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Abstract

Rabies is a zoonotic disease caused by infection with rabies virus, which circulates naturally

in several wild carnivore and bat reservoirs in the United States (US). The most important

reservoir in the US from an animal and public health perspective is the raccoon (Procyon

lotor). To prevent the westward expansion of a significant raccoon rabies epizootic along the

eastern seaboard, an operational control program implementing oral rabies vaccination

(ORV) has existed in the US since the 1990s. Recently, two vaccine efficacy studies con-

ducted with raccoons and striped skunks (Mephitis mephitis) provided the opportunity to

determine if volatile fecal metabolites might be used to non-invasively monitor ORV pro-

grams and/or predict virus protection for these species. The volatile metabolome is a rich

source of information that may significantly contribute to our understanding of disease and

infection. Fecal samples were collected at multiple time points from raccoons and striped

skunks subjected to oral treatment with rabies vaccine (or sham). Intramuscular challenge

with a lethal dose of rabies virus was used to determine protection status at six (raccoons)

and 11 (skunks) months post-vaccination. In addition to fecal samples, blood was collected

at various time points to permit quantitative assessment of rabies antibody responses aris-

ing from immunization. Feces were analyzed by headspace gas chromatography with mass

spectrometric detection and the chromatographic responses were grouped according to

cluster analysis. Cluster scores were subjected to multivariate analyses of variance (MAN-

OVA) to determine if fecal volatiles may hold a signal of immunization status. Multiple

regression was then used to build models of the measured immune responses based on the

metabolomic data. MANOVA results identified one cluster associated with protective status

of skunks and one cluster associated with protective status of raccoons. Regression models

demonstrated considerably greater success in predicting rabies antibody responses in both

species. This is the first study to link volatile compounds with measures of adaptive immu-

nity and provides further evidence that the volatile metabolome holds great promise for con-

tributing to our understanding of disease and infections. The volatile metabolome may be an

important resource for monitoring rabies immunization in raccoons and striped skunks.
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Author summary

Permanent damage to ecosystems and direct transmission to humans (zoonoses) are two

serious consequences of infectious wildlife diseases. Rabies is one such zoonotic disease of

concern. Recently, two rabies vaccine efficacy studies were conducted with raccoons (Pro-
cyon lotor) and striped skunks (Mephitis mephitis). These studies allowed us the opportu-

nity to investigate the presence of volatile signals of rabies immunization coded in fecal

odors. These signals, if sensitive and specific, could permit non-invasive monitoring of

rabies vaccination in wildlife populations. Semi-quantitative analyses of fecal volatiles and

quantitative assessment of rabies binding antibodies (rVBA; which represent humoral

immune responses to the vaccine or virus) were made at multiple time points. Regression

models predicting rVBA responses using volatile fecal metabolites demonstrated predic-

tive qualities in both species. This is the first study to link volatile compounds with adap-

tive immunity and provides further evidence that the volatile metabolome holds great

promise for contributing to our understanding of wildlife diseases.

Introduction

Rabies is one of the world’s most significant zoonoses, causing an estimated 59,000 cases annu-

ally in humans [1]. The most significant wildlife reservoir in the United States (US) is the rac-

coon (Procyon lotor), due in part to their high population densities in suburban and urban

habitats [2–4]. Since the 1990s, operational management of wildlife rabies in the US has relied

upon oral rabies vaccination (ORV) to control rabies circulation in free-ranging mesocarni-

vores [5]. While ORV has so far been successful in preventing spread of raccoon rabies west of

the Appalachian Ridge in the US, real-time surveillance is needed not only to inform the appli-

cation of ORV, but also monitor continued intervention success [6].

There is growing evidence that trained animal biosensors may be valuable tools for disease

surveillance. Trained detector dogs have already proven to be invaluable wildlife research tools

employed for scat [7], carcass [8], and pest detection [9]. Biosensors have been used to discrim-

inate various tissues manifesting cancer from healthy tissue in a number of studies, including

lung, prostate, colorectal, ovarian, breast, bladder, and skin cancers [10]. Trained mice have

been shown to discriminate between healthy and influenza-infected waterfowl [11] as well as

immunization status with an inactivated rabies vaccine in a mouse model [12]. As a result of

these and other studies, instrumental investigations of the host’s volatile metabolome as a

source of disease signals have recently increased. For example, examination of fecal volatiles by

gas chromatography/mass spectrometry has been featured for detection of avian influenza in

mallard ducks [11]; bovine tuberculosis in goats [13, 14], white-tailed deer [15], and cattle

[16]; and gastrointestinal diseases in humans [17, 18].

