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Abstract
P53 up-regulated modulator of apoptosis (PUMA), a pro-apoptotic BCL-2 homology 3 (BH3)-only member of the BCL-2 
family, is a direct transcriptional target of P53 that elicits mitochondrial apoptosis under treatment with radiation and 
chemotherapy. It also induces excessive apoptosis in cardiovascular and/or neurodegenerative diseases. PUMA has been 
found to play a critical role in ovarian apoptosis. In the present paper, we review the progress of the study in PUMA over 
the past two decades in terms of its inducement and/or amplification of programmed cell death and describe recent updates 
to the understanding of both P53-dependent and P53-independent PUMA-mediated apoptotic pathways that are implicated 
in physiology and pathology, including the development of the ovary and cardiovascular and neurodegenerative diseases. 
We propose that PUMA may be a key regulator during ovary development, provide a model for PUMA-mediated apoptotic 
pathways, including intrinsic and extrinsic apoptotic pathways.
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Introduction

Apoptosis is a morphologically and biochemically distinct 
form of cell death that occurs in physiology and pathology, 
including ovarian development and cardiovascular and neu-
rodegenerative diseases [1, 2]. It is characterized by cell 
shrinkage, membrane blebbing, DNA fragmentation, chro-
matin condensation, and apoptotic body formation [3]. It is 
usually initiated by either death receptor pathway or through 
the mitochondrial pathway, regulated by the BCL-2 fam-
ily of proteins. The BCL-2 proteins consist of pro-survival 
and pro-apoptotic members. The careful modulation of the 
balance between these two groups of BCL-2 proteins can 
largely determine a cell’s fate between life and death.

PUMA, also known as BCL-2 binding component 3 
(BBC3), a BCL-2 homology 3 (BH3)-only protein of the 
BCL-2 family, was originally identified as a P53-downstream 

target, independently discovered by three separate groups 
[4–6]. PUMA binds to all of the anti-apoptotic BCL-2 mem-
bers and inhibits their pro-survival activity, and it can also 
directly activate the pro-apoptotic effectors BCL-2-associ-
ated X protein (BAX) and BCL-2 antagonist/killer (BAK) 
to cause mitochondrial outer membrane permeabilization 
(MOMP), resulting in the release of apoptogenic molecules, 
including second mitochondria-derived activator of caspases 
(SMAC), serine protease OMI, and cytochrome c from the 
mitochondrial intermembrane space into the cytoplasm. 
Cytochrome c binds apoptotic protease-activating factor 1 
(APAF 1) in the cytosol to form the apoptosome to acti-
vate caspase-activity cascades and cell apoptosis in various 
cell types [7]. In this present paper, we review the progress 
in the study of PUMA in relation to its inducement and/or 
amplification of programmed cell death over the past two 
decades. We also describe improvements to the understand-
ing of PUMA-mediated signaling pathways, summarize the 
role of PUMA in ovarian development, and in cardiovascular 
and neurodegenerative diseases, and propose a model for 
PUMA-mediated apoptosis.
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Apoptotic pathways

Mammals have two distinct but ultimately convergent 
pathways to apoptosis [8]: the death-receptor (also called 
extrinsic) pathway and the BCL-2-regulated (also called 
intrinsic or mitochondrial) pathway [9–11] (Fig. 1). The 
death receptor pathway is induced by death ligands and 
their cognate-death receptor, the adapter molecule FAS-
associated death domain (FADD) or TNF receptor-asso-
ciated protein with the death domain, which form the 

death-inducing signal complex (DISC), cause the recruit-
ment and activation of initiator caspase-8 followed by 
activation of the executioner caspases-3, -6, and -7 [7, 
12]. The inhibition of this death-receptor-induced apop-
tosis can be mediated by FADD-like ICE inhibitory pro-
tein (FLIP), which competitively blocks the processing of 
pro-caspase-8 at the DISC and keeps cells healthy [7, 12].

By contrast, the mitochondrial pathway is triggered by 
cellular stress, developmental cues, and endoplasmic reticu-
lum (ER) stress [13]. The BCL-2 protein family contains 
the pro-apoptotic members, such as BID, BIM, PUMA, 

Fig. 1   Apoptosis pathways. The death receptor and mitochondrial 
pathways of apoptosis are shown. The mitochondrial pathway is acti-
vated by developmental cues, the endoplasmic reticulum, or other 
stimuli. These stimuli trigger the BH3-only proteins, which then 
inhibit the BCL-2-like pro-survival proteins. The inhibition of the 
BCL-2-like pro-survival proteins leads to the activation of BCL-
2-associated X protein (BAX) and/or BCL-2 antagonist/killer (BAK). 
Activated BAX or BAK oligomerizes and forms pores to cause mito-
chondrial outer membrane permeabilization (MOMP), resulting in 
the release of apoptogenic molecules, including second mitochon-
dria-derived activator of caspases (SMAC), serine protease OMI, and 
cytochrome c from the mitochondrial intermembrane space into the 
cytoplasm. Cytochrome c binds apoptotic protease-activating factor 1 

