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Federated generalized linear mixed models
for collaborative genome-wide association studies

Wentao Li,1 Han Chen,1,2 Xiaoqian Jiang,1 and Arif Harmanci1,3,*

SUMMARY

Federated association testing is a powerful approach to conduct large-scale asso-
ciation studies where sites share intermediate statistics through a central server.
There are, however, several standing challenges. Confounding factors like popu-
lation stratification should be carefully modeled across sites. In addition, it is
crucial to consider disease etiology using flexible models to prevent biases.
Privacy protections for participants pose another significant challenge. Here,
we propose distributedMixed Effects Genome-wide Association study (dMEGA),
a method that enables federated generalized linear mixed model-based associa-
tion testing across multiple sites without explicitly sharing genotype and
phenotype data. dMEGA employs a reference projection to correct for popula-
tion-stratification and utilizes efficient local-gradient updates among sites, incor-
porating both fixed and random effects. The accuracy and efficiency of dMEGA
are demonstrated through simulated and real datasets. dMEGA is publicly
available at https://github.com/Li-Wentao/dMEGA.

INTRODUCTION

Genome-wide association studies (GWASs) are standard methods for discovering genetic variants that

explain the genetic component of phenotypic variance. As the sequencing costs are decreasing, there is

great incentive to perform large-scale association studies to increase the power of the studies.1,2 Currently,

population-scale joint genotyping and phenotyping efforts such as AllofUs and UK Biobank generate very

large resources that provide great opportunities for extensive analysis of genotype-phenotype relation-

ships.3–5 In addition, there are other efforts that aim at focusing on certain phenotypes such as

TOPMed,6 ADSP,7 TCGA,8 and GTEx.9

There are a number of standing challenges around performing large scale GWAS in existing datasets.

Association tests are confounded by numerous factors such as population stratification, which can be espe-

cially important in multi-ancestral studies and in admixed populations.10 Most of themulti-ancestral studies

are performed as meta-analyses11,12 and may make it more challenging to correct biases compared to a

pooled individual-level data analysis among sites in a collaborative GWAS setting.13,14 Furthermore, binary

and continuous traits should be modeled using appropriate models to avoid biases in the significance of

the genetic effect. It has been shown previously that binary traits are more appropriately analyzed using

generalized linear models (GLM) compared to linear models because generalized models can naturally

represent the categorical/binary nature of case/control study designs.15,16 In addition, there can be com-

plex relationships among samples (such as cryptic relatedness), which makes it necessary to account for

random polygenic effects that may otherwise bias association signals. Furthermore, increasing sample

sizes requires extensive collaboration among large institutions, but data sharing (among institutions)

may be restricted under diverse regulations such as HIPAA17 and GDPR.18 Consequently, a rising concern

for performing large-scale collaborative association studies is the consideration of privacy and related

ethical concerns of unauthorized re-identification of the study participants and their relatives in publicly

available genealogy services, stigmatization of individuals and groups as a results of phenotype and dis-

ease risk predictions, group-level sensitive information prediction (such as inbreeding in Havasupai Tribe),

and marginalization of these historically isolated groups19,20 (Supplementary Information).

Although there are increased incentives around sharing data and making discoveries, regulations are

enacted on legislative level for stricter protection of personal genetic data from open sharing. This creates

a major hurdle for international collaborations. The most basic data protection is performed by lengthy
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data transfer agreements that authorize users’ access to data repositories (e.g., dbGAP21 and European

EGA22). The agreements only establish accountability and do not meaningfully protect data, because

data are still stored and analyzed in plaintext. On technical domain, differential privacy,23 homomorphic

encryption (HE),24 and secure multiparty computation25 enable provably privacy-aware data analysis.

Differentially private methods26,27 are based on noisy data release mechanisms and substantially degrade

genetic data utility. HE28–31-based approaches enable analysis of encrypted data without decrypting it.

Although HE-based methods have made orders of magnitude improvement in terms of performance in

the last decade, they still require large computational resources. Similarly, secure multiparty computation

(SMC) methods32 rely on the separation of data amongmultiple entities such that it cannot be recovered by

any of the non-colluding entities. SMC-based methods have high data transfer requirements and may not

be practically feasible.

Federated association testing (rooted from Federated Learning approaches33,34) among different sites

present a viable solution for increasing sample sizes while underlying genotype and phenotype data are

not explicitly shared. In federated association testing methods, the association testing is reformulated

as an iterative algorithm. At each iteration, each collaborating site computes intermediary statistics using

local genotype and phenotype data and the statistics from other sites. Next, the intermediary statistics are

shared among the sites with a central server that is aggregated and re-shared to all sites. Federated testing

is advantageous from a privacy perspective because the genotype and phenotype data never leave local

sites. This way, all sites make use of the pooled individual-level data that would be otherwise isolated in

distributed repositories across institutions.

Here, we present dMEGA (distributed Mixed Effects Genome-wide Association study), a federated gener-

alized linear mixed model that enables federated genetic association testing among collaborating sites.

