down

Table 5. Enriched pathways associated with differentially alternative splicing genes in the skeletal muscle of CON−G and
HFD−G rabbits.

KEGG Pathway Terms Fold Enrichment Bonferroni Benjamini p Value FDR

ocu05410: Hypertrophic cardiomyopathy
(HCM) 4.3911 0.1647 0.1798 0.0009 0.1798

ocu05414: Dilated cardiomyopathy 3.6541 0.6843 0.5071 0.0059 0.5071
ocu04510: Focal adhesion 2.5133 0.7829 0.5071 0.0078 0.5071

ocu04810: Regulation of the actin
cytoskeleton 2.2706 0.9872 1 0.0223 1

ocu00563: Glycosylphosphatidylinositol
(GPI)-anchor biosynthesis 5.9221 0.9963 1 0.0286 1

ocu03015: mRNA surveillance pathway 2.9955 0.999935 1 0.0487 1
ocu03040: Spliceosome 2.3853 0.9999 1 0.0493 1

3.7. Combined Network Analysis of Exon-Skipping Alternative Splicing and Methylated Genes

The combined analysis of 288 genes methylated in promoter and gene body regions
and 555 ES alternative splicing genes revealed 15 methylated genes (ABLIM1, N4BP2L2,
SLC25A26, PPP1R12B, MRPL35, ZBTB20, TRADD, CLCN1, NUFIP1, ANKRD23, NBAS,
MACF1, PPFIBP2, IFT46, and MARCHF8) associated with ES alternative splicing in the
skeletal muscle of CON−G and HFD−G rabbits and showed in Figure 4a. Through
comparative analysis of the methylation rate and expression level of these genes, we
found that the methylated genes did not strongly correlate with their expression levels,
suggesting the complex regulation of gene transcription. Subsequently, 555 genes with
variable splicing SE and 15 genes with two genetic modifications were used to construct the
interaction network. After removing genes with a lower correlation, we set the correlation
between the nodes to be higher than 0.4 to construct the network, and showed in Figure S3.
Subsequently, the key interaction network between methylated genes and variable shear



Curr. Issues Mol. Biol. 2021, 43 1567

genes was constructed and showed in Figure 4b. 20 hub genes were identified by using the
cytoHubba module of the Cytoscape software in the rabbit skeletal muscle (Table 6).

Table 6. Top 20 genes associated with high-fat content in skeletal muscle of rabbits.

Description and Genes
Means-Gene

Expression Levels Log2FC
(HFD-M/CON-M)

Up-Down-Regulation
(HFD-M/CON-M)

Degree Type
CON-M HFD-M

UBX domain protein 7
(UBXN7) 395.9702 357.9715 −0.14555 Down 28 Hub

Titin (TTN) 6,762,662 6,303,461 −0.10145 Down 22 Hub
LIM domain binding 3

(LDB3) 28,568.54 26,594.22 −0.10331 Down 20 Hub

Filamin C (FLNC) 35,904.61 39,938.6 0.153615 Up 15 Hub
Triadin (TRDN) 9918.111 9663.512 −0.03752 Down 15 Hub

Adenosine
monophosphate

deaminase 1 (AMPD1)
17,171.82 14,074.44 −0.28697 Down 13 Hub

Protein kinase,
DNA-activated, catalytic

subunit (PRKDC)
531.1487 669.5437 0.334062 Up 13 Hub

Muscleblind like splicing
regulator 1 (MBNL1) 13,307.22 12,417.02 −0.09989 Down 11 Hub

Mitochondrial ribosomal
protein S7 (MRPS7) 2238.874 2278.568 0.025354 Up 11 Hub

Tropomyosin 2 (TPM2) 33,609.41 60,754.3 0.854121 Up 11 Hub
Troponin I1, slow skeletal

type (TNNI1) 6160.928 9336.202 0.599688 Up 10 Hub

Myosin binding protein C1
(MYBPC1) 15,887.01 36,243.89 1.189891 Up 9 Hub

Small muscle protein
X-linked (SMPX) 1575.926 3478.111 1.142104 Up 9 Hub

Nebulin (NEB) 472,893.1 393,039.4 −0.26684 Down 9 Hub
Creatine kinase, M-type

(CKM) 211,998.7 169,559.2 −0.32227 Down 8 Hub

TNF receptor-associated
factor 3 (TRAF3) 232.8944 210.9551 −0.14274 Down 8 Hub

Myosin light polypeptide 6
(LOC100349824) 2817.639 2572.484 −0.13133 Down 7 Hub

Mitochondrial ribosomal
protein L35 (MRPL35) 341.1524 342.8565 0.007189 Up 5 DMR

Ankyrin repeat domain 23
(ANKRD23) 82,064.12 84,664.2 0.045 Up 5 DMR

Solute carrier family 25
member 26 (SLC25A26) 178.6897 198.0738 0.148582 Up 2 DMR