The present study takes advantage of vaccination and challenge experiments conducted

with raccoons [19] and striped skunks (Mephitis mephitis) [20] for the purpose of evaluating

oral rabies virus (RABV) vaccine efficacy in these species. The designs of these experiments

were particularly useful as they permitted replication in space and time. Given the difficulties

associated with containment of viruses and other pathogens, many similar studies have

employed small numbers of subjects (often less than 10) and most were only “snapshots” of

the volatile metabolome at a single time point. Another strength of the Gilbert et al. studies

[19, 20] was the monitoring of the adaptive immune response (RABV neutralizing and binding

antibodies, rVNA and rVBA respectively). Although links between cell-mediated immunity

and the volatile metabolome have been demonstrated in a mouse model [21, 22], these data
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provide a unique opportunity to uncover relationships between adaptive immunity and the

volatile metabolome. The present study was designed to uncover volatile signatures associated

with rabies immunization in two key North American reservoir hosts for RABV.

Methods and materials

Ethics statement

Animal use and procedures described here were approved by the USDA National Wildlife

Research Center (NWRC) Institutional Animal Care and Use Committee (protocols QA-2258

and QA-2278) and compliant with the animal care and use regulations promulgated in 9 CFR

parts 1, 2, and 3.

Animal subjects

Import and housing of animals at the NWRC facility was permitted under Colorado Parks and

Wildlife permits 13TR2056, 14TR2056, 15TR2143, and 16TR2143. Naïve adult and juvenile

raccoons and adult striped skunks were obtained from a commercial breeder and housed indi-

vidually during all phases of the study. All animal procedures summarized below were previ-

ously described [19, 20]. Subjects were housed in an Animal Biosafety Level 2 room during

challenge and post-infection (pi) monitoring phases. Subjects were fed a daily ration (raccoons

200g; skunks 100g) of Mazuri omnivore diet (PMI Nutrition International, St. Louis, MO) and

water was provided ad libitum.

Subjects were anesthetized using either 5% isoflurane combined with oxygen or an intra-

muscular injection of ketamine:xylazine (5:1) for blood sample collection and inoculation.

Upon display of two or more clinical signs of rabies, subjects were anesthetized with an intra-

muscular injection of ketamine:xylazine and euthanized by intracardiac injection of sodium

pentobarbital.

Fecal sample collection

Animal enclosures were routinely cleaned of all feces at least weekly and additionally the day

immediately prior to a planned fecal sample collection. Fecal samples of individually housed

animals were collected directly from the pen floor, cage catch pan, or den box. Sample collec-

tion occurred while the animal was locked in the associated enclosure den box or otherwise

had been temporarily removed from the enclosure for blood sample collection. Samples were

collected prior to vaccination and then at pre-determined intervals post-vaccination (pv) and

post-infection (pi; Fig 1). On a given collection day, animal enclosures were examined for

fresh feces and the freshest appearing were preferentially collected. Approximately 2–5 g was

collected directly into a whirl-pak specimen bag. Samples were kept cool on ice packs for up to

6 hrs and then stored at -80 C until analysis.

Materials

The same vaccine was used in both studies (Ontario Rabies Vaccine, ONRAB; Artemis Tech-

nologies, Inc, Guelph, Ontario), but differed in oral delivery format. Importation of the vac-

cine was authorized by the USDA Center for Veterinary Biologics permit VB-139842. A New

York City dog variant of RABV (92-5A), was obtained from the USDA Center for Veterinary

Biologics for experimental challenge in both studies as authorized by the USDA Veterinary

Services permit 120876. Headspace vials (20-mL) with 18 mm threads, magnetic screw caps

with 1.3 mm thickness PTFE/silicone septum, and analytical standard grade (+)-carvone were

purchased from Sigma-Aldrich (St. Louis, MO). Solid phase micro extraction (SPME)
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assemblies with StableFlex (2 cm) divinylbenzene/carboxen/polydimethylsiloxane (DVB/

CAR/PDMS) coated fibers were obtained from Supelco Inc. (Bellefonte, PA).