First, each site utilizes a reference projection-based approach, wherein the genotype data at the site is

projected on an existing public genotype panel (e.g., The 1000 Genomes Project) and population-based

covariates are computed based on the projected coordinates. Usage of projection is advantageous

because it decreases computational requirements by circumventing computation of principal component

analysis (PCA) among the sites and minimally impacts accuracy. In addition, the computation of popula-

tion-level covariates does not require data to be pooled and does not incur privacy risks. Next, dMEGA

performs federated association testing using the fixed (such as population covariates) and random effects.

In this step, the sites locally calculate intermediate statistics that are sent to a central server, which aggre-

gates the statistics from all sites and shares them with all sites. After a number of iterations, the algorithm

converges and final results are calculated. We demonstrate the accuracy and efficiency of dMEGA using

simulated and real datasets.

RESULTS

Overview of dMEGA

Figure 1 shows the steps of federated association testing workflow. First, the sites project their genotype

data on the principal components (PCs) computed from a reference panel. The reference panel dataset

represents a comprehensive population-based information pool. The projected coordinates are used as

population-based covariates (fixed effect). Next, each site computes the local testing statistics (gradients,

effect sizes, Hessian matrices) and send them to the Central Server (CS). At each site, the likelihood is

approximated by Laplace approximation and gradients are calculated using the local data and the current

parameters (Methods). The Central Server collects intermediate model statistics during the federated

learning process, aggregates the site-specific parameters to compute the global model parameters,

and sends the parameters to the sites for the next iteration. The individual-level data (genotypes,

phenotypes, and covariates) is not shared with other sites or the central server in the inference.

Experimental setting and accuracy metrics

We separated the experimental tests into two parts. We first use simulated data and real dataset to present

the utility of the projection-based population covariate calculation to be used in GWAS. We explore

different scenarios to highlight the importance of reference panel selection.

We next move to usage of the projected covariates in the dMEGA’s GWAS using a real-world dataset

obtained from dbGAP (Data Availability). We explore two settings of covariate selection and compare

the results from dMEGA with results from a centralized GWAS study using lme4 that is calculated using

ll
OPEN ACCESS

2 iScience 26, 107227, August 18, 2023

iScience
Article



the covariates obtained from the dbGAP dataset. To decrease computational requirements, we ran plink2

to estimate association of the variants with the binary phenotype (using the dbGAP reported covariates)

and we focused on the 10,000 variants that were the most significantly associated with the phenotype.

Performance Metrics. We evaluate the results by comparing (1) the p value concordance between the

centralized and federated estimates, (2) the concordance of effect sizes estimated from the centralized

and federated estimates, (3) the concordance of the ranking of the most significant SNPs identified by

centralized and federated calculations, (4) time requirements of federated algorithm, (5) comparison of

the top variants (with changing p value cutoffs) and qualitatively evaluate the results usingManhattan plots,

and (6) qualitative comparison of the scatterplots using the first two PCs calculated by the projection-based

approach and the full-PCA for simulated case studies and the dbGAP reported covariates for the real

dataset.

Projection-based population stratification

We first tested whether dMEGA’s the projection-based population stratification can be used for perform-

ing population structure correction in the context of a simple linear model. The justification of a projection-

based approach is to make use of the genetic diversity represented within the reference panel and identify

the variation of the study participants along the PCs of this panel. Assuming that the reference panel is

representative of this genetic diversity, the covariates from the projection should be useful to correct for

the population stratification in the linear GWAS model. It should be noted that the covariates represent

nuisance parameters, i.e., their exact values are not of essential importance as long as they correct for

the population stratification effects within the study cohort35–37 (Supplementary Information). This

approach enables a large decrease in computation cost by circumventing the need for a full PCA of the

genotype data pooled from all sites28,32,38,39 and relying on much simpler computation of projections in

population-based covariate computation that is used for population-stratification.

We first simulated 100 GWAS studies where 20 variants with allele frequency below 0.1 were randomly

selected as causal with effect on phenotype. We also assigned population and gender-specific biases

on the phenotype to introduce population and gender-specific effect. For each simulated study, we simu-

lated genotypes for 3,000 individuals with a corresponding quantitative phenotype that is computed

regarding genotypes and covariates. We finally ran plink2 in three configurations to perform GWAS with

and without population stratification: (1) We ran plink2 with its default PCA to generate population-based

covariates. (2) We ran plink2 with covariates generated by projection-based covariate computation using

Figure 1. Illustration of federated association testing workflow for two sites named Site-1 and Site-2

Each site holds genotype, phenotype, and covariate datasets. Each site first downloads the reference panel principal

components (PCs) and projects the genotypes to generate the population-based covariates (Step 1). Next, the initial

parameters are downloaded from the central server (CS) (Step 2). Using the local genotype, phenotype, and merged

covariate data, each site updates the local parameters (Step 3) and sends them to CS (Step 4). After receiving the local

parameters from both sites, CS aggregates the parameters and sends the updates parameters to all sites. Steps 2, 3, and

4 are performed until the model converges. Step 1 is performed only once at the before iterations.
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top 6 PCs. (3) We ran plink2 without population stratification as a control to ensure that population strat-

ification is indeed necessary in GWAS. As a first test scenario, we used CEU, MXL, YRI populations from

the 1000 Genomes Project for simulating genotypes and used the same populations as reference to

compute the projection-based population covariates, i.e., the projection and simulation ancestries are

exactly matched. Overall, p values and effect sizes from GWAS with projection-based population correc-

tion match fairly well to default PCA-based population stratification in plink2 (Figures 2, S1A, and S1B).