Degree was the number of nodes interacting with the selected node, and its size is related to the core degree of this node. Hub genes were
highly correlated genes within candidate modules.
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4. Discussion

A high-fat diet is an important factor that causes body fat deposition and is often used
as an inducement condition in studies of energy metabolism and obesity. Compared with
vegetable fat, animal fats contain more saturated fatty acids, which are more likely to cause
obesity and metabolic disorders [43,44]. Then, we used a high-fat diet containing 10% lard to
induce the metabolic characteristics of obesity in rabbits, such as increased subcutaneous and
visceral fats, and significant differences in insulin and glucose levels in the obese group [33].
Most studies showed that DNA methylation and the variable shear forms of genes play key
roles in the deposition and metabolism of fat in mice [45–47]. In this study, we found that
the skeletal muscle of obese rabbits displays evident changes in the DNA methylation
and alternative splicing landscape as compared with their control counterparts. As dif-
ferences in methylation patterns between parents and children may lead to epigenetic
defects [46,48] and DMRs for various characteristics can be maintained during the parent-
progeny inheritance process and help with adaptation to the external environment [47,49],
our results may be useful in understanding the potential implications of obesity in epi-
genetic inheritance. Methylation in the promoter region has a high correlation with the
regulation of gene expression, whereas genes with gene body methylation have a complex
regulatory relationship with gene expression [50]. Genes with evident differential methyla-
tion in the promoter and gene body regions have a remarkable influence on gene expression
and genetic effects [51]. Similarly, we found genes with states of hypermethylation and
hypomethylation in the promoter and gene body regions of genes in muscle samples from
CON−G and HFD−G rabbits. The hypermethylation and hypomethylation of genes may
play key roles in the regulation of the proliferation and differentiation of cells, which
can immediately affect the downstream of genes to adapt to biological changes [52,53].
Obesity can promote the occurrence of tumors by inhibiting anticancer immune regulatory
factors [54]. Dietary intervention is also considered to be one of the important means to
suppress obesity-related tumors effectively [55]. In this study, we used a high-fat diet to
induce obesity in rabbits and we found that the skeletal muscle of such animals displays
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evident changes in the DNA methylation and alternative splicing landscape as compared
with their control counterparts. We found that UTP18, paraneoplastic Ma (PNMA) 1, and
SLC25A47 genes have higher methylation in the promoter and gene body regions, sug-
gesting that this methylation may be a protective regulation mechanism for rabbits and
deserves further study. UTP18 is a component of the small subunit processome involved
in the cleavage of pre-ribosomal RNA to form the 18S ribosomal RNA component of 40S
ribosomal subunits [56]. PNMA 1 is a member of the PNMA family, which is closely linked
to autoimmunity and neurodegeneration. Studies demonstrated that PNMA 1 encodes
a pro-apoptotic protein in neurons to affect paraneoplastic neurological syndrome and
hepatocellular carcinoma progression [57,58], which regulate the growth and development
of cancer and tumor cells.

The mammalian target of the rapamycin (mTOR) signaling pathway can regulate
muscle protein synthesis and degradation [59]. LAMTOR1 is regarded as a membrane
protein, which is specifically localized to the surface of late endosomes/lysosomes and
can interact with RagAB/CD GTPases and V-ATPase to activate the mTOR complex 1
(mTORC1) signaling pathway [60]. EIF3 is also a downstream regulator of mTOR, whereas
CENPH can indirectly regulate the mTOR signaling pathway [61]. EIF3 and CENPH
can maintain cell protein synthesis homeostasis through the mTOR signaling pathway.
The knockout of the eIF3f gene inhibits mTOR expression, thereby hindering mouse
embryonic development and reducing adult skeletal muscle mass [62]. The demethylation
of LAMTOR1, CENPH, and EIF3J genes in the promoter region indicates that the mTOR
signaling pathway may be activated to regulate the protein metabolism of muscle in obese
rabbits. A higher correlation is observed between the methylation ratio and the expression
levels of these genes, such as UTP18, PNMA1, HOXB5, and CENPH, suggesting special
genetic modification modes.

