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Summary

Cancer is an aging-associated disease, but the underlying molecular links between

these processes are still largely unknown. Gene promoters that become hyperme-

thylated in aging and cancer share a common chromatin signature in ES cells. In

addition, there is also global DNA hypomethylation in both processes. However, the

similarity of the regions where this loss of DNA methylation occurs is currently not

well characterized, and it is unknown if such regions also share a common chro-

matin signature in aging and cancer. To address this issue, we analyzed TCGA DNA

methylation data from a total of 2,311 samples, including control and cancer cases

from patients with breast, kidney, thyroid, skin, brain, and lung tumors and healthy

blood, and integrated the results with histone, chromatin state, and transcription

factor binding site data from the NIH Roadmap Epigenomics and ENCODE projects.

We identified 98,857 CpG sites differentially methylated in aging and 286,746 in

cancer. Hyper- and hypomethylated changes in both processes each had a similar

genomic distribution across tissues and displayed tissue-independent alterations.

The identified hypermethylated regions in aging and cancer shared a similar bivalent

chromatin signature. In contrast, hypomethylated DNA sequences occurred in very

different chromatin contexts. DNA hypomethylated sequences were enriched at

genomic regions marked with the activating histone posttranslational modification

H3K4me1 in aging, while in cancer, loss of DNA methylation was primarily associ-

ated with the repressive H3K9me3 mark. Our results suggest that the role of DNA

methylation as a molecular link between aging and cancer is more complex than

previously thought.
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1 | INTRODUCTION

Age is among the most important risk factors for cancer (de

Magalh~aes, 2013; DePinho, 2000). However, the underlying molecu-

lar mechanisms governing this relationship are still poorly under-

stood. Recent research has established polycomb-target gene

promoter hypermethylation as a common epigenetic characteristic of

cancer (Schlesinger et al., 2007; Widschwendter et al., 2007). In this

scenario, prior to alteration these promoters display an embryonic

stem cell “bivalent chromatin pattern” consisting of the repressive

histone mark H3K27me3 and the active mark H3K4me3 (Ohm et al.,

2007). Genes affected by this process are associated with develop-

mental regulation (Easwaran et al., 2012), implying a possible stem

cell origin of cancer whereby aberrant hypermethylation could pro-

mote a continuously self-renewing embryonic-like state in cancer

cells (Teschendorff et al., 2010). Interestingly, promoter hypermethy-

lation of polycomb-target genes was later described in aging blood

(Rakyan et al., 2010; Teschendorff et al., 2010) and other tissue

types such as mesenchymal stem cells (Fern�andez et al., 2015), ovary

(Teschendorff et al., 2010), brain, kidney, and skeletal muscle (Day

et al., 2013), findings which were also confirmed using whole-gen-

ome bisulfite sequencing (Heyn et al., 2012).

In addition to aberrant locus-specific DNA hypermethylation,

tumoral cells are also globally hypomethylated as compared to their

healthy counterparts. While this molecular alteration preferentially

occurs at gene bodies, intergenic DNA regions, and repeated DNA

elements (Ehrlich, 2009) and is proposed to be associated with chro-

mosomal instability, reactivation of transposable elements, and loss

of genomic imprinting, its precise functional role in cancer develop-

ment is still poorly understood (Rodr�ıguez-Paredes & Esteller, 2011).

Intriguingly, global loss of genomic DNA methylation has also been

reported during the aging and senescence process (Cruickshanks

et al., 2013; Fraga & Esteller, 2007). Whole-genome bisulfite

sequencing and methylation arrays have confirmed the global loss of

DNA methylation in different human tissues including blood (Heyn

et al., 2012), mesenchymal stem cells, and brain (Fern�andez et al.,

2015). On the other hand, other important tissues such as skeletal

muscle do not seem to become hypomethylated with aging (Zyko-

vich et al., 2014).

Despite the interesting parallelism in aging and cancer recently

reported with respect to hypermethylated DNA regions, the rela-

tionship between hypomethylated DNA sequences in these two

processes has not been sufficiently studied. Moreover, recent analy-

ses mainly performed in mouse tissue have failed to confirm global

hypomethylation during the aging process (Cole et al., 2017; Hahn

et al., 2017; Masser et al., 2017) and, to date, no study has

provided a back-to-back and systematic comparison of the epige-

netic changes that occur in aging and cancer. To address this issue,

here we have analyzed DNA methylation changes and their associ-

ated chromatin patterns in a total of more than 2,300 healthy and

tumoral samples obtained from differentially aged individuals, using

HumanMethylation450 BeadChip data generated by The Cancer

Genome Atlas (TCGA) consortium and other datasets (Bormann

et al., 2016; Guintivano, Aryee & Kaminsky, 2013; Hannum et al.,

2013). Our results confirmed the relationship between DNA hyper-

methylation in aging and cancer, but they also revealed important

differences in DNA hypomethylation changes in the two processes

that might be important to understand the possible role of DNA

methylation as a molecular link between decline related to aging

and tumor development.