(APAF 1) in the cytosol to form the apoptosome, which serves as a 
platform for the activation of caspase-9. Caspase-9 then activates the 
effector caspases (caspase-3, caspase-6, and caspase-7), which leads 
to cell demolition. Caspase activation can be blocked by the X-linked 
inhibitor of apoptosis protein (XIAP), which in turn is inhibited by 
the released SMAC and OMI proteins from the mitochondria. The 
death receptor pathway is activated when the ligands of the tumor 
necrosis factor family bind to their respective death receptors on the 
cell membrane. This results in cleavage of caspase-8, leading to the 
activation of effector caspases (caspase-3, caspase-6, and caspase-7) 
and cellular destruction. Death receptor signaling can also result in 
BID cleavage by caspase-8, leading to the generation of active tBID, 
which then engages the mitochondrial pathway
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BAX, and BAK, and the antiapoptotic members, such as 
BCL-2, BCL-XL, and MCL-1. BAX, BAK, and BCL-2-re-
lated ovarian killer protein (BOK) directly cause MOMP, 
resulting in the release of apoptogenic molecules, includ-
ing SMAC (also known as DIABLO), serine protease OMI 
(also known as HTRA2), and cytochrome c. Active BAX 
and BAK are inhibited by anti-apoptotic BCL-2 proteins. 
The BH3-only proteins in the BCL-2 family inhibit the anti-
apoptotic BCL-2 proteins and thus unleash BAX and BAK 
from their restraint by the pro-survival BCL-2 family mem-
bers to affect MOMP. Cytochrome c, which is released upon 
MOMP from the inter-mitochondrial space into the cytosol, 
binds to the cytosolic APAF1 protein and triggers apopto-
some formation to activate initiator caspase-9, which then 
activates the executioner caspases-3, -6, and -7. Caspase-8 
can proteolytically activate the BH3-only protein, BID, and 
by this means cause MOMP by activating BAX and BAK. 
Caspase activation can be blocked by X-linked inhibitor of 
apoptosis protein (XIAP), members of inhibitor of apoptosis 
proteins (IAPs), which in turn are inhibited by the SMAC 
and OMI proteins released from the mitochondria [7, 12]. 
Several proteins that are regulated by cleavage by effec-
tor caspases affect the distribution of phospholipids in the 
plasma membrane to allow phosphatidylserine (PS), which 
is normally constrained to the inner leaflet, to be exposed on 

the cell surface. The exposure of PS is a signal that promotes 
the phagocytosis of a dying cell prior to the loss of plasma 
membrane integrity [12].

PUMA

Basic information

PUMA is a member of a subfamily of BH3-only pro-apop-
totic proteins. It is highly conserved between human and 
mouse, with an over 90% sequence identity at both the DNA 
and protein levels. The genomic structure of PUMA is also 
similar between human and mouse [5, 6]. The human PUMA 
gene contains three coding exons (2–4) and two noncoding 
exons (1a and b), all of which (except for exon 1b) are con-
served in mouse. PUMA has four transcripts (α, β, γ, and δ), 
and the length of the PUMA transcript is about 1.6–1.9 kb. 
Extensive alternative splicings result in multiple PUMA 
transcript variants [5, 6]. Only PUMA-α and -β encoded 
proteins with the BH3 domain display pro-apoptotic activity, 
and they interact with members of the BCL-2 family in the 
mitochondrial membrane (Fig. 2).

The BH3 domain of PUMA forms an amphipathic 
α-helical structure, which is required for it to directly interact 

a
GC rich, binding sites (P53, FOXO3a, …… )

ATG Genomic PUMA
b

PUMA-α
1b 1a 2 3 4

PUMA-γ PUMA-α

MARARQEGSSPEPVEGLARDGPRPFPLGRLVPSAVSCGLCEPGLAAAPAA
PTLLPAAYLCAPTAPPAVTAALGGSRWPGGPRSRPRGPRPDGPQPSLSLA
EQHLESPVPSAPGALAGGPTQAAPGVRGEEEQWAREIGAQLRRMADDLNA
QYERRRQEEQQRHRPSWRVLYNLIMGLLPLPRGHRAPEMEPN
PUMA-β

Transcript 1 AUG AUG 3 4

PUMA-β

MKFGMGSAQACPCQVPRAASTTWVPCQICGPQPSLSLAEQHLESPVPSAP
GALAGGPTQAAPGVRGEEEQWAREIGAQLRRMADDLNAQYERRRQEEQQR
HRPSPWRVLYNLIMGLLPLPRGHRAPEMEPN
PUMA-γ

Transcript 2 AUG 3 4

PUMA-δ
Transcript 3 AUG 4
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Transcript 4 1a AUG 3 4

MKFGMGSAQACPCQVPRAASTTWVPCQICGPRERHGPRTPGGQLPGARRG
ARPPGALGSVLRPLRARPGCRPRRPHPAAR CLPLRPHRPT RRHRRPGGFPL
AWGSPQPAPRPAPGRSSALALAGGAAPGVARAQRPGGSGGRSHPGGPGSPR
GGGAAADGGRPQRTVRAAETRGAAAAPPLTLEGPVQSHHGTPALTQGPQSP
RDVDVRDSGGRPLPPPDTLASAGDFLCTM
PUMA-δ
MKFGMGSAQACPCQVPRAAS TTWVPCQICETRGAAAAPPLTLEGPVQSH
HGTPALTQGPQSPRDGAQLGACTRPVDVRDSGGRPLPPPDTLASAGDFLCTM

