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ABSTRACT

Electrospray ionization with Fourier-transform ion
cyclotron resonance mass spectrometry (ESI–FT
ICR MS) is a powerful tool for analyzing the precise
structural features of biopolymers, including oligo-
nucleotides. Here, we described the detailed char-
acterization of a newly discovered nuclease activity
of the C-terminal domain of Thermus thermophilus
MutS2 (ttMutS2). Using this method, the length,
nucleotide content and nature of the 5’- and
3’-termini of the product oligonucleotides were
accurately identified. It is revealed that the
C-terminal domain of ttMutS2 incised the phosphate
backbone of oligodeoxynucleotides non-sequence-
specifically at the 3’ side of the phosphates. The
simultaneous identification of the innumerable frag-
ments was achieved by the extremely high-accuracy
of ESI–FT ICR MS.

INTRODUCTION

Nucleases play critical roles in DNA transactions including
DNA replication, repair and recombination events (1–4).
Detailed analysis of the enzymatic properties of a newly
discovered nuclease activity is required in order to help
identify cellular function. Nuclease digestion patterns are
generally studied using radiolabeled oligonucleotides as
substrate followed by electrophoretic analysis of the
reaction mixture. However, this method only detects
fragments containing the radiolabel. Multiple labeling of
the substrate DNA is required in order to ascertain the
location of all the cleaved sites. Furthermore, electrophor-
esis does not reveal the precise nature of the 50 and
30-termini at the cleaved site. Alternatively, mass spectro-
metry can detect all fragments produced by the nuclease

without the need for using radioisotopes. Electrospray
ionization (ESI) is a soft ionization technique which is
suitable for large biopolymers, such as oligonucleotides,
because the multiply charged ions lower the m/z (5–8).
In addition, Fourier-transform ion cyclotron resonance
mass spectrometry (FT ICR MS) is expected to achieve
especially high mass accuracy in the analysis of mixtures of
biopolymers and determination of the nature. In this study,
we analyzed the degradation pattern of double-stranded
DNA (dsDNA) by the catalytic domain of Thermus
thermophilus MutS2 (ttMutS2) using ESI–FT ICR MS.
To the best of our knowledge, this is the first report that
a nuclease activity was characterized by ESI–FT ICR MS.
Bacterial MutS2 possesses domains homologous to the

MutS family proteins (9–11) which are involved in DNA
mismatch repair, DNA recombination and other DNA
modifications. Recent studies showed that bacterial MutS2
is involved in suppression of homologous recombination
(12–14) or/and protection from oxidative DNA damage
(15). We previously revealed that ttMutS2 contains a
nuclease activity (16,17), and the activity is confined to the
C-terminal domain whose sequence is not conserved in the
other MutS homologs. The amino acid sequences homo-
logous to the C-terminal domain of bacterial MutS2
distribute in variety of proteins other than MutS homolog
(18,19). It is also reported that the C-terminal domain
of human BCL-3-binding protein shows sequence similar-
ity to that of bacterial MutS2 and possesses a nuclease
activity (20), although there is no relationship between the
biological function of human BCL-3-binding protein and
that of bacterial MutS2. The precise characteristics of their
activities had been unknown.

MATERIALS AND METHODS

Oligonucleotides

The 50-hydroxylated 3, 7, 15, 21 and 37-mer single-
stranded oligodeoxynucleotides were synthesized.
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Their sequences are: 50-GCT-30, 50-GCTCGTA-30, 50-GC
TCGTAGAGTGGTC-30, 50-CGGTATCTTGGCTATG
ACGGC-30, 50-GCTCGTAGAGCGGTCATAGTCAA
GATACCG-30 and 50-ATGTGAATCAGTATGGTTAC
TATCTGCTGAAGGAAAT-30, respectively. They were
purified after synthesis by high-performance liquid
chromatography (HPLC) and their concentrations were
determined from their absorbance at 260 nm. The
50-phosphorylated or 50-hydroxylated single-stranded oli-
godeoxynucleotides, 50-ATGTGACTCAGTATGGG-30,
were also synthesized and purified by HPLC. Then, they
were annealed to their complementary 50- phosphorylated
or 50-hydroxylated single-stranded oligodeoxynucleotides
(50-CCCATACTGAGTCACAT-30) to obtain double-
stranded oligodeoxynucleotides in TE buffer. Annealing
was performed in a thermal cycler according to the
following temperature profile: 5min at 958C, followed by
a slow decrease from 958C to 378C over 60min and from
37 to 48C over 30min. Oligonucleotide which contains the
locked nucleic acid (LNA) at 30-terminal end was also
synthesized.