In comparison, the GWAS without population correction gives fairly discordant and biased results

(Figures S1C and S1D). We next used the GIH, CHB, PEL populations as the reference panel populations

to test for mismatches in the simulated and reference populations. We observed that similar results held

where projection-based population correction yields good concordance with plink2’s default PCA-based

population correction (Figures S1E and S1F). GWAS p values and effect sizes without population correction

yields fairly discordant results when compared to default correction (Figures S1G and S1H). We also

observed that top variants detected from projection-based correction matches accurately to default

correction (Figures S1A and S1B). Overall, these results show that projection-based population stratifica-

tion can be effective for correction of population-specific biases to a large extent. Most importantly, this

approach can be implemented efficiently in a secure domain with much better overall performance

compared to a full PCA-based population correction. We utilize projection-based population stratification

to estimate the population covariates in the GWAS analysis.

We next tested the impact of mismatch between reference populations used in projection analysis and

the study cohort. We first focused on the simulated case study and generated a study cohort consisting

CEU, MXL, and YRI samples. We next performed projections where reference was constrained as single

populations. When we used a homogeneous European population (TSI), we observed that the projected

coordinates did not reflect the genetic ancestry of the study participants. In addition, we observed fairly

low concordance between the top associated variants obtained from a full-scale PCA of the study sample

(Figure S2A). Of interest, when we use a single admixed population (GIH), we observed better separation

of the study subjects albeit with low variant concordance (Figure S2B). When we used another admixed

population (PUR), the separation was slightly improved (Figure S2C). When we used a reference popu-

lation that contained mixture of the European, African, and American samples, we observed a fine sep-

aration among the study subjects and much higher concordance between the associated variants (Fig-

ure S2D). Overall, these results show that projection-based approach must be carefully applied to

ensure that the reference population includes a representative genetic diversity that can encompass

that of the study participants.

Figure 2. Comparison of most significant variant concordance between projection-based population

stratification and PCA-based stratification among 100 simulated GWAS

(A) The comparison of significant variant concordance for matching population panels. X axis shows the number of top

variants. Y axis shows the concordance fraction. Blue boxplots depict the concordance between projection-based

stratification and PCA-based stratification. Red boxplots show the concordance between GWAS with no population

stratification and GWAS with PCA-based stratification.

(B) Concordance of most significant variants when projection is performed with a mismatching set of reference

populations.
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We next studied our real study sample that is obtained from the dbGAP, for which we did not have a-priori

knowledge about the ancestry. For this case, we performed projection using EUR, AMR, and AFR super-

populations from the 1000 Genomes Project. Overall, the projection using single super-populations did

not reveal the full complexity of the genetic ancestry of the study subjects. For example, EUR reference

(Figure S3A) did not appropriately separate the subjects and AMR (Figure S3B) and AFR provided marginal

separation of the subjects (Figure S3C). When we use the whole 1000 Genomes populations (Figure S3D),

we observed a much better concordance to the principal components that are reported by the dbGAP

(Figures S3D and S3E). Particularly, the subjects tended to separate along the Europe-Asian-African Trian-

gle from the two methods. It should again be noted that we do not require the covariates to match exactly

because the PCs are treated as nuisance variables in the GWAS analysis, i.e., it is only necessary to capture

the population structure. These results again denote that care must be taken to ensure that the reference

panel is inclusive of the genetic ancestry of the study cohort.

Accuracy comparison with centralized association tests

First, we compared the accuracy of dMEGA in collaborative setting by comparing the association results

with the centralized model as computed by lme4.40 We used the genotypes and phenotypes data from

the database of genotypes and phenotypes (dbGaP) with accession number phg000049 that comprises

3,007 individuals (1,266 case, 1,279 controls, 462 unknown). This dataset also contains the four covariates

that are to be used for population stratification of the study subjects in downstream analyses. We ran

dMEGA after partitioning data into three sites based on the k-means algorithm on the genotypes data

and used the projection-based covariates for population stratification. The sites were treated as the addi-

tive random intercept effect, and this can be more efficient than treating them as fixed-effects when the

number of sites is exploding. This assertion is justified since each term needs to be included at each site

as a separate fixed effect term and may cause convergence or numerical stability problems. In the compar-

isons, we focused on the top 10,000 SNPs that were reported by plink41 version 2 as most significantly asso-

ciated with the disease status. This variant selection is done to decrease computational requirements. We

ensured that the top 10,000 SNPs include the variants that have the highest association with the phenotype

(AD-status) and contains large number of variants with no significant association, i.e., it is a representative

set of variants for comparing the methods. We also evaluated the utility of projection-based population

stratification and correction by estimating the population-based covariates using the 2,504 individuals in

the 1000 Genomes Project (Methods).