2 | RESULTS

2.1 | DNA methylation profiling in aging and cancer

To identify DNA methylation changes in aging and cancer, we col-

lected DNA methylation data obtained with the HumanMethyla-

tion450 BeadChip (Illumina) (see Section 4) and compared the DNA

methylation status of a total of 361,698 CpG sites across 1,762 sam-

ples corresponding to healthy and tumoral tissues obtained from dif-

ferentially aged patients with breast, kidney, thyroid, skin, and brain

tumors (see Tables 1 and S1 for extended information). Using an

empirical Bayes moderated t test (see Section 4), we identified a

high number of autosomal differentially methylated CpGs (dmCpGs;

FDR < 0.05) between normal and tumoral samples, while a lower

and more variable number of aging-related dmCpGs between young

and old samples was found (Table 1; Figure 1a and Table S2 for

additional information). Hierarchical clustering of samples using the

dmCpGs enabled us to distinguish between tumoral and control sam-

ples with more efficiency than young and old samples (Figure 1b

and Figure S1). On the whole, whereas cancer-related DNA methyla-

tion changes had no dominance of either hyper- or hypomethylation,

aging-related changes tended toward DNA hypermethylation, and

showed a much more variable and tissue type-dependent magnitude

of change. Globally, methylation changes were found to be more

pronounced in cancer than in aging (Figure 1c and Table S3, Wil-

coxon tests; all p < .05), while comparison of hyper- vs. hypomethy-

lation changes was variable and disease and tissue type dependent.

Intriguingly, most tumors obtained from differentially aged patients

did not show significant age-associated DNA methylation changes,

with the exception of thyroid cancer (Table 1, Figure 1a, bottom

panel and Table S2). Furthermore, analyses employing Horvath’s
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predictor revealed that thyroid cancer had the highest correlation of

real-vs.-predicted age across all the cancer types in our dataset

(Figure 1d).

2.2 | Genomic distribution of dmCpGs in aging and
cancer

The study of the genomic distribution of the dmCpGs revealed that

hypomethylated CpG sites followed a similar disease and tissue-inde-

pendent trend, being preferentially found at low-density CpG DNA

regions interrogated by the array in both cancer and aging (average

median difference compared to array 49%, Wilcoxon tests; all

p < .001) (Figure 2a; see also Table S4). Consequently, with respect

to the array, these hypomethylated CpG sites were enriched at open

sea locations and intronic and intergenic regions (Fisher’s tests; all

p < .001, all odds ratios (ORs) >2.25, >1.34, and >1.21, respectively,

except nonsignificant thyroid aging) while impoverished at CpG

islands and gene promoters (Fisher’s tests; all p < .001, all ORs<0.43

and <0.64, respectively) (Figure 2b,c; Figure S2 and Table S5). Den-

sity of hypermethylated CpG sites in cancer was variable but compa-

rable to background array density (average median difference

<�12%, Wilcoxon tests; all p < .001), whereas a noticeably high

CpG density was found for breast, kidney, and thyroid in the aging

context (average median difference 44%, Wilcoxon tests; all

p < .001). Consequently, these dmCpGs were enriched at CpG

islands and gene promoters (Fisher’s tests; all p < .001, all ORs>1.89

and >1.08, respectively).

Comparative enrichment analysis confirmed that DNA

hypomethylation in aging and cancer mainly occurred at low CpG

density DNA regions located at introns, open sea, and intergenic

DNA regions, while hypermethylation distribution was more irregular

and more similar to array distribution. Nonetheless, a common and

strong tendency was found when comparing hyper- to hypomethyla-

tion changes in both aging and cancer, whereby hypermethylation

changes always occurred in regions with a higher CpG density than

did hypomethylation changes (average median difference 51%,

Wilcoxon tests; all p < .001) (Figure 2a and Table S4), resulting in

strong differences in local enrichments at CpG islands and open sea

locations, as well as gene promoters and intergenic regions, in most

cases (Figure 2b,c; Figure S3 and Table S5), with this effect being

even more pronounced for the aging dmCpGs.

2.3 | Tissue type-independent DNA methylation
changes in aging and cancer

To determine the effect of tissue type on the DNA methylation

changes during aging and cancer, we compared the previously identi-

fied dmCpG sites for each of the tissues. In cancer, ~50% of hyper-

and hypomethylated CpGs were common to at least two different

tumor types (Figure 3a), with 1,962 (1.1%) hyper- and 2,708 (1.5%)

hypomethylated CpG sites being common to all five tumor types

analyzed (Figure 3b and Table S6). In contrast, the overlap between

dmCpGs in aging across different tissues was considerably reduced.

Indeed, only 18% of the hyper- and 8% of the hypomethylated CpG
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sites were common to at least two tissue types and only 89 (0.15%)

hyper- and 1 (0.002%) hypomethylated CpG sites were common to

all five tissue types analyzed (Figure 3a,b and Table S6). However,

statistical analyses of the pairwise overlaps between the different

sets of probes showed overall enrichment in every case, especially

for aging (Figure 3d, Fisher’s tests; all p < .001, Table S7). This over-

enrichment was also revealed through a simulation of a random

sampling of probes from the array (Figure S4a). Taken together,

these results suggest that both cancer and aging manifest tissue-

independent changes in DNA methylation.

We also identified a subset of dmCpG sites in aging and can-

cer that could potentially be either hyper- or hypomethylated

depending on the tissue type involved (Figure 3c) and showed

substantial under-enrichment (Fisher’s test p < .001 for both,
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ORs = 0.65 and 0.56; expected hypergeometric means,

EHMs = 94,610 and 7,060; and Jaccard indices, JIs = 0.30 and

0.05, respectively). Interestingly, when examining dmCpGs shared

by two or more tissues (Figure S4b), this under-enrichment

became more pronounced such that CpGs that were thus affected

in more than one tissue were less likely to behave differently in

other tissues.