c PUMA protein

BH3 MLS

PUMA LRRMADDLN
BAD LRRMSDEF
BAK LAIIGDDIN
BAX LKRIGDELD
BID LAQVGDSM
BIK LACIGDEMD
BIM LRRIGDEFN
BMF LQCIADQFH
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Fig. 2   PUMA information. a Genomic structure of PUMA and alter-
native transcripts. b Amino acid sequence of PUMA-α, -β, -γ, and -δ. 
Conserved serines (S), BH3, and C-terminal domains in the amino 
acid sequence of PUMA are shown. S is given in blue, the BH3 
domain is in red, and the C-terminal domain in purple. c PUMA pro-

tein and two functional domains, namely, the BH3 and C-terminal 
mitochondria-localization signal (MLS) domains. The BH3 domain 
in PUMA is compared to the other pro-apoptotic BCL-2 family mem-
bers. d PUMA and the other BH3-only proteins have different bind-
ing profiles to the anti-apoptotic BCL-2 protein (Color figure online)
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with BCL-2-like proteins in the mitochondrial membrane to 
drive cytochrome c relocation from the mitochondria to the 
cytoplasm and activate procaspases-9 and -3 [5, 6]. PUMA 
also has a functional domain of the mitochondrial locali-
zation signal (MLS), which is localized in the C-terminal 
region of the molecule as a hydrophobic domain. The MLS 
directs the mitochondrial localization of PUMA [14]. The 
BH3 domain and MLS are essential for the ability of PUMA 
to induce apoptosis (Fig. 2).

The expression of PUMA is very low in normal cells, and 
cytosolic PUMA is usually undetectable. The high guanine 
and cytosine content of PUMA promoter at exon 1a and 
intron 1 favors the formation of secondary structures that 
limit the accessibility of the transcriptional machinery or 
recruit transcriptional repressors or chromatin-modifying 
proteins to prevent active transcription and maintain low 
basal expression levels in unstressed cells [6] (Fig. 2). Low 
PUMA expression is also associated with post-translational 
modification of PUMA. PUMA is regulated by phosphoryla-
tion on Serine (Ser) residues in multiple sites, such as 9, 10, 
36, 96, 106, and 166 through post-translational modification 
[15]. Ser 10 is the major site for PUMA phosphorylation, 
and it regulates PUMA degradation by association with heat 
shock 70 kDa protein 8, leading to its lysosome transloca-
tion and uptake through chaperone-mediated autophagy, 
thus inhibiting PUMA-induced apoptosis [16]. However, the 
phosphorylation of PUMA at Ser 96 and Ser 106 is required 
for the interaction of PUMA with mitochondrial pyruvate 
carrier (MPC) to disrupt mitochondrial pyruvate uptake, 
leading to prime pathology [17, 18].

PUMA can be induced by many transcription factors that 
bind to it at the exon 1 and intron 1 regions of its promoter 
(Fig. 2). The function of P53 is best understood in relation 
to the transcription factors that activate PUMA [14, 19]. The 
P65 or P52 subunit of nuclear factor-κB (NF-κB) can facili-
tate P53-dependent PUMA induction through P53-depend-
ent recruitment to PUMA promoter following certain forms 
of DNA damage [19]. P63 and P73, which are members 
of the P53 family, also activate PUMA transcriptionally 
[19, 20]. In addition to P53, several other transcription fac-
tors are implicated in PUMA induction. Forkhead box O 
(FOXO) family members FOXO1 and FOXO3a mediate 
PUMA induction [21–23]. CAAT/enhancer-binding protein 
(C/EBP) homologous protein (CHOP, also known as DNA 
damage inducible transcript 3, growth arrest- and DNA 
damage-inducible gene 153), E2 transcription factor (E2F1), 
TRIB3/TRB3 (Tribbles homolog 3), and activator protein 1 
(AP-1/c-Jun) are involved in PUMA induction through ER 
stress [14, 24, 25]. Moreover, other transcriptional factors 
are involved as well, including C/EBP-β, cAMP response 
element binding protein (CREB), nuclear factor of acti-
vated T cells (NFAT), specificity protein 1 (SP1), c-MYC, 
interferon (IFN) regulatory factor 1(IRF-1), Caenorhabditis 

elegans SMA and Drosophila mothers against decapenta-
plegic homolog 4 (SMAD4) [14, 26, 27]. PUMA can also 
be negatively regulated by transcriptional repressors, such 
as SLUG, certain alternative splice products of P73 or P63, 
and microRNAs [19, 28, 29].

PUMA is expressed and induced by a range of stimuli, 
including genotoxic stress, hypoxia, ER stress, mitochon-
drial perturbation, deregulated oncogene expression, toxins, 
growth factor/cytokine withdrawal, altered redox status, and 
infection in different cell types of humans and mice [14, 19]. 
PUMA functions in either a P53-dependent or P53-inde-
pendent apoptotic manner. Once expressed, PUMA binds 
to all of the anti-apoptotic BCL-2 members proteins (Fig. 2) 
and also directly activates the pro-apoptotic effectors BAX 
and BAK, causing MOMP, caspase cascades and cell apop-
tosis in various cell types [7, 12]. PUMA can also bind 
to apoptosis repressors with caspase recruitment domain 
(ARC) to activate caspase-8, which cleaves BID into tBID 
and accelerates BAX mitochondrial translocation in the 
heart and brain [30–32]. It should be noted that PUMA links 
intrinsic and extrinsic pathways through ARC, which can 
be P53-dependent or P53-independent (FOXO3a) [30–32]. 
Reactive oxygen species (ROS) can also upregulate PUMA 
expression in vitro and in vivo [32, 33]. ROS, caspases, 
cytochrome c, and other signalers participate in positive 
feed-forward loops to amplify cell death, as is implicated in 
physiology and pathology.