We first compared the top SNPs at different significance levels using two stratification approaches to

evaluate their effect, which are shown in Table 1 using projections on top 4 and 6 components as covariates

in population stratification. The choice of 4 projected covariates is for comparing the results when the num-

ber of projected covariates matches the dbGAP reported covariates. We also tested usage of 6 projected

covariates to demonstrate that projection may require larger number of covariates to capture the genetic

diversity in the study cohort. Overall, both methods exhibit high concordance with the centralized

model (lme4).

We next pooled all of the SNPs and plotted the assigned p values, which is shown in Figure 3. Consistent

with previous result, we observed that using 6 components exhibit a higher concordance of significance

levels (Spearman correlation r = 0:99 for 6-components vs. 0.97 for 4-components.) (Table 2)

Table 1. Performance of predicting significant SNPs under various significant level a

a precision recall F1-score Significant SNPs

Comparison 1: dMEGA on projected 4 PCs versus ‘lme4’ on 4 dbGAP Reported PCs

10�5 0.580645 0.818182 0.679245 22

10�6 0.875 0.875 0.875 8

10�7 1 1 1 6

Comparison 2: dMEGA on projected 6 PCs versus ‘lme4’ on dbGAP Reported 4 PCs

10�5 0.68 1 0.81 19

10�6 1 0.88 0.93 8

10�7 1 1 1 6
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We next compared the ranks assigned to most significant SNPs by the two approaches when they are

compared to the centralized model (Figures 4 and S4–S6). This is an important comparison to make sure

that the most significant SNPs (from the original set of 10,000 variants), which would be functionally

validated by the collaborating sites. Overall, there is fairly high concordance in the top SNPs and their rank-

ings. Qualitatively, we observed ranking consistency to the centralized model is higher for population

correction using 6-component projection compared to 4-component projections. Table 3 We finally

visually evaluated the genome-wide distribution of the SNP significance, assigned by the 2 projection

approaches and the centralized model Figures 5, 6, and 7. As expected, all methods find the most

significant associations on chromosome 19 with high concordance, which is known to be associated

with AD.

Comparison with cGLMM

We next compared dMEGA with cGLMM42 algorithm from the open source GitHub repository https://

github.com/huthvincent/cGLMM, and used the provided synthetic data, which comprised of 150 SNPs

for 3000 samples also obtained from the same GitHub repository. cGLMM utilizes an MCMC-based opti-

mization for estimating the effect sizes for the covariates in the dataset in the federated GLMM setting. We

simulated federated learning conditions by loading the data into two separate clients, each having sample

sizes of 1498 and 1502, respectively, while maintaining a central server that managed the communication

and aggregation of the intermediate statistics. We ran the cGLMM algorithm 20 times and observed that

we could only reproduce the results for 7 runs (Table S1), which we attributed to numerical issues arising

from either (1) parameter initialization or (2) Hessian matrix calculations (Personal communication with au-

thors). On further investigation, we found that the intermediate Hessian matrix converged to a matrix of all

zeros, which prevented the algorithm from updating beta (Equation 8 in Zhu et al. cGLMM paper).

To test the robustness of dMEGA, we randomly selected 10 SNPs from the 10,000 variant set and ran

dMEGA 20 times independently on each SNP and estimated robustness of the statistics. Overall, dMEGA

successfully completed all runs on all of the 10 SNPs. In addition, the standard deviation of p value

estimated for each SNP among the independent runs is much smaller than the mean of the p value, indi-

cating robust estimate of the p value. We observed a similar robustness for the estimated effect sizes

(Table S2).

We also observed important conceptual differences in cGLMM’s design and reported statistics. In partic-

ular, cGLMM algorithm aims to fit a single model for a given set of variants or covariates, providing only the

effect size for each variant, without a statistical significance (i.e., p values for each covariate) of the effect

sizes. This may pose a major limitation for application to GWAS because it is necessary to evaluate

Figure 3. Scatterplots of p values from two comparisons

(A) Scatterplot of p values from comparison 1.

(B) Scatterplot of p values from comparison 2. The lme4 baseline models experimented with 4PCs dbGAP reported

covariates.

Table 2. Correlation statistics in two comparisons

Comparison 1 Comparison 2

Spearman correlation 0.9734 0.9909

Pearson correlation 0.9509 0.9845
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significance of the tested variants so as to filter out variants with no association. Thus, we believe cGLMM

may not be directly applicable in GWAS settings.

Conversely, dMEGA fits a model for each variant individually and reports both the effect size and statistical

significance for each predicted effect size. In summary, our comparisons indicate that the cGLMM

algorithm and dMEGA differ in their conceptual design and practical applicability.

Timing, memory, and data transfer

Our experiment was done in a computation environment of 96 threads (24 Cores) Intel(R) Xeon(R) Platinum

8168 CPU@ 2.70 GHz, 1.5 TBmemory, Ubuntu 16.04.7 LTS, Python 3.10.4. In the tests, 1 thread was used for

estimating the runtime.We observed a small difference between running 6PCs and 4PCs in dMEGA. Feder-

ated computation for each SNP took 20 s and 200 MB memory on average to complete. The total commu-

nication cost of 4 PCs and 6 PCs federated model are 80 kB and 125 kB on average. This cost includes, for

each iteration, each site transmit 88 Bytes of random effect coefficient, 144 Bytes of computational

intermediates, and 72 Bytes of fixed effects coefficients (Table 4). Overall, these results indicate low

network transfer requirements for dMEGA’s framework (Figure 8). The algorithm can benefit from software

optimizations by parallelization of the calculations by multithreading.