Raccoons

A total of 21 raccoons (14 male, 7 female) were randomly assigned to one of two treatment

groups, live or sham, for presentation of a single ONRAB Ultralite bait during the vaccine effi-

cacy study conducted March through December 2015 (Fig 1). Fifteen raccoons were offered a

live vaccine bait containing 1.8mL of vaccine at a titer of 109.6 tissue culture infective doses

(TCID50) per mL and six were offered a sham bait during a 24hr presentation window. Blood

and fecal samples were collected from subjects prior to vaccination, and then on days 30, 60,

90, and 180 pv.

Seventeen raccoons (four subjects in the vaccine group refused the bait) were challenged on

day 180 pv by inoculation with 106.2 MICLD50 of the challenge virus (0.5 mL) delivered intra-

muscularly (IM) into each masseter muscle. Fecal and blood collections were made from sur-

viving animals on day 14 pi. Raccoons were monitored daily up until day 90 pi unless they

were euthanized upon display of two or more clinical signs of rabies. Surviving raccoons were

euthanized on or after day 90 pi. Rabies was diagnosed from brainstem and cerebellar tissues

collected postmortem from all subjects by direct fluorescent antibody assay (DFA) at the Colo-

rado State University Veterinary Diagnostic Laboratory.

Skunks

A total of 20 skunks (12 male, 8 female) were randomly assigned to one of three vaccine groups

or control (n = 5 each) for use in a vaccine efficacy study conducted July 2014 through June

2015. The three vaccine groups represented three doses (1010.2, 109.8, or 109.3 TCID50) deliv-

ered in minimal essential media (MEM) supplemented with 5% fetal bovine serum. The

Fig 1. Sample collection schedule at post-vaccination (pv) and post-infection (pi) timepoints for subjects in challenge

cohorts (receiving rabies vaccine or sham treatment followed by subsequent challenge with rabies virus).

https://doi.org/10.1371/journal.pntd.0007911.g001
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control group received MEM only. Vaccine or MEM were delivered by DIOC (direct instilla-

tion into the oral cavity) route under light anesthesia. Blood and fecal samples were collected

from subjects prior to vaccination, and then on days 29, 60, 90, and 335 pv. Feces (only) were

also collected on day 7 pv (Fig 1).

All skunks were challenged with the 92-5A challenge virus on day 335 pv as previously

described. Blood and fecal samples were collected from surviving animals on day 14 pi. Skunks

were monitored daily up until day 75 pi unless they were euthanized upon display of two or

more clinical signs of rabies. Surviving skunks were euthanized on or after day 75 pi. Rabies

was diagnosed from brainstem and cerebellar tissues collected postmortem from all subjects as

described above for raccoons.

Detection of rabies virus antibodies

Serum samples were assessed for RABV neutralizing antibodies (rVNA) analyses by rapid fluo-

rescent focus inhibition test (RFFIT) at Kansas State University (KSU) as previously described

[19]. Samples with greater than or equal to 0.1 international units per milliliter (IU/mL) were

considered seropositive. Samples reported as less than 0.1 IU/mL were considered negative for

rVNA and were recoded to have a value of 0.05 IU/mL for the purpose of statistical evaluation.

A subset of raccoon blood samples was tested for RABV binding antibodies (rVBA) at KSU

using a commercial indirect ELISA (BioRad Platelia Rabies Kit II, Marnes-la-Coquette,

France). All reported and predicted rVBA values less than 0.125 (negative) were assigned a

value of 0.0625 equivalent units per mL (EU/mL) for the purpose of statistical evaluation.

A subset of skunk blood samples was tested for rVBA at NWRC using a commercial block-

ing ELISA (BioPro Rabies ELISA, OK Servis, Prague, Czech Republic) following the manufac-

turer’s instructions. A sample was considered positive for rVBA by ELISA if the percent

blocking was equal to or greater than 40% per manufacturer instructions. Values less than zero

were recoded as zero for statistical analyses.