PUMA paradox

The PUMA gene is a double-edged sword. It has been shown 
that PUMA upregulation is not always linked to apopto-
sis. Monocytes that are stimulated by pro-inflammatory 
cytokines can promote PUMA upregulation in the endothe-
lial cells of the human umbilical vein. However, elevated 
PUMA protein levels do not result in apoptosis in cells. 
PUMA is highly expressed during cell proliferation and 
survival in vascular and microglia cells through the regu-
lation of autophagy [34]. PUMA-mediated autophagy is 
either cytoprotective or cytotoxic [35–37]. PUMA upregu-
lation inhibits mitochondrial pyruvate uptake and oxidative 
phosphorylation, and it increases glycolysis in hepatocellular 
carcinoma, which depends on IκB kinase-mediated phospho-
rylation of PUMA at Ser 96/106 [17]. PUMA is also overex-
pressed in many other human cancers [17, 34], and the loss 
of PUMA ablates tumorigenesis in certain mouse models 
[38, 39]. Thus, PUMA is also an oncogene [17, 38, 39]. Fur-
thermore, the genetic ablation or inhibition of PUMA leads 
paradoxically to protective effects of cells and hematopoietic 
stem/progenitor cells in mouse intestinal and hematopoietic 
systems [38–40]. It should be noted that the PUMA paradox 
has been posited as a riddle that requires future study [12]. In 
addition, PUMA inhibitors (PUMAi) are designed to inhibit 



239Apoptosis (2021) 26:235–247	

1 3

PUMA-dependent and radiation-induced apoptosis in vitro 
and to prevent or mitigate intestinal damage and apoptosis 
induced by inflammatory cytokines, ROS, or chemotherapy 
[41]. PUMAi have also been confirmed by biochemical 
assays, including GST-pull down assay and fluorescence 
polarization (FP) assay, to effectively disrupt the interaction 
between PUMA and BCL-XL (unpublished data). PUMAi 
protect against chemotherapy-induced intestinal injury [42]. 
All of the PUMAi have recently been reviewed [43].

PUMA‑mediated signaling pathways

P53‑dependent pathways

PUMA can be transcriptionally activated by P53 in vitro 
and in vivo [14, 19]. Mouse double minute 2 (MDM2) is 
a P53-negative regulator, and MDM2 inhibitor (Nutlin-3a) 
kills hematological cancer-derived cell lines in vitro and in 
mice, mostly through the P53-mediated induction of PUMA 
[44]. P53 transcriptionally represses ARC expression but 
activates PUMA expression, and PUMA competitively binds 
to ARC with caspase-8, which cleaves BID into tBID to 
accelerate BAX translocation in heart and brain [30–32]. 
The P53-induced PUMA apoptotic program can be inter-
fered with by Scratch2 (SNAI2), a zinc finger transcrip-
tional repressor of the SLUG/SNAIL family [28]. In addi-
tion, SLUG (SNAI2) directly binds PUMA at intron 1 and 
represses its expression [29]. It is noteworthy that PUMA 
can disrupt the interaction between cytosolic P53 and BCL-
XL, allowing P53 to promote DNA damage-induced apop-
tosis via direct activation of the BCL-2 effector molecules, 
BAX and BAK [45]. It has recently been found that the 
wild-type P53 suppresses pyruvate-driven oxidative phos-
phorylation by inducing PUMA, which inhibits mitochon-
drial pyruvate uptake through PUMA-MPC interaction in 
hepatocarcinoma [17].

PUMA can be activated through P53 post-translational 
modification. Lys120 acetylation in P53 mediates the acet-
ylation of histone H4 at the PUMA promoter, promoting 
PUMA expression during DNA damage [46]. However, 
Lys382 monomethylation inhibits P53 from recruiting to 
PUMA promoters [47]. In addition, the cofactors of the 
apoptosis stimulation of of P53 protein 1/2 (ASPP1/2) and 
apoptosis-antagonizing transcription factor (AATF) also 
bind P53 at PUMA promoters and influence PUMA expres-
sion [48].

The other members of the P53 family, P73 and P63, 
may also activate PUMA. P63 triggers apoptosis through 
the transcriptional induction of PUMA [20]. P73 can regu-
late PUMA expression independent of P53 by binding to 
the same P53-responsive elements in the PUMA promoter 
in response to a variety of stimuli [19]. P73 and E2F1 

transactivate PUMA directly by binding and activating 
the promoter [14]. E2F1 also transactivates P73, and this 
may amplify the induction of PUMA [49]. The ΔNp73 iso-
forms may repress the PUMA-BAX system and inhibit both 
TAp73- and P53-induced apoptosis [19].

P53‑independent pathways

JAK‑STAT​

The Janus kinase-signal transducer and activator of tran-
scription (JAK-STAT) signaling pathway is involved in many 
crucial biological processes, such as apoptosis. PUMA is 
upregulated through the JAK1-STAT1 pathway to induce 
apoptosis for therapy in cutaneous T-cell lymphoma cell 
lines [50]. PUMA is also regulated by STAT3, thus inducing 
apoptosis in human mucoepidermoid carcinoma cell lines 
[51]. The precise role of PUMA in the JAK-STAT pathway 
awaits further study.