2.4 | Similar chromatin signatures of DNA
hypermethylation in aging and cancer

To identify possible chromatin marks associated with hypermethy-

lated CpG sites in aging and cancer, we compared the hypermethy-

lated CpG sites identified in this study with previously published

ENCODE and NIH Roadmap Epigenomics ChIP-seq data on the his-

tone modifications H3K4me1, H3K4me3, H3K27ac, H3K36me3,

H3K27me3 and H3K9me3 across 98 different cell and tissue types

(see Section 4). The results confirmed an enrichment of hypermethy-

lated CpG sites in repressive histone modifications H3K27me3 and

H3K9me3 and active histone modifications H3K4me1 and

H3K4me3 in both in aging and cancer (Figure 4a, upper panel;

Table S8), with the H3K27me3 mark being the most consistent

enrichment across all of the analyses. Notably, these similarities

became more pronounced when examining dmCpGs shared by all

five tissue types in cancer, or three of the tissue types in aging (low

numbers of common probes, due to tissue-specificity of aging

dmCpGs, hindered analysis of dmCpGs shared by more tissues).

Interestingly, the embryonic stem cell signature was comparable to

other tissue signatures, although, when present, the H3K4me3 mark

was more evident in the aging context. Collectively, these results

suggest that chromatin signatures of DNA hypermethylation are sim-

ilar in aging and cancer.

2.5 | Distinct chromatin signatures of DNA
hypomethylation in aging and cancer

To determine whether the chromatin signatures of DNA hypomethy-

lation were also similar in aging and cancer, we compared the

hypomethylated CpG sites identified in our study with data from the

same histone modifications as described in the earlier analyses. Inter-

estingly, the results showed that hypomethylated CpG sites in can-

cer were enriched in the repressive H3K9me3 histone modification,

while in aging, hypomethylated CpGs were more enriched in the

activating histone mark H3K4me1 (Figure 4a, lower panel; Table S8).

There were though exceptions to this general trend: hypomethylated

CpG sites in thyroid tumors were also enriched at H3K4me1, and

hypomethylated DNA sequences in aged skin were mainly co-asso-

ciated with H3K9me3-marked DNA regions. Nevertheless, the ratio

H3K4me1/H3K9me3 was always higher in aging than in cancer (Fig-

ure 4b). Moreover, when analyzing the dmCpGs shared by all five

tissues in cancer or at least three tissues in aging, these distinct

chromatin signatures became much more evident. In sum, these

results indicate that, in contrast to DNA hypermethylation,

chromatin signatures of DNA hypomethylation in aging and cancer

differ considerably.

After deriving the chromatin signatures, we performed validation

analyses on two additional datasets: the first related to tissue from

TCGA control and lung adenocarcinoma and the second to whole

blood from the classical Hannum et al. (2013) dataset (Figure S5; see

Table S9 for additional information). Interestingly, we were unable to

find aging-related methylation changes in normal lung tissue using

our pipeline. The magnitude and distribution of the hyper- and

hypomethylation changes in lung cancer and whole blood aging fol-

lowed the same trend as observed for the other datasets (Figure S5a,

see Table S2 for a list of dmCpGs). The histone enrichment analyses

revealed the same hypermethylation signature previously found for

cancer and aging, and very clear and different hypomethylation sig-

natures of H3K9me3 for lung cancer and H3K4me1/3 for whole

blood aging (Figure S5b and Table S8).

Finally, we compared the overlap between either hypermethy-

lated or hypomethylated CpGs across tumors and their correspond-

ing age-related tissues (Figure 4c). This approach revealed that the

overlap between hypermethylated CpGs (24,442 CpGs) was higher

than expected by chance (Fisher’s test p < .001, OR = 2.61;

EHM = 14,689; JI = 0.20) (Figure 4c, upper panel). However, despite

the overlap between hypomethylated CpGs (14,521) also being

slightly higher than expected (Fisher’s test p < .001, OR = 1.60;

EHM = 11,021; JI = 0.12) (Figure 4c, lower panel), the overall trend

observed in this case was weaker than for the hypermethylated

CpGs. Furthermore, most of the hypomethylated probes shared by

cancer and aging belonged to skin dmCpGs, providing evidence for

its similar cancer and aging hypomethylation signatures. Removing

skin tissue from the analysis (Figure S6) caused the observed over-

enrichment to disappear in the case of DNA hypomethylated probes,

although it remained in the hypermethylation scenario (Fisher’s tests,

both p < .001, ORs = 0.8 and 3.0; EHMs = 5,357 and 7,568;

JIs = 0.04 and 0.12, respectively), reinforcing the observed overlap-

ping differences between hyper- and hypomethylated probes.

2.6 | Functional characterization of differentially
methylated sites in aging and cancer

To determine the possible functional consequences and genomic

coincidence of the different histone marks of DNA hyper- and

hypomethylation in aging and cancer, we performed an enrichment

analysis of NIH Roadmap and ENCODE Hidden Markov Model

(HMM) defined “chromatin states” across the same 98 human cell

and tissue types used in the previous analyses (see Section 4). In

total, 18 states were used for the segmentation of the genome,

which were then grouped to highlight predicted functional elements.

As suggested by the earlier chromatin signature analyses, hyper-

methylated CpGs in both aging and cancer were enriched in states

associated with bivalent chromatin domains (i.e., those formed by

the combination of repressive histone mark H3K27me3 and activat-

ing histone marks H3K4me1/3), polycomb repressive domains, and

repeat/ZNF genes. These patterns became more evident when
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examining the dmCpGs shared by all five cancer tissues or at least

three aging tissues (Figure 5a; see Figure S7 for tissue-specific signa-

tures and Table S10 for full data in all 98 cell and tissue types).