Nuclease reaction

The C-terminal domain of ttMutS2 (CTD) was over-
expressed and purified as described previously (17). The
substrate oligonucleoitdes (25mM) were incubated with 0,
50, 100 or 200 nM CTD in a buffer containing 50mM
Tris–HCl (pH 7.5), 100mM KCl and 5mM MgCl2 at
378C for 16 h. The total volume of reaction mixture was
30 ml. Reactions were quenched by addition of an equal
volume of phenol–chloroform solution and the mixtures
were then centrifuged at 15 000 r.p.m for 10min. Super-
natants were loaded onto 5 ml of SuperQ resin equilibrated
with water in a 0.6ml Eppendorf tube. After washing with
30 ml of water three times, DNAs were eluted with 30 ml of
0.75M ammonium acetate (pH 7). The elutants were dried
in a centrifugal evaporator.

ESI–FT ICRMS analysis

The elutants were resuspended to a concentration of 1 mM
in 50% methanol containing 25mM imidazole and 25mM
piperidine. The 10 ml aliquots were loaded into quartz
nanospray emitters. All measurements were performed on
an Apex IV Fourier transform mass spectrometer (Bruker
Daltonics, Billerica, MA, USA) equipped with a 9.4-T
shielded superconductive magnet. The oligonucleotide
solutions were infused into an external Apollo electro-
spray ion source at a flow rate of 13 ml/min with the
assistance of N2 nebulizing gas. The off-axis sprayer was
grounded, and the inlet capillary was set to 1.7 kV for
generation of oligonucleotide anions. N2 drying gas was
applied to assist desolvation of ESI droplets. Ions were
accumulated in the hexapole for 0.2 s. All data were
acquired in negative ion mode and processed using
XMASS 6.0.1 (Bruker Daltonics).

Electrophoretical analysis

Single-stranded DNAs were radiolabeled at the 50-end
with [g-32P]ATP using polynucleotide kinase before

annealing. The 50-labeled duplexes (10 nM) were incu-
bated with CTD or king of DNA (KOD) polymerase
(TOYOBO, Osaka, Japan) in a 50mM Tris–HCl (pH 7.5)
containing 100mM KCl, 5mM MgCl2 and 25 mM non-
labeled substrate dsDNA for 16 h at 378C. The enzyme
concentrations are indicated in the legends to figures.
Reactions were stopped with the addition of equal volume
of phenol–chloroform solution and the solutions were
centrifuged at 15 000 r.p.m. for 10min. The supernatants
were mixed with the sample buffer (5mM EDTA, 80%
deionized formamide, 10mM NaOH, 0.1% bromophenol
blue and 0.1% xylene cyanol) and heat-treated at 958C for
5min. They were loaded onto 11% polyacrylamide
sequencing gels (8M urea and �1 TBE buffer, 89mM
Trisborate and 2mMEDTA) and electrophoresed with� 1
TBE buffer. The gels were dried and placed in contact
with an imaging plate. The bands were visualized and
analyzed using a BAS2500 image analyzer (Fuji Film,
Tokyo, Japan).

The substrate 32P-labeled DNA was base-specifically
modified and digested according to the Maxam–Gilbert
method (21). In order to determine the length of the
product DNA, these fragments were mixed with the
sample buffer and electrophoresed along with the products
on DNA sequencing gels.