The accumulation of excessive fat in the skeletal muscle resulting from a high-fat
diet leads to high differences in energy metabolism, such as decreased insulin sensitivity,
abnormal mitochondrial metabolism, and increased inflammatory response levels [63].
The functional enrichment analysis in this study found that the genes methylated in the
regions of the promoter and gene body are associated with many metabolism-related signal
pathways. The extracellular matrix (ECM)-receptor interaction pathway is involved in
adipose differentiation and fat deposition in three fat tissues (i.e., subcutaneous, visceral,
and intramuscular adipose tissues) [64,65]. Notably, we also observed the regulation of
actin cytoskeleton and glycosylphosphatidylinositol (GPI)-anchor biosynthesis pathway,
which is enriched by different ES-type genes. This finding is consistent with the enriched
pathway of methylated genes in the gene body region. Studies demonstrated that changes
in skeletal muscle metabolic patterns can cause the actin cytoskeleton to rearrange and
activate glycolipid signaling pathways [66,67]. These results confirmed that the excessive
accumulation of fat in the skeletal muscle affects the functions of glycolipid proteins,
skeletal muscle cell development, and inflammatory response.

To understand the relationship between DNA methylation and alternative splicing
events, we found 15 genes with existing two genetic modification mechanisms from the
Venn diagram. Interestingly, the methylation rates of these genes have a lower correlation
with their mRNA expressions levels, such as IFT46, MARCHF8, PPFIBP2, and ZBTB20.
Then, we speculated that the selection of DNA methylation regions may increase the
possibility of the alternative splicing of genes to form various protein functions for regu-
lating the biological process. In addition, gene methylation may affect the expression of
tissue-specific splicing variants to form various biological functions. Combined networks
were constructed, and the CytoHubba module function of Cytoscape was used to ana-
lyze the core gene regulatory network to understand the potential relationship between
15 genes and other SE-type variable splicing genes. A previous study showed that ES
events constitute a large proportion of alternative splicing events and are important to
the occurrence of biological events [68]. Interestingly, most hub genes with alternative
splicing modification were the key nodes in the network, suggesting their association
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with various biological functions in response to obese metabolism in rabbits. Integrin
genes are involved in the HCM signaling pathway, which mediates the transduction of
intracellular and extracellular signaling molecules and is closely related to cardiovascular
disease and inflammation [69,70]. Abnormalities in integrin genes can cause type 1 diabetes
in children [71]. In this study, we found that integrin genes (i.e., ITGAV, ITGB6, and ITGA7)
were highly associated with other hub genes in the combined network, such as GMPR2,
AMPD3, and MRPS7, suggesting their various roles in the regulation of metabolism in
the muscle.

The absorption of dietary fat can increase body energy reserves and change the
metabolic pattern in the skeletal muscle tissue. The creatine/creatine phosphate system
plays an important role in the process of intramuscular energy metabolism. The creatine
kinase (CKM) gene encodes a muscle-specific isoenzyme of CKM, which is a key enzyme for
skeletal muscle energy metabolism and is also regarded as a marker of muscle development
and differentiation in the skeletal muscle. In addition, the CKM protein has a high affinity
with saturated and monounsaturated fatty acids with phosphatidic acid, and its expression
level is closely related to the formation of various types of intramuscular fatty acids [72].
The diabetes-associated connexin repeat (DARP/ANKRD23) protein is a member of the
muscle connexin repeat protein family and can negatively regulate the expression of liver
kinase B1 (LKB1) in the skeletal muscle, thereby promoting the LKB1/AMPK energy
metabolism signaling pathway to maintain a steady glucose state [73]. The expression of
mitochondrial proteins can regulate the intramuscular metabolic balance. The SLC25A26
carrier protein can affect RNA stability, protein modification, and mitochondrial gene
translation [74]. Furthermore, the DNA-dependent protein kinase gene (PRKDC) can
affect DNA replication, and its mutations or deletions can lead to immunodeficiency and
DNA repair disorders [75]. In the present study, we also found that CKM, ANKRD23,
SLA25A26, and PRKDC genes were the key nodes that interact with other genes in the
network. Particularly, ANKRD23 and SLA25A26 genes were demethylated in promoter and
gene body regions, and their gene expression levels were increased in obese skeletal muscle
tissues, suggesting that their association with the regulation of intramuscular metabolism
was induced by a high-fat diet in rabbits.

Ubiquitination modification can mediate the degradation of proteins, which can
regulate a variety of cellular activities, such as transcription, DNA damage repair, and
immune response. The UBXD7 protein contains an UBX domain, which can bind to mul-
tiple ubiquitin ligases for protein degradation [76]. When combined with mitochondrial
ubiquitin-protein ligase 1, the UBXD7 protein regulates the level of HIF-1a protein that
causes oxidative phosphorylation and changes the level of glycolysis [77]. Mitochondrial
ribosomal proteins (MRPs) are synthesized in the cytoplasm and transported to the mito-
chondria for the translation of mitochondrial proteins [78]. MRPS7 belongs to the MRP
family and is transported by nuclear gene-encoded proteins to the mitochondria to partic-
ipate in the mitochondrial respiratory chain metabolism [79]. In this study, UBXD7 and
MRPS7 were the core regulation centers in the network. Simultaneously, MRPL35 was
demethylated in the promoter and gene body regions, thereby increasing the gene expres-
sion level. Then, we speculated that the mitochondrial metabolism in skeletal muscle was
enhanced under high-fat-induced conditions. These genes are worthy of further studies in
the regulation of rabbit muscle mitochondrial metabolism.