Volatile fecal metabolome analyses

One gram of feces (raccoon or skunk) was individually placed in 20-mL glass headspace vials,

capped, and refrigerated until analysis. Immediately prior to analysis, vials and contents were

warmed to room temperature and the internal standard (0.010 mL of 70 ppm (S)-carvone pre-

pared in water) was added using a syringe. Headspace extraction was performed with a PAL

autosampler (Agilent Technologies, Santa Clara, CA) equipped with a SPME fiber assembly

(DVB/CAR/PDMS). The sample was pre-incubated for 10 min at 37˚C with pulsed agitation

(250 RPM for 5 s, off for 2 s) and the SPME needle was inserted into the vial for 40 min head-

space collection. Collected volatiles were desorbed from the SPME fiber at 270 oC for 1 min in

the injection port of an Agilent 7890B gas chromatograph (Agilent Technologies, Santa Clara,

CA) equipped with an ultra-inert straight liner and 23 ga. Merlin Microseal septum (Merlin

Instrument Co., Newark, DE). Chromatographic separation was achieved using a 30 m x 0.25

mm ID Stabilwax-DA (0.25μm film thickness) capillary column (Restek Corp., Bellefonte, PA)

with helium carrier gas in constant flow mode (1.0 mL/min). The oven temperature was held

at 35˚C for 2.5 min, increased at 6.0˚C/min to 260˚C, and then held for 5 min. The gas chro-

matograph was coupled to an Agilent 5977A mass selective detector (MSD) for collection of

electron impact (EI) spectra over the range of 50 to 500 m/z. Empty vials and empty vials forti-

fied with carvone were also analyzed. Mass spectral peak identifications were assigned based

on the library search of the NIST Standard Reference Database.

Although instrumental analyses of samples from the separate raccoon and skunk studies

were not conducted concurrently, all chromatograms were processed simultaneously.

Rabies volatile metabolome
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Chromatographic data were exported to mzData format using Proteowizard software [23] fol-

lowed by baseline correction, noise elimination, and peak alignment using MetalignTM soft-

ware [24]. The processed data (consisting of all mass spectrometric responses exceeding a

defined threshold at each scan event) were subjected to unsupervised peak identification and

integration using the MSClust tool [25]. The resultant data set (consisting of a single response

for each peak identified in the chromatogram) was subjected to principal components analysis

(PCA) using Unscrambler (CAMO Software; Oslo, Norway) to visually identify sample analy-

sis outliers exhibiting undue influence or leverage in residual plots. Prior to statistical model-

ling, all peak responses were standardized according to sample mass and S-carvone peak

response observed in the sample. Peaks not attributed to feces (e.g. peaks observed in empty

vials) were dropped from the data set.

Data analyses

The VARCLUS procedure in SAS was used to group square root transformed carvone-stan-

dardized peak responses into related clusters and scores were calculated using the SCORE pro-

cedure. Clustering was performed separately for each species. Multivariate analyses of variance

(MANOVA) were conducted for the post-vaccination period through day 60 pv (not including

day 0 pv) (Fig 1). Together, the cluster score responses were termed “volatiles” for within-sub-

jects tests. Survival (as the measure of viral protection) and experiment day were considered

fixed effects. Subject (nested in survival) was a random effect. Residuals were evaluated for

normality and homoscedasticity and outlier observations (based on residual plots) were

removed.

The relationships between immune responses (rVNA or rVBA) and individual com-

ponents of the volatile fecal metabolome were evaluated by stepwise multiple regression

model building using the REG procedure in SAS. All samples corresponding to days 0 pv

through day 14 pi from subjects receiving vaccine treatment with measured immune

responses were included in model building (Table 1). Separate models were built for each

species (raccoon, skunk) and immune response (rVNA, rVBA). Residuals were evaluated

for normality and homoscedasticity and outlier observations (based on residual plots) were

removed. Models for rVNA required square root transformation of the rVNA response.

Correlations (predicted vs. measured) were calculated for model samples using the CORR

procedure in SAS.

The likelihood that a linear relationship between immune response and volatile metabo-

lome could arise from a random data set (potential type I error) was estimated for all four mul-

tiple regression models (rVNA and rVBA for both skunks and raccoons). For each model,

1000 unique data sets comprised of 50 randomly generated peak responses and the actual mea-

sured values for the immune responses were created. All data sets were subjected to stepwise

multiple regression building and the number of models (out of 1000) resulting in R2 exceeding

that of the actual model (using the same number of predictors, or less) was recorded.