RESULTS AND DISCUSSION

First, we examined the validity of our method for the
purification of DNA samples. Contamination of non-
volatile salts such as sodium or potassium, which would
otherwise prevent ionization of the biomolecules and
cause the formation of series of metal adduct ions (22),
must be avoided. The single-stranded DNAs (ssDNAs)
(3–30-mer) were prepared and analyzed as described in
MATERIALS AND METHODS section. Raw mass
spectra consisted of a series of peaks, corresponding to
multiply charged ions of intact ssDNA having a specific
number of protons removed from the phosphodiester
groups (Figure 1A). As shown in inset, few metal adduct
ion species were observed, showing the efficacy of the
purification method. When the same sample was purified
by ethanol precipitation, even the charged ions of ssDNA
were hardly detected (data not shown) probably because
non-volatile salts were poorly removed. In Figure 1B,
signals representing the same DNA were deconvoluted to
yield the molecular mass of the corresponding DNA.
Comparison of the measured molecular mass against
theoretical molecular mass enabled the length and
sequence of the DNA species to be identified. A deviation
between the measured and theoretical molecular mass of
within �2 p.p.m. was deemed acceptable. Our results show
that the DNA desalting method can be applied to the
analysis of extremely short oligonucleotides, at least to
a 3-mer.

The 50-phosphorylated 17-bp dsDNA incubated with
CTD were analyzed as described above. We chose the
oligonucleotide sequence shown in MATERIALS AND
METHODS section as a substrate since it has left–right
asymmetric nucleotide content. Symmetric distribution of
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the nucleotide content will cause difficulty in identification
of the fragments since various potential structures
correspond to a single mass. Figure 2 shows the
deconvoluted mass spectra of reaction products. The
substrate and product dsDNAs are completely denatured
and detected as ssDNAs. Indeed, any remaining dsDNAs
would have complicated the interpretation of the results.
An increased number of peaks corresponding to DNA
reaction products were detected as the enzyme concentra-
tion increased. Several peaks are more abundant than
others. However, we cannot quantitatively interpret this in
terms of selectivity because the nucleotide content and
length seems to have an effect on the ionization efficiency
of oligonucleotides (data not shown). Over 90% of these
peaks were accurately identified as 5–12-mer fragments.
The major fragments identified by mass spectrometric
analysis are listed in Figure 3. This result strongly suggests
that the nuclease activity of CTD has no obvious
sequence-specificity. All of mass spectrometric analyses
were performed in triplicate.

There were a few unidentified fragments that corre-
sponded in mass to two or more candidate fragments
(Figure 4A). Some of these peaks were subsequently
identified by comparison with the result of a digestion of
50-hydroxylated dsDNA (Figure 4B). When the fragment
contained an unreacted 50-terminus, the corresponding
peak would shift as far as the difference between masses of
hydroxyl and phosphoryl groups. As shown in Figure 3C,
several peaks shifted and were identified.
All of the theoretical masses used to identify the peaks

were calculated by assuming the 50- and 30-termini of
cleaved sites were phosphorylated and hydroxylated,
respectively. These results indicate that CTD incised the
phosphate backbone of oligodeoxynucleotides at the
30 side of the phosphates and the nicks generated by
CTD could be ligated by DNA ligase. Thus, ESI–FT ICR
MS can identify the nature of the cleaved sites with
considerable accuracy.
The nuclease activity for 17-bp dsDNA was also

examined by electrophoretic analysis using a sequencing
gel. As shown in Figure 6, the fragments were estimated to
be 5–12-mers by comparison to the DNA size marker
made by the Maxam–Gilbert method (21). These results
are entirely consistent with the analysis by mass spectro-
metry. Although a few fragments shorter or longer than
5- or 12-mer were observed when the enzyme concentra-
tion was increased (data not shown), main products were
always 5–12-mer fragments. This result indicates that a
certain length of dsDNA is required for the formation of a
stable CTD–substrate complex.
All of the detected fragments retained an unreacted