PI3K‑AKT‑FOXO1/3a

PUMA is a downstream target of FOXO1 and FOXO3a 
[21–23]. The activation of PI3K-mediated protein kinase B 
(PKB/AKT) results in the direct phosphorylation and cyto-
plasmic retention of the transcription factors FOXO1 and 
FOXO3a and prevents PUMA upregulation [21–23]. Serum 
and glutocorticoid-induced kinase 1 (SGK1) phosphoryl-
ates FOXO3a and causes it to translocate out of the nucleus, 
thus inhibiting PUMA expression [52]. MYC and PI3K-
AKT signaling cooperatively repress FOXO3a-dependent 
PUMA expression [53]. However, chromatin remodeler 
Brg-associated factor 57 (BAF57), a subunit of SWItch/
sucrose non-fermentable (SWI/SNF), executes neuron death 
in FoxO3a-mediated PUMA expression in cellular models of 
Parkinson’s disease (PD) [54]. In addition, autophagy inhibi-
tion increases the levels of FOXO3a transcription factor, and 
promotes PUMA upregulation, thereby increasing apoptosis 
[55]. Glycogen synthase kinase-3β (GSK-3β) also regulates 
PUMA expression, and GSK-3 suppression prevents PUMA 
induction by FOXO3a and P53 on growth factor withdrawal 
[56].

cAMP‑PKA‑CREB

cAMP is a well-characterized intracellular second messenger 
and plays a critical role in many biological processes. PUMA 
regulates the cAMP/protein kinase A (PKA)-induced apop-
totic pathway in a P53-dependent manner [57]. PUMA can 
be transcriptionally repressed by cAMP-exchange protein 
activated by cAMP (Epac) signaling pathway [58]. PUMA 
promoter contains CREB binding sites [26]. The relation-
ship between PUMA and CREB remains to be established.
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MAPK

The mitogen-activated protein kinase (MAPK) pathway con-
tains P38, c-Jun N-terminal kinase (JNK), and extracellular 
signal regulated kinase (ERK). PUMA is a direct transcrip-
tional target of c-Jun, a subunit of the AP-1 complex. During 
activation in ER stress, PUMA expression is regulated by 
IRE1-JNK/c-jun [59]. PUMA induction is also dependent 
on P38 kinase in SH-SY5Y neuroblastoma cells [60]. It is 
also induced by doxorubicin through P53 and ERK1/2 path-
ways leading to apoptosis [61]. In addition, DNA lesions are 
induced by ROS or directly activated by PUMA through the 
P53, ERK1/2, and NF-κB pathway [61]. Oxidative stress 
activates JNK-P53-PUMA signaling and induces the apop-
tosis of granulosa cells in the ovary [62, 63].

WNT signaling

Wingless-type mouse mammary tumor virus integration site 
family (WNT)-β-catenin signaling plays a key role in the 
development. GSK3β, a component of the WNT-β-catenin 
pathway, is required for the P53-mediated induction of 
PUMA [64]. WNT-β-catenin signaling potentially regulates 
follicular development negatively through FOXO3a-medi-
ated PUMA pathway promoting granulosa cell apoptosis 
[65], and WNT3a-treated granulosa cells stop develop-
ment through the FOXO3a-mediated PUMA pathway [66]. 
β-catenin may suppress PUMA induction until it is inacti-
vated by GSK-3β [67].

Hippo signaling

The Hippo signaling pathway regulates a range of physi-
ological processes. Human mammalian sterile 20-like 
kinase 1 (MST1) is a core member of the Hippo pathway, 
and Yes-associated protein (YAP) is a major downstream 
effector molecule for the Hippo signaling pathway and a 
transcriptional coactivator of cell proliferation and apopto-
sis. PUMA can be upregulated by YAP1, which translocates 
to the nucleus and associates with P73, resulting in PUMA 
upregulation for apoptosis [68]. MST1 promotes apoptosis 
through the upregulation of the pro-apoptotic proteins P73, 
P53, PUMA, caspase-3, and YAP [69]. In addition, MST 
activates FOXOs [70], YAP regulates ER stress [71], and 
PUMA participates in ER stress. The role of PUMA in ER 
stress associated with Hippo signaling thus requires further 
study.

TGF‑β signaling

Transforming growth factor β (TGF-β) is a superfamily that 
regulates fundamental cellular properties and vital cellular pro-
cesses, such as proliferation, differentiation, communication, 

apoptosis, and tissue remodeling. PUMA is a direct target of 
TGF-β signaling in B-cells, which mediates rapid induction of 
apoptosis [27]. In response to TGF-β, PUMA promoter signal-
ing is most likely dependent on SMAD binding at positions 
-1923 to -1885 of the SMAD-binding region [27]. SMAD4 
induces PUMA-mediated cell death through P21-activated 
kinase 1 suppression [72]. The P53 mediated PUMA and 
TGF-β signaling pathways are both essential for doxorubicin-
induced cytotoxicity [73]. In addition, the Hippo pathway 
functions as a SMAD partner in transcriptional activation [74]. 
Hippo signaling also promotes the formation of the β-catenin 
destruction complex of WNT signaling through the phos-
phorylation of YAP1 and tafazzin (TAZ). P53 and its family 
relatives P63 and P73 are associated with WNT input [74]. 
SLUG inhibits PUMA and promotes cell survival [29]. Thus, 
the relationships among PUMA, P53/63/73, SLUG/SNAIL, 
TGF-β-SMAD4, WNT-β-catenin, and Hippo signaling need 
additional investigation.