Table 1. Timeline and quantity of sera samples from vaccinated subjects used for multiple regression model

building for rabies neutralizing antibody (rVNA) and rabies binding antibody (rVBA) responses. Experimental

days reflect post-vaccination (pv) or post-infection (pi).

Days rVBA

Samples

rVNA

Samples

Raccoon 0 pv, 30 pv, 60 pv, 0 pi, 14 pi 42 52

Skunk 0 pv, 29 pv, 60 pv, 0 pi, 14 pi 67 68

https://doi.org/10.1371/journal.pntd.0007911.t001
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Results

Vaccination and challenge

Efficacy results of the vaccination studies with raccoons and skunks have previously been

reported [19, 20]. Summarized results below are specific to the subjects sampled for fecal

volatiles.

Raccoon

Peak rVNA and rVBA response among vaccinated animals (prior to challenge) was observed

around day 60 pv. Among sham-baited animals, neither rVNA nor rVBA were detected at any

time point prior to challenge. Survival following lethal RABV challenge was 73% (8 of 11)

among vaccinates. Because a small number of vaccinated animals succumbed to viral chal-

lenge, survival was considered a more appropriate measure of virus protection as compared to

vaccine treatment. All six control (sham-vaccinated) raccoons succumbed to rabies challenge.

All mortalities occurred by day 14 pi and tested positive for rabies by DFA test.

Skunk

Vaccination induced robust rVNA titers in all but a single animal vaccinated by direct instilla-

tion (this subject did not survive virus challenge). No sham-treated animals developed rVNA

at any pre-challenge time point. Peak rVNA and rVBA were observed between days 29 pv and

60 pv for each vaccine dose tested. One vaccinated subject died prior to challenge and was

removed from the study. Across all vaccinates, survival following lethal RABV challenge was

93% (13 of 14). Five control (sham-vaccinated) skunks developed rabies. Three of six mortali-

ties occurred prior to day 14 pi, while three others occurred on days 16, 19, or 33 pi. All mor-

talities were confirmed rabies positive by DFA test.

Volatile fecal metabolome

Principal components analysis identified one sample (from a raccoon) considered to be an

outlier and was removed from the data set. Fifty-two unique chromatographic peaks arising

from feces (including the carvone standard) were identified in the headspace. One peak was

identified as isoflurane (anesthetic used during these studies), which was not included in any

data analyses. For both raccoons and skunks, the 50 carvone-standardized peak responses

were grouped into 12 clusters. Although clustering was performed separately, there was con-

siderable grouping similarity between the species. For example, free fatty acids tended to clus-

ter together for both species as did many aldehydes and exogenous compounds (e.g, xylenes).

Raccoon MANOVA

Experiment day (p = 0.0026) was the only significant between-subjects effect. The significant

within-subjects interaction of volatiles and survival (p = 0.006) indicated that some clusters

were associated with protection status of raccoons. Univariate results identified a significant

individual cluster having methyl isobutyl ketone, toluene, and 1-octen-3-ol as its members.

The volatiles�survival�experiment day interaction was not significant, suggesting that this clus-

ter differed by survival but not experiment day. Inspection of the individual volatiles in this

cluster indicated that the square root responses of each of the three compounds were lower at

days 30 and 60 pv in subjects that ultimately survived the virus.

Rabies volatile metabolome
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Raccoon immune response model

Two extreme rVNA responses were identified and square root transformation of rVNA

responses was necessary to ensure normality and homoscedasticity of residuals. The multiple

regression model for rVNA using five chromatographic peak response predictors was signifi-

cant (p = 0.0014) with an R2 = 0.352. The probability that this model could arise randomly was

high, with 736 of 1000 random models explaining at least the same variation using nine or

fewer predictors (p = 0.736).

The rVBA model did not require transformation of the responses, although two extreme

outliers were identified and removed from any further consideration. The resulting multiple

regression model (p< 0.0001) employed 7 predictors (Table 2) and yielded an R2 = 0.792. The

models for rVNA and rVBA shared only one common predictor (2-ethyl-1-hexanol). Evalua-

tion of the random data sets indicated a very low probability for this model arising at random

(p = 0.03). Predicted values less than zero were recoded as zero and one predicted rVBA

response greatly exceeded the range of measured responses and was removed from further

consideration. Predicted rVBA responses were in excellent agreement with measured values

(Fig 2A; r = 0.903; p< 0.0001).