Hypomethylated CpG sites in cancer were enriched in chromatin

states associated with heterochromatin and repeat/ZNF gene

domains and, to a lesser extent, polycomb repressive domains. In

contrast, DNA hypomethylation in aging was primarily associated

with chromatin states related to DNA enhancers. Again, these marks
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were more pronounced in aging dmCpGs shared by at least three

tissues. As occurred with chromatin signatures, hypomethylation

chromatin state differences were weaker in skin and thyroid, albeit

that the ratio of change of chromatin states always followed the

same behavior (data not shown). Collectively, these results support

the notion that DNA hypomethylation might have a different func-

tional role in aging as compared to cancer.

To increase our understanding of the functional context of the

chromatin signatures characterized, we compared the dmCpG sites

identified in this study with publicly available ENCODE ChIP-seq

data on transcription factor binding sites in 689 datasets corre-

sponding to 188 transcription factors across 91 different cell types

(see Section 4) (Figure 5b; see Figure S8 and Table S11 for full tis-

sue-specific results). As expected, hypermethylated CpGs in aging

and cancer were associated in all tissues with the presence of EZH2

and SUZ12, components of the polycomb complex which directly

deposits the H3K27me3 mark. Interestingly, aging hypermethylation

dmCpGs were specifically associated with other types of transcrip-

tion factors in various tissues, such as REST, HDAC2, RAD21, and

SETDB1. Transcription factor enrichment at hypomethylated dmCpG

sites was more heterogeneous than, but different from that of

hypermethylated sites. Enrichment of similar factors was found for

cancer and aging, for example, EP300, FOS, and JUN, among others.

As observed before, specific aging enrichment was found, such as
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GATA2/3. In this case, aging hypomethylated dmCpG sites tended

to display a more marked enrichment of most of the cancer

hypomethylation factors and, additionally, revealed the presence of

other family- or function-related proteins, like FOSL1/2, MAFF,

MAFK, and STAT3. When examining enrichment at common dmCpG

sites shared by different tissues in cancer and aging, the initial obser-

vations were further confirmed (Figure S9).

Gene ontology analyses (Figure 6a; Table S12; see Figure S10

for tissue-specific results) revealed that hypermethylated CpGs in

both processes belonged to genes that were mainly related to devel-

opmental functions. While genes containing hypomethylated CpGs

in cancer were associated with extracellular signaling, those for aging

were, in general, much less enriched in any gene ontology. In the

case of KEGG pathways (Figure 6a; Table S12 and Figure S10),

hypermethylated CpGs in both cancer and aging shared enrichment

for several ontologies, many related to cell metabolic and signaling

pathways. In this respect, hypomethylated CpGs in cancer had some

ontologies in common, while others were specific. Once again, aging

hypomethylated CpGs exhibited much less enrichment in any func-

tion.

To exemplify the similarities and disparities observed for DNA

methylation in aging and cancer, we focused on a number of sig-

nificant dmCpGs from two particular genomic regions, located in

chromosomes 11 and 16 (Figure 6b,c). We observed a substantial

correlation between bivalent posttranslational histone modifica-

tions, especially H3K27me3 and H3K4me1/3, and the presence of

hypermethylated probes in aging and cancer. On the other hand,

DNA hypomethylated regions were more frequently located near

H3K9me3 or H3K4me1 peaks (bottom panel Figure 6b,c) as out-

lined in our previous histone enrichment analyses. A detailed

inspection of the common genes with most abundant dmCpGs in

aging and cancer revealed a similar trend toward DNA hyperme-

thylation at the boundaries of the gene PAX6 (Figure 6b, top

panel). Interestingly, a representative set of cancer cell lines, as

well as fibroblasts derived from patients with Hutchinson-Gilford

progeria, also display higher levels of DNA methylation when
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compared to normal cells in these differentially methylated regions

(Figure 6b, middle panel). On the contrary, the abovementioned

pattern was mainly reversed in the case of the RBFOX1 gene,

located in a region which was preferentially hypomethylated in

cancer (Figure 6c, top and middle panel).

2.7 | Correlations between CpG methylation and
gene expression in aging and cancer

Lastly, we looked at the possible impact in the control of gene

expression of the methylation changes previously found. To address
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this issue, we focused on kidney tissue (KIRC) as this TCGA dataset

displayed a reasonable number of control and cancer patients with

paired methylation and gene expression data. We initially performed

differential gene expression analyses comparing young vs. old or nor-

mal vs. tumoral kidney samples (Figure 7a and Table S13). These

results allowed us to identify a total of 13 and 20,678 differentially

expressed genes (DEGs) in aging and cancer conditions, respectively.

The majority of the aging DEGs were also found in cancer, including,

for example, the CKM gene, which contained a dmCpG in the prox-

imity of its promoter (Figure 7b), was differentially expressed in both

processes (Figure 7c) and displayed a considerable negative correla-

tion between DNA methylation and gene expression in normal kid-

ney (Spearman r = �.37, Figure 7d). To further explore the potential

relationships between CpG methylation and gene expression in these

processes, and due to the reduced number of DEGs observed in the

aging context, we decided to perform all potential pairwise correla-

tions between DNA methylation and gene expression using cancer-

or aging-related dmCpGs and genes expressed in a subset of normal

kidney tissue samples (n = 18). This approach enabled us to quantify

the extent to which CpGs whose methylation status changes in can-

cer and aging originally influence gene expression in normal tissue.

We computed a total of 2.58e09 and 3.84e08 correlations

between cancer- and aging-related dmCpGs, respectively, and genes

expressed in the normal KIRC dataset (Figure 7e). Despite the con-

siderable difference in a number of dmCpGs between cancer and

aging, when compared to the total possible number of correlations,

we found similar percentages of strong correlations between DNA

methylation and gene expression in both processes (Table S14).