The excessive accumulation of fat in skeletal muscles affects normal muscle development,
changes muscle fiber types, and causes intramuscular metabolic diseases. Mutation in func-
tional sites related to actin factors can cause muscle disease. The titin (TTN) and LIM domain
binding 3 (LDB3) actin genes exhibit alternative splicing in the skeletal muscle. Mutations in
TTN and LDB3 genes can cause the abnormal development of the skeletal muscle, leading to
muscular dystrophy [80–82]. Mutations closely related to muscle development muscleblind-
like (MBNL) proteins affect the regulation of alternative RNA splicing for the development of
striated muscle after birth, which is closely related to the onset of myotonic dystrophy [83].
Mutations in the actin-binding protein serine C (FLNC) and the small heat shock protein 7
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(HSPB7) produce abnormal muscle fibers and damage muscle fiber membranes [84]. Myosin
binding protein C1 (MYBPC1) is an abundant skeletal muscle protein and is expressed in
slow muscle fibers [85]. Slow- (TNNI1) and fast-twitch (TNNI2) skeletal muscle isoforms are
important proteins for the formation of different muscle fibers. These isoforms are located
on striated muscle filaments and participate in the inhibition of the calcium-induced myosin
ATPase activity, which is closely associated with meat quality [86]. The AMPD1, small muscle
protein X-linked, and triadin (TRDN) genes are closely related to the improvement of meat
quality [87–89]. In the present study, TTN, LDB3, FLNC, TRDN, AMPD1, MBNL1, MYBPC1,
and LOC100349824 were the key nodes in the network and probably influence the formation
of skeletal muscle fiber types in obese rabbits.

In addition, the DNA methylation level of genes has inconsistent changes in the gene
promoter and gene body regions, and its mRNA expression level was still expressed in
muscle tissues, which may involve a variety of genetic modification mechanisms, such as
non-coding RNA, methylated transferase, and histone modifications. Notably, we found
and speculated that methylated genes may form an interaction with variable splicing, which
can increase the mRNA expression level to influence various functions of the encoding
protein. The important modification mechanisms of these genes are worthy of further
studies and can improve the meat quality of rabbits by targeted modification techniques.
However, this study has the limitations, such as mixed samples, only one library in each
group for WGBS, and sequencing methods. The functional verification of genes and
networks should be considered in further studies.

5. Conclusions

In this study, we used the data from DNA methylation and alternative splicing analysis to
construct the combined interaction network, which showed that CKM, ANKRD23, SLA25A26,
and PRKDC were mainly involved in metabolism. UBXD7 and MRPS7 were involved in
ubiquitinated protein degradation pathways, and TTN, LDB3, FLNC, TRDN, AMPD1, MBNL1,
MYBPC1, and ENSOCUG00000017371 were involved in muscle development.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cimb43030110/s1, Figure S1: Sequencing depth distribution. The X-axis was sequencing depth,
and the Y-axis was the percentage of sequencing depth. Figure S2: Cumulative distribution of C base
sequencing depth. The horizontal axis (X-axis) of the graph represented the effective sequencing
depth, and the vertical axis (Y-axis) represented the genome measurement. The proportion of C
bases whose sequence depth was not less than the specific sequencing depth in the whole genome.
The sequencing depth of all bases in the whole genome was no less than 0 (the sequencing depth of
unmeasured C-bases is 0), and the proportion of C-bases with a depth of no less than 0 in the whole
genome is 100%. Therefore, the leftmost part of the figure started from 100 (the highest point on
the Y-axis). As the depth increased (from left to right on the X-axis), there were fewer and fewer C
bases that meet the depth requirement, and the proportion of all C bases in the whole genome was
smaller until it tends to 0 (the lowest point on the Y-axis). Figure S3: Combined network of genes
with SE type and 13 methylated genes in skeletal muscle from CON−G and HFD−G rabbits. The
size of the loop (The bigger circle), the color of the loop (Pink and purple), and the color of the line
(Purple) indicated the importance and interaction strength of genes, respectively. Table S1: Functional
enrichment analysis of methylated genes in promoter and gene body regions.
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