As we are aware that dMEGA requires significant computational resources for large-scale studies involving

millions of variants (e.g., estimation for 10,000 SNPs takes 200,000 s on a single thread), we recommend that

Figure 4. SNP ranking concordance between lme4 and dMEGA

(A) Paired boxplot of comparison 1.

(B) Paired boxplot of comparison 2. The lme4 baseline models experimented with 4PCs dbGAP reported covariates.
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its application be focused on specific scenarios. For instance, it can be useful in small-scale validation

studies or targeted association testing, where sites may focus on small regions deemed significant at

each site separately and validate using new samples collaboratively. Alternatively, sites may wish to collab-

orate on samples genotyped using targeted technologies like exome sequencing and targeted gene

panels. These approaches can provide valuable insights into the genetic basis of complex traits while

mitigating the computational burden.

DISCUSSION

We presented dMEGA for federated generalized linear mixed modeling. dMEGA is readily applicable to

collaborations where data sharing at the summary statistic level can be deployed. Unlike previous methods

that rely on a computationally intensive federated PCA for performing population stratification and correc-

tion, dMEGAmakes use of projection on existing reference panels and to correct for population biases. As

Table 3. 20 Selected SNPs with high significance

SNP CHR

dMEGA

projected 6PCs

dMEGA

projected 4PCs

lme4 dbGAP

Reported 4PCs

rs2075650 19 3.48E-42 9.14E-42 9.64E-42

rs405509 19 2.30E-14 3.22E-14 2.36E-14

rs8106922 19 3.24E-13 3.65E-13 3.37E-13

rs6859 19 6.93E-14 2.89E-13 3.37E-13

rs157580 19 1.57E-11 3.58E-11 2.13E-11

rs10402271 19 1.03E-08 1.35E-08 7.70E-09

rs4796606 17 1.39E-07 3.07E-07 1.69E-07

rs439401 19 1.02E-06 1.60E-06 8.50E-07

rs4954152 2 1.43E-06 3.95E-07 2.21E-06

rs2507880 11 2.45E-06 2.51E-06 2.96E-06

rs2939753 11 5.38E-06 2.30E-06 6.19E-06

rs11649731 17 7.32E-06 4.55E-06 6.47E-06

rs2924943 2 4.59E-06 1.09E-06 7.84E-06

rs7592667 2 7.55E-06 2.38E-05 8.10E-06

rs1526528 7 6.34E-06 1.05E-05 8.54E-06

rs1798296 12 7.03E-06 5.74E-06 9.01E-06

rs1471263 4 3.47E-06 2.20E-06 9.18E-06

rs6078239 20 8.82E-06 9.74E-06 9.26E-06

rs12320530 12 1.29E-05 1.97E-05 9.54E-06

rs7222487 17 7.52E-06 4.82E-06 9.63E-06

Figure 5. Association significance of SNPs scored by dMEGA with projected datasets on 4 PCs

Manhattan plot shows the chromosomes on x axis and log10ðp � valueÞ on the y axis. Each dot corresponds to an SNP.
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the size and diversity of existing panels increase, we foresee that projection-based bias correction can

prove more accurate. The projection has very small computational requirements and can be performed

at each site before federated analysis.

Another similar method distributed Penalized Quasi-Likelihood (dPQL)43 used penalized quasi-likelihood

to approximate the objective function of GLMM. dPQL simplifies the maximization of the log likelihood

function of GLMM to fitting a linear mixed model. However, dPQL has inherited drawbacks. For example,

dPQL depends strongly on the estimated variance components,44 but the inference of variance parameters

in dPQL may be biased45 because of its linearity assumption. dMEGA approximates the marginal distribu-

tions, and it provides more robust estimation since dMEGA considers the marginal predicted ratios asso-

ciated with each local site, not just identifying samples with particularly high predicted ratios.44 Another

method that was recently proposed by Zhu et al.,42 which utilizes Expectation Maximization by integrating

Metropolis-Hastings algorithm with Newton-Raphson as the maximization steps for performing general-

ized linear mixed model in a collaborative fashion. Although this method is expected to provide matching

results with a centralized algorithm, EM requires large sample sizes for robust parameter estimation and

may likely get stuck in local optima in the parameter estimation. Our comparison results demonstrate

some possible source of stability issues, e.g., convergence to a zero Hessian matrix. More importantly,

cGLMM is designed to estimate only the covariate effect sizes and does not provide statistical significance

for the effect sizes. This is an important consideration for application in GWAS since significance of the var-

iants are central to filtering them out in these studies. We therefore believe dMEGA and cGLMM differ in

conceptual and practical terms and in their application domains.