Moreover, these proportions were also higher than those observed

when sampling random probes from the array and computing their

correlations (see Figure S11). These results indicate that both can-

cer- and aging-related dmCpGs are enriched in CpGs that can influ-

ence, to some extent, gene expression in kidney tissue.

A more detailed inspection of the strongest correlations (>= 0.9

or <= �0.9) identified in these datasets revealed that, in cancer, the

number of unique dmCpG-gene pairs remained similar (~20,000)

regardless of the direction of the observed correlation (Figure 7f,

top). Furthermore, while the number of unique dmCpG-gene pairs in

the aging context was much reduced (~3,000), the proportion com-

pared to the total number of strong correlations observed in a given

dataset remained, to a great extent, similar (Figure 7f, bottom). Inter-

estingly, the differences between the genomic distributions of the

unique hyper- and hypomethylated dmCpG-gene pairs identified in

aging or in cancer followed the same trend to those observed for

the genomic distribution of the hyper- and hypomethylated dmCpGs

identified in each of these processes (Figure 2b,c), with hypermethy-

lated dmCpGs being more enriched in CpG islands in aging as com-

pared to the array (Fisher’s tests; both p < .001, ORs = 2.0, 1.4, for

positively and negatively correlated dmCpGs, respectively), in con-

trast to the enrichment at open sea locations (Fisher’s tests; all

p < .001, ORs = 4.6, 4.1, 2.3 and 2.5 for positively and negatively

correlated dmCpGs in aging and cancer, respectively) and intronic

regions (Fisher’s tests p < .002, <.03, <.001 and <.001, ORs = 2.2,

1.9, 1.6, and 1.7 for positively and negatively correlated dmCpGs in

aging and cancer, respectively) of the hypomethylated dmCpGs in

both processes (Figure 7g,h). It is worth noting that the distribution

of the unique hypermethylated dmCpGs which also control gene

expression was more enriched in open sea locations as compared to

dmCpGs in general in both aging and cancer (Figure 7g as compared

to Figure 2b).

Finally, we compared the unique dmCpGs that displayed strong

correlations between DNA methylation and gene expression in aging

or in cancer (Figure 7i). We observed an extensive overlap between

probes that displayed positive or negative correlations in the two

processes (Fisher’s tests, all p < .001, ORs = 908, 2244, 205, and

171; JIs = 0.57, 0.54, 0.57, and 0.54 for aging and cancer hyper-

and hypomethylated CpGs, respectively). This fact might explain

their similar genomic distributions (Figure 7g,h), indicating that most

of these dmCpGs could play a dual role in the control of their differ-

ent gene expression targets. We also observed a considerable over-

lap between dmCpGs associated with gene expression identified in

aging and cancer processes (Fisher’s tests, both p < .001, ORs = 5.1

and 9.1; JIs = 0.06 and 0.03, for hyper- and hypomethylated CpGs,

respectively). Interestingly, regardless of whether the DNA methyla-

tion change was toward hyper- or hypomethylation, ~ 60–70% of

the aging-related dmCpGs which controlled gene expression were

F IGURE 7 Relationships between DNA methylation and gene expression in aging and cancer. (a) Venn diagrams illustrating the overlap
between DEGs in aging and cancer in the KIRC dataset (see Table S13 for DEG lists). (b) Boxplot depicting the DNA methylation b-values of
the CpG cg19442915 in old and young individuals (n = 5) from the KIRC aging condition. (c) Boxplot showing the gene expression values
(RSEM) of the CKM gene in old and young individuals (n = 5) from the aging condition of the KIRC dataset. (d) Scatterplot showing the
Spearman correlation between DNA methylation (cg19442915) and gene expression (CKM gene) in 18 normal kidney samples. Colored dots
indicate old or young individuals used for the aforementioned aging comparisons. (e) Histograms representing the number of pairwise
correlations that are contained in a given correlation window (from 1 to �1) obtained as the result of computing the correlation between b-
values of dmCpGs identified in cancer or aging and gene expression levels (RSEM) of genes expressed in the KIRC dataset. The number of
dmCpGs used for each of the comparisons is indicated at the bottom. (f) Barplots depicting the number of total (blue) and unique (orange)
dmCpG-gene pairs identified in the previous analysis which displayed correlation scores above 0.9 (pos) or below �0.9 (neg) in cancer (top) or
in aging (bottom) conditions. (g) Stacked barplots indicating relative distribution of unique dmCpGs obtained from the previous correlations
according to their CpG island status. (h) Stacked barplots indicating relative distribution of unique dmCpGs obtained from the previous
correlations according to their gene location status. (i) Venn diagrams illustrating the overlap between dmCpGs identified in aging and in
cancer which displayed strong positive or negative correlations (>0.9 or <�0.9) with genes expressed in the normal kidney dataset
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also present in the group of cancer-related dmCpGs (Figure 7i).

These results point toward similarities of cancer- and aging-related

dmCpGs in the control of gene expression in normal tissue, despite

the fact that the number of cancer-related dmCpGs is clearly larger

than their aging counterparts.

3 | DISCUSSION

Although it is widely accepted that cancer is an age-dependent dis-

ease, the underlying molecular mechanisms are still poorly character-

ized. In this work, we have looked at the similarities and differences

in epigenetic changes associated with cancer and aging.