Skunk MANOVA

Identical to the raccoon data, experiment day (p = 0.0298) and volatiles�survival (p = 0.0237)

were the only significant effects. Also like the raccoon data, one cluster differed by survival

over the post-vaccination period (days 7, 29, and 60 pv). The compounds hexanal, 2-pentyl-

furan, 4-nonanone, and an unknown were members of this cluster. Inspection of the individ-

ual compounds did not reveal anything remarkable about their square root responses as they

related to survival.

Table 2. Tentative compound identifications for chromatographic peaks belonging to volatile clusters associated vaccination (CLUS) or immune regression model

(rVBA) where symbol identifies positive regression coefficients (+) or negative regression coefficients (-).

Compound Name Raccoon Skunk

CLUS rVBA CLUS rVBA

Benzaldehyde +

2-Butyl-2-octenal -

2-Ethylhexanoic acid -

2-Ethyl-1-hexanol +

Hexanal X

Isobutyric acid +

Methylisobutylketone X

2-Methylquinoline (also Quinaldine) +

4-Nonanone X -

γ-Nonalactone +

1-Octen-3-ol X +

2-Pentylfuran X

Phenol -

Propanoic acid -

Propanoic acid, 2-methyl-2,2-dimethyl-1-(2-hydroxy-1-methylethyl)propyl ester - -

Toluene X

Unknown compound A X +

Unknown compound B +

https://doi.org/10.1371/journal.pntd.0007911.t002
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Skunk immune response model

None of the 68 rVNA values were identified as outliers, but similar to the raccoon data, square

root transformation of the responses was required. Also similar to the raccoon model, the

model for rVBA explained greater variation (R2 = 0.443 using eight predictors) as compared to

the model for rVNA (R2 = 0.1402 using three predictors). The rVNA and rVBA models shared

one predictor (1-octen-3-ol). Estimates of type I errors for these models further demonstrated

the very poor quality of the rVNA model (p = 0.838) and the relatively high probability that

the rVBA model could also arise from random data (p = 0.429). Predicted rVBA responses

were in good agreement with measured values, but the correlation of skunks was lower than

raccoons (Fig 3; r = 0.665; p< 0.0001).

Discussion

The observation that three vaccinated raccoons and one vaccinated skunk succumbed to rabies

upon virus challenge was not unprecedented [26]. For this reason, survival (rather than vac-

cine treatment) was considered a design effect. Moreover, prediction of survival better fits the

objective of this metabolomic study to develop a tool for monitoring population health. The

MANOVA design applied here for examination of the volatile metabolome was meant to

uncover volatiles that varied according to vaccine protection (i.e. significant within-subjects

survival�volatiles effect). A significant survival�volatiles�experiment day would be undesirable

as it would indicate that volatiles related to virus protection differed over time.

While the raccoon and skunk experiments provided a unique opportunity to examine the

volatile metabolome across an extended protected period, introduction of this source of varia-

tion (i.e. measurement at multiple timepoints) demonstrates the difficult nature of identifying

robust biomarkers of disease. This design feature is in contrast to the majority of previous

studies of animal health and fecal volatiles where measurements were made at a single time

point representing the healthy status and/or the disease state. Such “snapshots” have been used

Fig 2. Measured and predicted rabies binding antibody values (rVBA) in raccoons at post-vaccination (pv).

Infection occurred on day 180 pv. Error bars represent standard errors.

https://doi.org/10.1371/journal.pntd.0007911.g002
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in many recent studies to identify disease or infection using volatile metabolites present in

feces [11, 14–16], breath [14, 27–30], or other emanation [31–33]. To be useful for monitoring

population health, characterized signals must be robust and reliable over extended periods,

not just at specific time points following immunization or infection. This study suggests that

the variability of the volatile metabolome may be too high over time and space to permit iden-

tification of an underlying and specific signal of vaccine-induced protection from rabies virus

infection.