BCL‑2 family

Several BH3-only proteins have been shown to have the canon-
ical pro-apoptotic activity of BCL-2 family proteins, includ-
ing BCL2L11/BIM, BID, BAD, BIK/NBK, BCL-2-modi-
fying factor (BMF), activator of apoptosis hara-kiri (HRK), 
NOXA, BOK, NIX/BNip3L, BCL-2/adenovirus E1B 19-kD 
protein–interacting protein 3(BNIP3), BNIP3L, and PUMA 
[75]. BH3-only proteins likely have overlapping, additive, and 
complementary roles in ER-induced apoptosis [76]. PUMA 
may co-operate with other BH3-only proteins such as BIM 
and BID to promote its own activation and mediate the full 
apoptotic response [77]. Different BH3 proteins may have 
distinct effects, depending on their subcellular localization 
and the intensity of the given stimuli [78]. The relationship 
between PUMA and the other BH3-only proteins for induc-
ing apoptosis is thus worth investigating. All PUMA-mediated 
signal pathways are proposed in Fig. 3.

PUMA plays a critical role in the apoptotic 
process in an ER‑ and mitochondria‑ 
dependent manner

PUMA-induced apoptosis, which is linked to ER and mito-
chondria, plays a key role in physiology and pathology. In this 
paper, the role of PUMA in ovarian, cardiovascular, and neu-
rodegenerative diseases is examined.
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PUMA may be a key regulator in ovarian 
development

The mammalian ovary is the female organ for the repro-
ductive function. In development, the ovary passes through 
the stages of primordial germ cell formation, germ cell 
nesting, nest breakdown, primordial follicles, secondary 
follicles, and more advanced stages, until ovulation. The 
total number of ovulations is important for reproductive 
efficiency in humans and farm animals. During ovarian fol-
liculogenesis, over 99% of follicles undergo degeneration 
through follicular atresia, which shows many hallmark fea-
tures of apoptotic cell death at various stages of follicular 
development. Many factors and signal pathways, includ-
ing the P53 family, the PI3K-AKT-FOXO1/3a pathway, 
the cAMP-PKA-CREB pathway, the JAK-STAT pathway, 
Hippo signaling, TGF-β signaling, Notch signaling, and 
WNT-β-catenin pathway, affect the apoptosis of oocytes, 
granulosa cells, theca cells, and stromal cells during ovar-
ian development [79]. In mice, two waves of cell death in 
germ cell loss are seen at embryonic days (E) 13.5–15.5 
and E17.5 – to postnatal day 9 (Fig. 4).

PUMA induces apoptosis in the oocytes

PUMA plays a critical role in the apoptosis of primordial 
germ cells in mice prior to meiotic entry, either during 
migration to the gonad or soon after arrival in the ovary [80]. 
A 2.2-fold increase in the number of germ cells in PUMA-
deficient mice is maintained throughout ovarian development 
to E13.5 and results in a 1.9-fold increase in the number of 
primordial follicles initially established in the ovary com-
pared to wild type mice [80]. PUMA is also involved in 
germ cell apoptosis and nest breakdown in cultured whole 
embryonic rat ovaries [81].

In addition, the loss of PUMA alone or PUMA and 
NOXA together protects C57BL/6 mice from DNA damage-
induced irradiation- and TAp63-mediated primordial follicle 
oocyte apoptosis at postnatal day 5 [20]. It is noteworthy 
that the loss of PUMA alone rescues 100% of the ovarian 
reserve following drug treatment with cyclophosphamide 
and cisplatin. However, the transcriptional activation path-
ways for PUMA may differ in response to these two drugs. 
Cisplatin activates a TAp63-dependent process that requires 
phosphorylation by both priming kinase checkpoint kinase 
2 (CHK2) and executioner kinase of casein kinase 1 (CK1) 
in primordial mouse follicles, while cyclophosphamide acts 

Fig. 3   Proposed model for 
PUMA-mediated apoptosis. 
PUMA (P53 upregulated modu-
lator of apoptosis, also known 
as BCL-2 binding component 
3), is downstream of multiple 
signaling pathways. PUMA-
mediated apoptosis pathways 
are regulated by transcriptional 
factors, a balance of survival 
and apoptotic factors, the cell–
cell interactions, and commu-
nication between the ER and 
mitochondria. PUMA inhibition 
may be beneficial for therapies 
in some human diseases and 
for improving animal litter size. 
Activation is shown in pink, 
and inhibition is given in blue 
(Color figure online)
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via a TAp63-independent and FOXO3a-dependent pathway 
[82]. The inhibition of either of CK1 and CHK2 as well 
as upstream kinase ataxia telangiectasia mutated (ATM) 
saves oocytes in mouse ovaries from apoptosis [83]. Here, 
tauroursodeoxycholic acid (TUDCA), a selective inhibi-
tor of ER stress that has been approved by the Food and 
Drug Administration for clinical use, inhibits granulosa cell 
apoptosis and promotes oocyte maturation [84, 85]. TUDCA 
also limits apoptosis by decreasing palmitate-induced JNK 
phosphorylation, PUMA upregulation and BAX activation 
[86]. Thus, the role of TUDCA in PUMA-mediated ovarian 
apoptosis should have further study.