In agreement with previously published data (Fern�andez et al.,

2015), we observed that the number of aging- and cancer-associated

DNA methylation changes was variable and, in the case of aging,

had a marked tissue type-dependent component. In general, cancer

displayed strong and bidirectional changes, while, strikingly, hyper-

methylated CpG sites were predominantly observed for the aging

process. These results, which are ostensibly in contrast with the clas-

sically described global hypomethylation changes in cancer and

aging, might potentially arise from the limitations of our study. As

the methylation arrays used in our analyses mainly interrogate

genetic elements and do not include repeated DNA, which covers a

substantial fraction of the genome and frequently loses DNA methy-

lation in tumors and aged cells, the genome-wide landscape may be

different (Ehrlich, 2009). Nonetheless, epigenetic signatures have

been successfully derived previously using array technology (Fern�an-

dez et al., 2015; Rakyan et al., 2010; Teschendorff et al., 2010) and

our results are in line with recent studies which report no global

decreases in DNA hypomethylation with aging in diverse mouse tis-

sues, such as liver (Cole et al., 2017; Hahn et al., 2017), hippocam-

pus (Masser et al., 2017), or hematopoietic stem cells (Beerman

et al., 2013; Sun et al., 2014), thus strengthening the validity of our

observations.

The changes in cell type composition that occur with age and

cancer are also well-known confounding factors that could affect

our datasets (Zheng et al., 2017). However, the application of the

SVA method of correction (and Houseman correction for blood) and

the use of a pure-cell dataset such as the glia dataset (Guintivano

et al., 2013) allowed us to tackle this issue in two different ways.

Additionally, the use of the blood validation dataset (Hannum et al.,

2013) allowed us to verify the reliability of our workflow, as in terms

of whole blood dmCpGs we obtained 89% concordance with previ-

ous studies using the same data (Fern�andez et al., 2015).

When analyzing the genomic distribution of dmCpGs and, in line

with previously published reports (Cruickshanks et al., 2013; Kulis

et al., 2012; Yuan et al., 2015), we found that hypomethylated CpGs

were enriched at open sea DNA regions, principally intronic and

intergenic, irrespective of the type of process. The distribution of

hypermethylated CpGs was found to be similar to that of the array,

which is to a certain extent to be expected because it was designed

to interrogate a promoter- and CpG dense-biased portion of the

genome. Nonetheless, hypermethylation changes always occurred in

far more CpG-dense regions than hypomethylation changes (Day

et al., 2013; Yuan et al., 2015), and this observed effect was espe-

cially noticeable for aging dmCpGs.

When studying the potential effect of tissue type on DNA

methylation changes, we found, in agreement with recently pub-

lished data (Chen, Breeze, Zhen, Beck & Teschendorff, 2016), that

DNA methylation changes in different tumor types were surprisingly

similar, regardless of the tendency of the alteration. This observation

is conceptually relevant because it has classically been considered

that different tumor types are characterized by specific DNA methy-

lation signatures (Ehrlich & Jiang, 2005; Portela & Esteller, 2010). In

this sense, our data confirm that, although different tumor types

might display specific DNA methylation patterns, there is a signifi-

cant common nexus between them. The analysis of the DNA methy-

lation changes observed with respect to the aging process also

revealed a significant overlap between tissue types, although it is

possible that these results are affected by the variability in the sizes

of the sets of probes detected in the aging analysis.

Our data revealed that dmCpGs shared by two or more tissues

were much less likely to have different behaviors in other tissues,

perhaps pointing toward nonstochastic and possibly functional roles

for these CpGs.

The systematic DNA methylation analyses described in this study

confirm that DNA hypermethylation in aging and cancer is associ-

ated with the same set of histone marks, including the repressive

H3K27me3 and H3K9me3 marks, and the activating H3K4me1/3

posttranslational modifications. Chromatin state analysis revealed

that the hypermethylation-associated H3K27me3 and H3K4me1/3

marks configured bivalent chromatin domains, as has been exten-

sively described in embryonic stem cells (Fern�andez et al., 2015;

Ohm et al., 2007; Rakyan et al., 2010; Schlesinger et al., 2007;

Teschendorff et al., 2010; Widschwendter et al., 2007). Moreover,

our data reveal that this chromatin signature is not restricted to only

embryonic stem cells, but rather this trend should be considered an

extended, global tissue-independent chromatin signature of DNA

hypermethylation in aging and cancer. Interestingly, Chen and col-

leagues (Chen et al., 2016) have recently demonstrated that normal

tissue signatures are better predictors of DNA hypermethylation

changes than ESC signatures. Furthermore, hypermethylation

changes were also associated with the repressive histone mark

H3K9me3 (Ohm et al., 2007), which was correlated to ZNF genes

and DNA repeats in our chromatin state analyses, and which might

have a potential relationship with the malignant transformation pro-

cess (Severson, Tokar, Vrba, Waalkes & Futscher, 2013).

Regarding DNA hypomethylation, our results showed that age-

related DNA hypomethylation is associated with the activating his-

tone posttranslational modification H3K4me1, which supports previ-

ously published data (Fern�andez et al., 2015). A slight tendency for

the enrichment of H3K27Ac, a histone mark characteristic of active

enhancers (Creyghton et al., 2010), was also detected in our analy-

ses. Intriguingly, the chromatin signature of DNA hypomethylation in

cancer was substantially different, being primarily enriched in the
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posttranslational repressive histone modification H3K9me3, a rela-

tionship that has been investigated in colon and breast cancer (Ber-

man et al., 2011; Hon et al., 2012). This observation might be

conceptually relevant because DNA methylation has been proposed

to be a molecular link between aging and cancer (Fraga, Agrelo &

Esteller, 2007; Klutstein, Nejman, Greenfield & Cedar, 2016). How-

ever, our results suggest that the role of DNA methylation as a pos-

sible link between aging and cancer is more complex than previously

proposed. Importantly, even though many of the observed DNA

methylation changes in aging were not shared by tissues, we were

able to describe a common chromatin signature characteristic of the

aging process.