As the current implementation stands, dMEGA can be used for correcting for site-specific random risk fac-

tors (such as environmental factors). In addition, we formulated an approach that can be implemented into

dMEGA to include site-level correlations among the random effects. This approach can be integrated into

dMEGA’s federated implementation and be used to model more complex random risk effects among sites

Figure 6. Association significance of SNPs scored by dMEGA with projected datasets on 6 PCs

Manhattan plot shows the chromosomes on x axis and log10ðp � valueÞ on the y axis. Each dot corresponds to an SNP.

Figure 7. Association significance of SNPs scored by lme4 with 4 dbGAP reported PCs

Manhattan plot shows the chromosomes on x axis and log10ðp � valueÞ on the y axis. Each dot corresponds to an SNP.
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(e.g., sites close to each other geographically). A related work is lme4qtl,46 which can incorporate individ-

ual-level random effects using a covariance matrix, e.g., kinship matrix. In its current implementation

dMEGA is not able to handle the individual-level covarying random effects. We leave this as a future exten-

sion of the dMEGA’s federated GWAS framework.

Limitations of the study

dMEGA has several limitations that warrant further research. While our federated testing approach has

small network traffic requirements, each local site is required to handle high computational load. This is

a general challenge among federated learning methods. Considering that the gene association tests

may involvemillions of variants along with large number of phenotypes, the center server aggregation layer

can be outsourced to cloud whereby, while the data are kept locally. Another limitation of dMEGA is

selection of the reference panels that are used in projection step. As our results indicate, a reference panel

that is not reflective of the genetic diversity of the study participants may inadvertently bias the results. Pro-

jection-based analysis has been employed previously in ancestry estimation37 and kinship estimation

methods47 and the main justification for using the projection approaches is to decrease the computational

requirements of a full federated PCA that entails large computational load on the sites. The future work in

this arena include tuning the projected covariates to match the genetic ancestry of the study participants.

For example, the sites can iteratively update the projected covariates to increase the genotypic variance

Table 4. Communication summary

Pi to CS CS to Pi

Number of PCs p: scalar Current working SNP’s name S: character

A list of SNPs’ name S: list Global gradient l: p + 1 vector

Sample size ni : scalar Global Hessian H: ðp +1Þ3ðp + 1Þ matrix

Local gradient l0i : p + 1 vector Global parameter q: p + 1 vector

Local Hessian Hi : ðp + 1Þ3ðp + 1Þ matrix Inference statistics: p + 1 vector

Local mixed effect mi : scalar

Local Standard Error SEi : p + 1 vector

Figure 8. Diagram of federated GLMM inference in dMEGA
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explained by the covariates. We also propose the usage of "worldwide panel PCs37" that encompass the

genetic diversity of a large set of populations. It is worth noting that the projection requires the principal

components and not the individual level genotype data. Thus, it does not directly increase the individual-

level privacy risks. In turn, the worldwide panel PCs can be released even from restricted panels such as

TOPMed.

From privacy perspective, dMEGA shares only summary statistics between the central server and the sites.

In that regard, it is necessary that the central server is a trusted entity (such as NIH) and that all sites are

expected to execute dMEGA in an honest manner. As summary statistics may leak information, honest-

but-curious entities can perform re-identification attacks. This is, however, a general concern in federated

learning frameworks and not specific to dMEGA. Our approach does not pose a direct risk to the reference

panel because projection requires only the principal components. Thus, restricted reference panels from

underrepresented populations can be utilized in these computations. It is still worth noting that the prin-

cipal components are types of summary statistics and can leak information that may be used to re-identify

participation using previously described attacks.48 Furthermore, the intermediate statistics (H; I;m) are also

vulnerable to certain attacks on federated learning systems such as variants of gradient inversion attacks.49

Thus, it is important to protect these model information during the federated learning process. Different

approaches can be used to protect these summary statistics such as multi-key homomorphic encryption50

(MKHE), or Differential Privacy (DP). The usage of these formalisms requires further research into efficient

re-formulations for MKHE and balancing the Gaussian or Laplace noise level for DP for ensuring utility.

To increase the confidentiality of dMEGA, we can utilize noise addition to hide local intermediate informa-

tion, denoted as Ii (i.e. local sample size, local gradient, local Hessian, localmixed effects, and local standard

error), during communication. This idea has been developed in the HyFed51 framework, which introduces a

server called Compensator to collect the local noise Ni values from each client and send the aggregated

noise, i.e.,N =
P

iNi, to the CS. In this process, each client generates local noiseNi from a Gaussian distri-

bution with zeromean and a variance of s2. Then, each client will mask the intermediate statistics Ii using the

noiseNi , to generate I0i = Ii +Ni, and send the noisy statistic toCS. Simultaneously, each site sends the noise

levels to the Compensator. When all clients finish their communication, CS unmasks the global information

of interest I =
P

i Ii =
P

i I
0
i � N via deducting the aggregated noise N provided by Compensator.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Arif Harmanci (Arif.O.Harmanci@uth.tmc.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

All original code has been deposited to github and is publicly available as of the date of publication. Acces-

sion link is listed in the key resources table.

d The reference panel is obtained from the 1000 Genomes Project FTP portal at ftp://ftp.1000genomes.

ebi.ac.uk/vol1/ftp/.

d dMEGA is publicly available at https://github.com/Li-Wentao/dMEGA.