PUMA triggers apoptosis in somatic cells

PUMA is clearly involved in oxidative stress-induced 
apoptosis [22]. PUMA can be upregulated by JNK in a 
FOXO1-dependent manner, and JNK inhibitor (SP600125) 
can inhibit PUMA expression in the ovary [22]. The JNK 
potentiated, AKT-mediated FOXO3a, and the JNK-mediated 
c-Jun pathways cooperatively trigger PUMA expression in 
ovarian cancer cells [87]. JNK inhibitor also partially res-
cues PUMA-induced decreases in BCL-XL and MCL-1 in 
ovarian cancer cells [63]. Oxidative stress activates JNK-
P53-PUMA signaling and induces apoptosis in granulosa 
cells [62, 63]. PUMA expression is also inhibited by P53 
inhibitor (Pifithrin-α) [62] or PUMAi (unpublished data). 
Other hormones and small molecules, such as follicle-stimu-
lating hormone, may also protect PUMA-mediated apoptosis 
through the PI3K-AKT pathway in mouse granulosa cells 
[88]. PUMA is upregulated in cattle granulosa cells after the 
treatment of fibroblast growth factor (FGF) 2 and FGF18 in 
a context-dependent manner [89].

In addition, oxidative stress-induced upregulation of 
PUMA is found in vivo through treatment with 3 nitropro-
pionic acid (3-NP) in mice [22]. It is important here that the 

ovary-expression profiles in PUMA-deficient mice treated 
with 3-NP cluster at first with the wild-type (WT) mouse 
without treatment, and then they cluster with the treated WT 
mouse at 6 weeks for 7-day treatment of 3-NP by RNA-Seq 
(unpublished data). This suggests that a PUMA deficiency 
protects the mouse ovary from oxidative stress at the tran-
scriptional profiles.

PUMA induces mitochondrial ROS generation through 
functional BAX, irrespective of their P53 status, and it 
activates nuclear factor erythroid 2-related factor 2 path-
way [89], which in turn results in DNA damage response, 
including ATM, ATR, DNA-PKcs, CHK1, and CHK2, along 
with JNK activation, finally producing apoptosis in ovarian 
cancer cells [89]. N-acetyl-L-cysteine partially abrogates 
PUMA-induced apoptosis [89].

Due to the process of ovarian development and the role 
that PUMA plays in physiology and pathology, we propose 
that PUMA is a key regulator in the ovarian development, 
particularly where there are a range of stimuli (Figs. 3 and 
4).

PUMA inhibition is a potential therapeutic 
target for ameliorating cardiovascular 
diseases

PUMA induction through ER stress in cardiac myocytes is 
partially a P53-independent and partially a P53-dependent 
mechanism [76, 90–92]. CHOP-mediated PUMA signaling 
is a major component for ER stress in heart failure resulting 
from neonatal cardiomyocyte apoptosis and diabetic cardio-
myopathy, as well as cardiac myocyte dysfunction and injury 
[92]. The administration of valsartan (a selective angiotensin 
II [Ang II] types 1 receptor antagonist) can block the acti-
vation of CHOP-mediated PUMA signaling [92]. PERK-
eIF2α-CHOP-PUMA activation is also responsible for heat 
stress induced cell death in cardiac myocyte dysfunction 
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Fig. 4   PUMA-dependent signaling pathways at different stages dur-
ing ovarian development. In mice, two waves of germ cell loss due to 
cell death occur at embryonic days (E) 13.5–15.5 and E17.5–to post-

natal day 9. PUMA-mediated possible signaling pathways are pro-
posed at different stages during ovarian development
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and injury in mice [93]. Additionally, the administration of 
ursolic acid prevents heat-stress-induced cellular damage 
and cell death by restoring intracellular redox status and 
upregulating the anti-apoptotic MCL-1 protein, which, in 
turn, abolishes CHOP-activated PUMA induction in mouse 
cardiac myocytes [93]. The PUMA expression induced 
by the stretch in cardiomyocytes is mediated by JNK and 
IRF-1and induced by IFN-γ [26]. The nuclear protein 1 
(NUPR1)-CHOP-P53-PUMA pathway (as well as synergy 
with Beclin-1) is also engaged during methamphetamine-
induced cardiovascular apoptosis [94]. In addition, PUMA 
interacts with ARC, thereby releasing caspase -8 and induc-
ing apoptosis in cardiomyocytes [30, 31].

In addition, doxorubicin induces acute and chronic car-
diomyocyte apoptosis leading to cardiac dysfunction, cardio-
myopathy, and eventually to severe heart failure and death 
due to activation of ERK1/2-mediated P53 and ROS-medi-
ated MAPK and NF-κB, as well as P53-dependent PUMA 
upregulation signaling [61, 65]. PUMA is also regulated 
by P53-independent NF-κB upon ER stress, and NF-κB-
dependent PUMA upregulation is indispensable for H2O2-
induced cell apoptosis [65]. Propofol (50 μM) pretreatment 
significantly decreases H2O2-induced NF-κB activity and 
PUMA expression [61]. However, doxorubicin-induced cell 
apoptosis can also achieved through P53-dependent PUMA 
upregulation in H9c2 cardiacmyocytes [65].

Thus, PUMA is critical for ER-stress-induced apoptosis 
associated with ATP depletion, acidosis, and abnormal ER/
sarcoplasmic reticulum Ca2+ handling in cardiac myocytes 
[95, 96]. It should be noted that infarct sizes and apoptotic 
indexes in PUMA-deficient hearts are greatly reduced under 
ischemia–reperfusion condition, and PUMA inhibition may 
be useful for treating cardiac infarcts or preventing heart 
failure [76, 90, 92, 95, 96].