Regarding the analysis of the chromatin states, DNA

hypomethylation in cancer was associated with heterochromatin

DNA regions, which is in line with previous work (Berman et al.,

2011; Kulis et al., 2012). In contrast, chromatin marks of DNA

hypomethylation in aging were associated with enhancers, rein-

forcing previous observations performed with the Infinium

HumanMethylation27K Beadchip platform (Day et al., 2013). As

DNA methylation changes in enhancers have been shown to play

an important role in gene regulation (Aran, Sabato & Hellman,

2013; Blattler et al., 2014; Heyn et al., 2016), our results suggest

that DNA hypomethylation during aging might have a different

functional role in gene regulation compared to DNA hypomethyla-

tion changes in cancer.

With regard to the potential effectors of the distinct chromatin

signatures, enrichment analyses of transcription factors revealed the

presence of EZH2 and SUZ12 polycomb components at DNA hyper-

methylated sites, both in cancer and aging. Specific aging hyperme-

thylation-associated factors were also observed in our comparisons,

such as REST, which has been reported in previously published data

in blood (Yuan et al., 2015), and has also been correlated with long-

evity (Lu et al., 2014). Concerning DNA hypomethylation, transcrip-

tion factors such as FOS, JUN, and JUND were detected at both

cancer and aging hypomethylated CpG sites, but again aging dis-

played stronger and more varied enrichment, and included the pres-

ence FOSL1/2, other bZIP-domain factors like MAFF and MAFK,

and STAT3, which has been associated with recruitment of the

H3K4 methyltransferase SET9 at promoters (Yang et al., 2010). Alto-

gether, these observations would imply that hypomethylation in

aging displays a more marked functional context than that of cancer,

exhibiting an increased enrichment of some factors also detected at

cancer hypomethylated sites and other specific factors not found

associated with tumoral changes.

Interestingly, our gene ontology analyses revealed similar gene

functionalities affected by cancer and aging DNA hypermethylation,

mainly related to developmental processes, which is in line with the

methylation of bivalent chromatin promoters of developmental regu-

lators in cancer and aging (Easwaran et al., 2012; Rakyan et al.,

2010). On the other hand, DNA hypomethylation in cancer was

mainly associated with functions identified with cellular signaling,

and much lower enrichments in gene functions were found for

hypomethylated CpGs in aging. A preponderance of nongenic

enhancer hypomethylation in aging could potentially explain this

absence of gene function association in our data.

To date, the potential relationships between DNA methylation

and gene expression have only been systematically analyzed in a

small subset of studies (Gevaert, Tibshirani & Plevritis, 2015; Gutier-

rez-Arcelus et al., 2013, 2015), and the potential effects of these

relationships on aging and cancer are yet to be elucidated. To this

end, we explored the establishment of potential correlations

between these two processes using the TCGA-KIRC dataset. While

most correlative studies focus on CpGs located at particular genomic

regions, such as DNA promoters (Moarii, Boeva, Vert & Reyal, 2015)

and cis-related correlations with the gene of interest (Gutierrez-

Arcelus et al., 2015), we performed a nonbiased approach focusing

on all the potential pairwise comparisons that could be identified

between any significant dmCpG and the genes expressed in the con-

text of normal kidney tissue. The limitations of these analyses did

not allow us to distinguish between direct (i.e., mediated by the

effects of the DNA methylation process itself) or indirect regulation

of gene expression governed by the subsequent expression of other

regulatory factors. Nonetheless, we observed that both aging and

cancer dmCpGs influence gene expression to a similar extent, as

these processes show the same proportions of strong correlations

between DNA methylation and gene expression in normal kidney tis-

sue. Moreover, we observed a similar number of positive and nega-

tive correlations between DNA methylation and gene expression, as

described in Gutierrez-Arcelus et al., 2013, with most of these posi-

tively and negatively correlated dmCpGs overlapping substantially,

suggesting that these CpG sites may play a dual role in the control

of gene expression, or the involvement of other factors.

Finally, we found that most of the tumor types analyzed in this

study did not show age-associated DNA methylation changes, which

is in agreement with the reprogramming of the epigenetic clock in

cancer cells (Horvath, 2013). As an exception, we identified age-

associated dmCpGs in thyroid tumors. Uncommonly, thyroid cancer

includes age as a prognostic indicator in most staging systems (Hay-

mart, 2009), implying that these cancers do suffer age-related

changes in their behavior. Intriguingly, this tissue displayed the low-

est level of DNA methylation changes in cancer and one of the low-

est in aging. Although the reasons for the different behavior of DNA

methylation changes in thyroid are currently unknown, they could be

related to the good prognosis that typically characterizes this type of

tumor. In fact, Yang Z. and collaborator’s “epiTOC” mitotic clock

(Yang et al., 2016) shows thyroid cancer to have the least deviation

from the behavior of its normal tissue. In this regard, future research

should be conducted to address this issue.

In conclusion, our results indicate that hyper- and hypomethy-

lated changes in aging and cancer each have similar genomic distri-

butions and manifest tissue-independent trends in both processes.