METHOD DETAILS

The goal of dMEGA is to detect significant SNPs that are associated with specific diseases or phenotypes

in a federated manner. In our assumption, genotype and phenotype data are stored cohort-wise

throughout several entities (e.g., research institutions or hospitals). Each entity is presumed to be pro-

hibited from sending original data. By constructing a logistic regression model with mixed effects,

data holders will update the global model with local information bias considered. Notice that the

communication process does not put data at risk due to dMEGA will only ask data holders for model

information, such as gradients.

Projection-based calculation of population covariates

dMEGA first centers the genotypematrix for each individual and projects the samples on a reference panel

that is shared among the sites. In the context of privacy-aware analysis, this is a reasonable assumption

because the sites can make use of numerous publicly available panels. For dMEGA, we use The 1000 Ge-

nomes Project panel that comprises 26 diverse sets of populations that are geographically sampled over

the world.

The reference panel is first processed at the central server. This is done by performing principal

component analysis (PCA) on the reference panel by decomposition of the genotype covariance matrix,

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Late Onset Alzheimer’s Disease

Cohort Dataset

Database of Genotypes and

Phenotypes (dbGaP)

phs000168

The 1000 Genomes Project Genotype

and Metadata

1000 Genomes Project https://www.internationalgenome.

org/data/

R https://cran.r-project.org/bin/

windows/base/

R

dMEGA https://github.com/Li-Wentao/

dMEGA

dMEGA

Plink2 https://www.cog-genomics.org/

plink/2.0

Plink2
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i.e., P$PT = P$L$PT , where PN;S denotes the full set of principal components of reference panel geno-

type matrix PN;S for N genetic variants and S samples in the reference panel, where S = 2; 504 for The

1000 Genomes Project population data. We use k top principal components (columns) of this matrix

in our projection step.

After the reference panel is processed by the central server, the principal components are sent to collab-

orating sites. It should be noted that the reference panel is processed once at the central site at the begin-

ning of the computations. The central server does not share the reference panel genotypes directly with the

sites. The components do not represent direct risk to the reference panel individuals. This is advantageous

for utilizing the restricted population panels, such as the ToPMED panel.6

~Gi;j = Gi;j � 1

N
$
X
k

Pi;k (Equation 1)

where ~G denotes the centered genotype matrix.

ck;j =
X
i

~Gi;j$Pi;k ; k < k (Equation 2)

where ck;j denotes the kth covariate for jth individual.

Projection-based covariate computation with the 1000 genomes sample

In our experiments, we used The 1000 Genomes Project’s phase 3 genotypes as the reference panel avail-

able at . We used the bi-allelic SNPs and subsampled the variants to utilize 77,531 variants. We generated

the top 4 and 6 principal components for the 3,007 individuals in the genotype dataset.

Federated association test

We introduce a federated association test algorithm based on Generalized Linear Mixed Model. Assume

that there will be k institutions that hold genotype and phenotype data, and that each institution’s data-

base consists of ni subjects (Figure 8). Let the total number of patients be denoted by n =
Pk

i ni = 1. Here,

we consider site-wise mixed-effects, denoting mi as the mixed-effect of institution i, as well as shared

fixed-effects q. Notice that the fixed-effects parameter space is split into two parts, q = ðb; gÞ. Denote
b is of N � 1 dimension parameter for covariates and g is 1 dimension for genotype. The genotype

dataset at institution i denoted as Xi (Matrix of N � 1 covariates and 1 genotype on nk individuals),

and phenotypes denoted as Yi (vector of length nk ). Thus, the mixed model of each site can be

represented as

E½Yijmi;Xi� = g� 1ðXiq + miÞ

mi � Nð0;sÞ
where g� 1ð $Þ is the inverse of the link function (i.e., a logit function for logistic regression/binary traits) that

defines the relationship between the linear combination of the predictors (genotypes, covariates, and

random effects) to the mean of the phenotype. Here, we focus on the random intercept effect at site i,

mi , which follows a normal distribution with mean 0 and variance s. In this scenario, mi is constant for indi-

viduals on the same site. Across the sites, mi is normally distributed across sites.

For a binary trait (i.e. case/control study), the conditional probability distribution of the phenotype given

the variant genotypes and covariates can be written as

P
�
Yij = 1

��Xij

�
=

Z
mi

g� 1ðXiq + miÞ4ðmiÞdmi

where 4 denotes the probability density function for normal distribution with mean 0 and hyper-parameter

variance s. Thus, the likelihood function of the joint distribution can be formulated as

Lðq;sÞ =
Yk
i = 1

Z +N

�N

Yni
j = 1

P
�
q;mi

��Xij; Yij

�
PðmijsÞdmi
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The optimization of the likelihood function is a non-tractable problem because the integral over the

random effects does not have a closed form representation. To solve the intractable problem, we utilize

Laplace approximation for the likelihood function:

Lðq; sÞ =
Yk
i = 1

Z +N

�N

e
log

�Qni
j = 1

Pðq;mijXij ;yijÞPðmi jsÞ
�
dmi

b
Yk
i = 1

Z +N

�N

ef ðq;miðsÞÞdmi

z
Yk
i = 1

ef ðq;m̂iÞ
"
� 2p

f 00mimi ðbm iÞ

#ni=2

b
Yk
i = 1

Liðq; bmiÞ

where bmi = miðbsÞ = argmaxsLiðq;miðsÞÞ;cq. And for computational convenience, we take log-likelihood as

our objective function, that is

lðq; sÞb log Lðq;sÞ =
Xk

i = 1

log Liðq; bm iÞb
Xk

i = 1

liðq; bm iÞ

Hence, the goal is to optimize the approximated objective function above. Compared to the centralized (all

data pooled in one repository) inference, the optimization in federated learning settings is based on iter-

ations of (1) Calculation of the intermediate statistics computed using each institution’s local data and (2)

aggregation of the statistics by a central server (CS). We describe the steps in more detail below:

Initialization. The federated learning will start with a central server CS that connects to k distributed local

data repositories. Initial modeling information requests will send to each participant Pi .

� Number of PCs

� A list of SNPs’ name S

� A list of sample size across participants N

Step 1. CS will initiate model parameters qð0Þ for each distributed model with SNP in list S. And each local

repository Pi computes model’s intermediates and send back to CS

� Local gradients on fixed effects ’li.

� Local Hessian matrix on fixed effects Hi

� Local site-wise mixed effect coefficient mi

Step 2. CS updates model’s parameter qnew with aggregated information from global gradients l0ðmÞ =P
i l
0
iðmiÞ, global hessian Hm =

P
iHiðmiÞ, and previous fixed-effects qprev = ðq1; .; qkÞ. The update is

done by Newton’s method qnew = qprev � l0=H. Then send qnew to each Pi.

Step 3. Each Pi will follow Step 2 until model is converged with criteria Dq and Dm below threshold 10� 6.

Step 4. The CS will compute the local standard errors SEi = diagððXu
i
cWXiÞ

� 1=2Þ from Pi, then return infer-

ence statistics (e.g. Z score, P-values). Where cW = bY ið1 � bY iÞu.

All the information in communication is summarized in table below

Dependent site-wise relationship in dMEGA

Furthermore, we can generalize this problem with the site-level variance-covariance matrix. Here, we don’t

assume the dependency among federated sites and denote a site covariancematrix S. Notice thatS is a k3

k matrix under our scenario. We assume the site variance-covariance matrix S is known. And t is the cross-

site hyperparameter to be estimated.
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Hence the distribution of the random effect is a multivariate normal distribution and it is shown as

m = ðm1;.;mkÞu � N kð0; tSÞ
where m is the vector of random effects of each federated site, and t is the hyperparameter that is to be

estimated. Now, the objective function of the dependent sites is

Lðq; tÞ =
Yk
i = 1

Z +N

�N

Yni
j = 1

P
�
q;m

��Xij ;Yij

�
PðmjtÞdm

QUANTIFICATION AND STATISTICAL ANALYSIS

p-values reported in the results are estimated with respect to the aforementioned generalized linear mixed

models. P-value cutoffs are selected as described in the reported tables and results.

Data sources and experimental setup

We used genotype-phenotype data obtained from database of Genotypes and Phenotypes (dbGaP) with

accession number phs000168 for our experiments available for General Research Use (GRU). This dataset

contains 575; 003 variants genotyped by Illumina Human610-Quad version 1 platform over 3; 007 individ-

uals. Raw data is processed and formatted with plink2.41 The alternate alleles reported by the array

platform were re-coded using in-house scripts to ensure that they were concordant with The 1000

Genomes Project. Any variant for which we could not resolve by strand were excluded. We next used

plink2’s "–glm" option to calculate the baseline association signals. We next filtered the SNPs and identi-

fied the SNPs with top 10; 000 variants with the strongest association signal to the phenotype.

The reference panel is obtained from the 1000 Genomes Project FTP portal at ftp://ftp.1000genomes.ebi.

ac.uk/vol1/ftp/. We processed 1000 Genomes dataset by first excluding the SNPs with minor allele fre-

quency (MAF) smaller than 5%. We next overlapped the variants with the re-coded array variants, which

yielded 155; 076 common variants. To decrease computational requirements, we focused on variants on

the 22 autosomal chromosomes and further sub-sampled the remaining variants to generate the final

77; 315 variants. These variants were used to generate the principal components and population-based co-

variates in the projection step.

To evaluate dMEGA, we compared it with a baseline method using the linear mixedmodel implemented in

R package ‘lme4’.52 Our experiments were designed as table below:

We will focus on two comparisons (beow table):

1. (Denoted in y) dMEGA in projected and distributed data and baseline in projected and pooled data.

While the datasets are the same (projected), this comparison aims to show the performance of dMEGA in

distributed datasets.

2. (Denoted in �) dMEGA using projected covariates and distributed data and baseline in dbGAP pro-

vided covariates and pooled data.

The datasets are of different between dMEGA method (using projected covariates) and baseline method

(using dbGAP covariates). This comparison will show the capability of projection combining with federated

learning.

Experiments

Distributed Pooled

Projected dMEGA*y R(lme4)y

dbGAP Covariates – R(lme4)*
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