PUMA deficiency significantly protects 
neurons from ER‑stress‑induced apoptosis 
for neurodegenerative diseases

Gene expression profiling shows that PUMA alone is suf-
ficient to induce apoptosis with tunicamycin in a P53-inde-
pendent manner in human neuroblastoma cells [90]. During 
activation by ER stress, PUMA expression is regulated by 
IRE1-JNK-c-jun [59, 67], the ATF4-CHOP-PUMA signal-
ing axis [97], and the P38-PUMA-BAX pathway, induced 
by 6-hydroxydopamine (6-OHDA) in PD and the subse-
quent activation of caspase -3 and cytochrome c release in 
SH-SY5Y neuroblastoma cells [60]. GSK3 regulates ER-
stress-induced CHOP expression in neuronal cells [98]. 
GSK-3β also regulates PUMA expression [56]. TRIB3/
TRB3 (a target of CHOP) is induced later than CHOP dur-
ing ER stress [98], and it can promote PUMA expression in a 

FOXO3a-dependent manner through the dephosphorylation 
of AKT in PC-12 cells [98]. BAF57 executes neuron death 
in FoxO3a-mediated PUMA expression in cellular models 
of PD [54].

Multiple pathways can work together to trigger PUMA 
expression in the brain. The JNK and PI3K-AKT-GSK3β 
pathways converge to regulate FOXO3a-mediated PUMA 
activation, which in turn promotes BAX activation, 
cytochrome c release, and caspase activation, leading to 
neuronal cell death [67]. CHOP potentially cooperates with 
PI3K-AKT-FOXO3a in neuronal cells to regulate PUMA 
expression in response to ER stress [77]. However, insulin-
like growth factor-1 effectively protects PC-12 neuronal cells 
from ER-stress-induced apoptosis through the PI3K-AKT 
and P38 MAPK pathways induced by tunicamycin, thus 
inhibiting PUMA expression [99]. In addition, the direct 
inhibition of PI3K-AKT is sufficient to induce GSK3β-
dephosphorylation or activation in cerebellar granule neu-
rons (CGNs). Decreased expression of GSK-3β activates 
pro-survival WNT-β-catenin signaling [100]. NFAT is likely 
to be a repressor of PUMA that is removed upon GSK-3β 
activation in CGNs [67]. In addition, NFAT is a key regula-
tor of cell survival and death, depending on the partner that 
NFAT interacts with [101]. Thus, the interaction between 
PUMA and NFAT and other transcriptional factors requires 
further study.

PUMA is partially controlled by P53, including the P53 
transcriptional pathway in CA1 subregion neurons [102], 
P53-mediated cell death in a PD model [103], P53 and 
ERK1/2 pathways in SH-SY5Y neuroblastoma cells [65], 
and the NF-κB-P53-PUMA pathway in the rat hippocampus 
[61]. In addition, PUMA upregulation is dependent on ROS 
through the signaling cascade—ROS-JNK-P53-PUMA-
caspase–3 and PI3K-AKT-FOXO3a-PUMA, which facili-
tates the occurrence and progress of Alzheimer’s disease 
(AD) [32]. PUMA upregulation is inhibited in copper/zinc-
superoxide dismutase (SOD1)-over-expressing animals after 
transient global cerebral ischemia [102]. It is noteworthy 
that PUMA is significantly upregulated in motoneurons of 
SOD1G93A mice with misfolded mutant SOD1 accumulated 
in the ER and an amyotrophic lateral sclerosis-like pheno-
type. The genetic deletion of PUMA significantly improves 
motoneuron survival and delays disease onset and motor 
dysfunction in SOD1G93A mice [104].

P53 and other transcriptional factors can work together to 
trigger PUMA expression in the brain. Both P53 and PI3K-
AKT-FOXO3a regulate PUMA expression in AD-related 
neurodegeneration [21]. JNKs can also phosphorylate and 
activate P53 on Ser15 and induce the transcription of pro-
apoptotic target genes, such as PUMA, BAX (including 
JNK-P53-PUMA, JNK-AP-1[c-JUN]-PUMA) to medi-
ate apoptosis in neurons [23, 59]. P73 (or P63)-mediated 
induction of pro-apoptotic genes SCOTIN and/or CHOP 
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may contribute to PUMA-mediated apoptosis in cortical 
neurons [15]. P53, JNK/c-Jun, and PI3K-AKT-FOXO3a 
participate in the regulation of PUMA expression following 
Aβ exposure [21, 59, 100]. It should be noted that PUMA-
deficient neurons are remarkably resistant to the induction 
of apoptosis and caspase activation in relation to diverse 
stimuli, including DNA damage, oxidative stress, ER stress, 
and proteasome inhibition [67, 105].

Conclusions and perspectives

PUMA may be a critical regulator during ovarian develop-
ment. Here, a model is proposed for PUMA-mediated apop-
tosis, which is regulated by transcriptional factors, a balance 
of survival and apoptotic factors, cell–cell interactions, and 
communications between the ER and mitochondria, espe-
cially in response to a variety of stimuli (Figs. 3 and 4). 
Knowledge of the specific and exact signals for PUMA in 
each pathway should be confirmed and improved. In particu-
lar, specific PUMAi, including P53 inhibitors, small mol-
ecules, ER stress inhibitors, and others, should be examined 
in terms of their physiology and pathology. PUMA inhibi-
tion may support therapy for human diseases and improve 
animal litter size.
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