We confirm that chromatin signatures of DNA hypermethylation in

aging and cancer are similar but, strikingly, we demonstrate that they

are different for DNA hypomethylation. Collectively, our data sug-

gest that the possible role of DNA methylation as a molecular link

between aging and cancer is more complex than previously thought.
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4 | EXPERIMENTAL PROCEDURES

4.1 | Data acquisition

HumanMethylation450 BeadChip (Illumina, California, USA) DNA

methylation data (Level 3) corresponding to normal or primary tumors

from breast (BRCA), kidney (KIRC), thyroid (THCA), skin (SKCM), and

glia (GBM) samples were obtained from TCGA consortium via UCSC

Xena Public Data Hub (http://xena.ucsc.edu/). Kidney, skin, and glia

tissue datasets were enlarged for control cases using additional sam-

ples from KIRP (TCGA), skin (Bormann et al., 2016), and glia (Guinti-

vano et al., 2013), respectively. Tissues were chosen based on disease

prevalence, control data availability, and previous literature analyses to

include both novel and pre-analyzed tissues. We also performed analy-

ses on two supplementary datasets: lung adenocarcinoma (LUAD) and

control TCGA data, and whole blood from a healthy cohort (Hannum

et al., 2013). Extended information about the samples for each tissue

type is shown in Tables 1, S1 and S9. Data were preprocessed as

detailed in supporting information.

4.2 | Differential DNA methylation analyses

Differentially methylated probes (dmCpGs) in aging and cancer were

calculated with the R package limma (version 3.32.2) (Ritchie et al.,

2015). Briefly, a linear model between methylation levels as response

variable, the variable of interest (either age group or sample_type), and

surrogate variables (see Supplementary Methods) was fitted for each

of the analyses, adjusting p-values to control for false discovery rate

(FDR < 0.05). For the calculation of age-related dmCpGs, samples

were divided into age quantiles in such a way as to obtain groups with

sizes of n = 15–30, and comparisons were performed between the

upper (OLD) and the lower (YOUNG) quantile. Cancer-related dmCpGs

were calculated between normal tissue (Solid Tissue Normal) and tumor

samples (Primary Tumor) as indicated in Tables 1, S1 and S2. Probes

with M-value changes of <0.5 were not considered as dmCpGs, as has

been suggested elsewhere (Du et al., 2010). Venn diagrams of rela-

tionships between dmCpGs were generated with the online resource

provided by the UGent/VIB bioinformatics unit (http://bioinformatics.

psb.ugent.be/webtools/Venn/). Further enrichment analyses were

performed by means of two-sided Fisher’s tests (p < .05 significance

threshold), measuring effect size either by odds ratios (OR), or by the

difference between observed counts and expected hypergeometric

mean (EHM), employing appropriate backgrounds of interrogated

probes for the given context.

Density of CpG (related to Figure 2a), CGI status and genomic

region (related to Figure 2b,c), and analysis, DNA methylation age

(related to Figure 1d), and gene and KEGG ontology (related to

Figure 6a) analyses are further detailed in Supplementary Methods.

4.3 | Region set enrichment analysis

Enrichment analyses were performed with the R package LOLA (ver-

sion 1.4.0) (Sheffield & Bock, 2016), which looks for over-enrichment

by conducting one-sided Fisher’s tests (p < .05 significance thresh-

old), by comparing overlap of probes (10 bp probe-centered win-

dows) with the dataset of interest. Enrichment of histone marks was

determined using histone ChIP-seq peak tracks (H3K4me1,

H3K4me3, H3K27me3, H3K36me3, H3K9me3, and H3K27ac marks)

from 98 epigenomes (primary tissues, cultures, and cell lines)

obtained from the NIH Roadmap and ENCODE projects (Bernstein

et al., 2010; Consortium 2012) (datasets obtained from http://datab

io.org/regiondb) (see Table S8). The same method was employed for

chromatin-segment analysis using NIH Roadmap’s ChromHMM

expanded 18-state model tracks for the same 98 epigenomes (see

Figure S7 and Table S10, custom database generated with data

obtained from http://egg2.wustl.edu/roadmap/). In a similar fashion,

ChIP-seq peak tracks from ENCODE for transcription factor binding

sites (TFBS) comprising 689 datasets corresponding to 188 TFs ana-

lyzed in 91 cell and tissue types were employed for TFBS enrich-

ment analysis (http://databio.org/regiondb, see Table S11).

4.4 | Gene expression analyses

Gene expression data corresponding to RNAseq HTSeq-Counts

from the GDC TCGA Kidney Clear Cell Carcinoma (KIRC) cohort

were obtained from UCSC Xena Public Data Hub (http://xena.uc

sc.edu/, dataset ID: TCGA-KIRC/Xena_Matrices/TCGA-KIRC.htseq_-

counts.tsv). Samples were filtered to fulfill the criteria of using

only those cases with paired DNA methylation and gene expres-

sion data. Log2(count+1) data were further transformed to obtain

integer count reads per gene condition. Nonvariable and low-

expressed genes (sum of expression across all the samples <1,000

counts) were removed to reduce the number of noninformative

conditions. Differential expression analyses were performed with

the R package DESeq2 (version 1.16.1) (Love, Huber & Anders,

2014), using the standard workflow and parameters, defining dif-

ferentially expressed genes if they satisfied p < .05 after adjust-

ment for multiple testing. For gene expression and DNA

methylation correlation analyses, RNAseqV2 log2(RSEM+1) normal-

ized level 3 TCGA gene expression data were obtained for kidney

normal tissue (KIRC) via UCSC Xena Public Data Hub (http://xena.

ucsc.edu/). Samples were filtered so as to use only those with

paired DNA methylation data. Nonvariable and low-expression

genes (those with the sum of expression between all the samples

of <10) were discarded. After filtering, pairwise Spearman correla-

tions between DNA methylation level and gene expression level

were calculated for all the combinations of probes and genes in

normal kidney tissue samples, using probes that were previously

detected dmCpGs in cancer and aging.

4.5 | Availability

All data generated during this study are included in this published

article and its supplementary information files and are also available

in the Zenodo public repository, https://doi.org/10.5281/zenodo.

1086491.
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