50- or 30-terminus, indicating that CTD possesses a non-
sequence-specific endonuclease activity rather than

Figure 2. ESI–FT ICR MS analysis of reaction products. The substrate
dsDNA was reacted with 0 (A), 100 (B) or 200 (C) nM CTD.
The products were purified according to the protocol described in
MATERIALS AND METHODS section. The deconvoluted spectra of
reacted products of 50-phosphorylated 17-bp dsDNA were shown.
For clarity, information concerning the length and measured mass
of the major species are shown above the corresponding peaks.

Figure 1. ESI–FT ICR MS analysis of ssDNAs. (A) The raw mass
spectra of 3, 7, 15, 21, 30 and 37-mer ssDNAs. The synthesized
ssDNAs (30-hydroxylated) were suspended in the reaction buffer
without protein and purified according to the protocol described in
MATERIALS AND METHODS section. Labeled peak (697.460) is
corresponding to 7-mer ssDNA having three protons removed
([M-3H]3–). Inset shows the isotopic cluster for [M-3H]3– and their
sodium adduct ion peaks. (B) The deconvoluted mass spectra of the
ssDNAs. The length, measured mass (Me), theoretical mass (Mt) and
deviation between measured and theoretical mass are indicated at the
top of each peak.
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exonuclease activity. Gel electrophoretic analysis also
ruled out the possibility of 50 to 30 exonuclease activity
of CTD because there was no observable accumulation of
short fragments during the incision of 50-labeled substrates
(Figure 5). We then tested the oligonucleotide analog
where the nucleotide at the 30-terminal end was replaced
with LNA, which contains an extra 20-O, 40-C-methylene
bridge on the ribose ring. It had been reported that this
substrate shows a tolerance to exonuclease activity (23,24).
Although the 30–50 exonuclease activity of KOD poly-
merase was affected by the replacement of the 30-terminal

end, the replacement did not affect the nuclease activity of
CTD (Figure 6). Taken together, electrophoretic analysis
also demonstrated that CTD does not possess an
exonuclease activity. Thus, we have confirmed the validity
of the ESI–FT ICR mass spectrometric analysis.

The results in this study showed that ESI–FT ICR MS
can precisely analyze the digestion pattern of a non-
sequence-specific endonuclease. In comparison, the ana-
lysis of a sequence- or structure-specific endonuclease
activity should be relatively straightforward using this
methodology. The information about substrate specificity

Figure 3. The major products of 50-phosphorylated dsDNA identified by ESI–FT ICR MS. Identified fragments are indicated in dark gray.
Theoretical masses were calculated assuming that CTD hydrolyzes a phosphodiester bond at 50-side of a phosphate.

Figure 4. Identification of the precise structure of the reaction products. (A) There are several potential structures corresponding to a single mass.
Theoretical masses (Mt) are indicated to the right of each DNA fragment. (B) 50-modification of the substrate enables the precise structure of the
corresponding product peak to be determined. For example, if CTD hydrolyzes a phosphodiester bond at the 50-side of a phosphate, only one kind
of 12-mer fragment (whose theoretical mass is highlighted) will retain a hydroxyl moiety at the 50-end. (C) Comparison of the deconvoluted mass
spectra of products generated from 50-phosphorylated (a) and hydroxylated (b) substrates. Arrows indicates the shifted masses. Differences in the
masses are almost identical to the difference in the mass of the phosphoryl and hydroxyl groups.
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and the nature of cleaved sites would be a great help in
understanding the mechanism of an enzyme and its role in
a biological process. For example, when a newly
discovered nuclease preferably incised at an abasic site
yielding 50-deoxyribosephosphate (50-dRP) end, we should
consider the possibility that the nuclease takes part in base
excision repair through the repair of abasic sites and the
repair pathway requires an enzyme that have a 50-dRPase
activity such as DNA polymerase b.
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