The prospect of exploiting the volatile metabolome for disease diagnosis arises from

decades (if not centuries) of anecdotal and empirical evidence [34]. This promise follows logi-

cally from an understanding of chemical communication and the adaptive advantage afforded

by a system that advertises the health status of conspecifics. Accordingly, animal biosensors

have convincingly demonstrated that disease diagnoses may be made on the basis of odor

alteration resulting from disease or infection [35–37] and are capable of detecting underlying

volatile signals in the face of dietary variation [38]. Although chemometric data collected from

analyses of bodily fluids (such as feces) or other emanations (e.g. breath) have yielded explana-

tory models that discriminate between healthy and infected subjects in many disease systems

in [39–42], a chemometric approach based on the analyses of individual odorants may not cap-

ture the same information available to a trained animal biosensor. Alternatively, a critical sig-

nal of immunization may be more robust in the days immediately following delivery of the

vaccine. In a study in the mouse model, a rabies vaccination signal was evident to trained bio-

sensors evaluating urines collected from days 4 to 13 pv [12]. However, later time points were

not examined in that study. The sampling design in this study was guided by the timeframe

during which post-ORV monitoring (i.e., live animal trapping and blood collection) is per-

formed in the US, which is typically 4–6 weeks following baiting. As more and more experi-

ments are conducted, it has become evident that virtually any perturbation of host health will

result in alteration of its volatile metabolome [43].

Fig 3. Measured and predicted rabies binding antibody values (rVBA) in skunks at post-vaccination (pv).

Infection occurred on day 335 pv. Only one skunk from the model set died during virus challenge and was not

included in the figure. Error bars represent standard errors.

https://doi.org/10.1371/journal.pntd.0007911.g003
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Although the MANOVA models did not yield highly informative indicators of protection

status, the regression models constructed for rVBA responses demonstrated excellent capacity

to quantify the immune response to the vaccine, particularly in raccoons. It is was unsurprising

that the metabolomic predictors chosen for the rVBA and rVNA models differed. Immune

responses to vaccination, including rabies vaccines, are related to the major histocompatibility

complex (MHC) [26]. Genetic variability in MHC as small as one base pair results in detectable

differences in the volatile metabolites of in-bred mice [44]. However, it was surprising that the

rVBA models for both species were superior to the corresponding rVNA models. This was

also reflected by the fact that measured rVBA data demonstrated more reliable survival predic-

tions for experimentally-challenged carnivores as compared to rVNA [26]. Differences

between these results may be due, in part, to the greater variability of rVNA due to employ-

ment of live virus and cell culture in serum neutralization tests. In other words, determination

of rVBA is a direct measurement of the immune response (i.e. antibody), while rVNA is an

indirect measure of function. Thus, a direct link between the rVBA measurement and some

aspect of the volatile metabolome may also exist when an association with rVNA measurement

does not.

Tentative identifications for specific metabolites identified in this study suggest that many

of the volatile fecal metabolites associated with protection from rabies virus are under the con-

trol of cellular fatty acid metabolism (Table 3). Nutrients such as glucose, amino acids, and

fatty acids serve as the fuel supporting metabolically costly immune activation [45]. For exam-

ple, among the humoral responses of immunization is the production of T cells whose regula-

tion relies on fatty acid metabolism [46]. Products of cell-mediated immune responses (i.e.

cytokines) have also been tied to alterations of the volatile metabolome [22]. Thus, alterations

of the volatile metabolome may reflect these metabolic costs.

Nearly all the identified volatile metabolites have a dietary source and some are known to

be metabolites of bacterial metabolism and/or human gastrointestinal diseases (Table 3). Thus,

the gut microbiome may have an important role in regulation of the volatile metabolome asso-

ciated with immunization and/or infection. For example, the gut microbiome has been impli-

cated as significant contributor of increased acetoin concentrations in feces of waterfowl

infected with avian influenza [11]. Integration of host and microbiome metabolism may be

crucial to understanding mechanisms governing alterations of the volatile metabolome [43].

However, a few of the predictors are non-endogenous and/or have non-food environmental

sources (Table 3). Although the studies with raccoons and striped skunks were conducted at

different times, both species were held in the same facility and were fed the same diet. The

importance of both food-source and possible environmental contaminants in the discriminant

models suggest that absorption, biotransformation, and excretion processes are also involved–

raising the possibility that the volatile fecal metabolites identified in chemometric studies may

vary regionally and/or seasonally.

It is evident that the volatile metabolome is a rich source of information that holds great

promise for contributing to our understanding of diseases in humans and wildlife. Studies

using instrumental approaches to evaluate the volatile metabolome have successfully demon-

strated the explanatory capabilities of discriminant models in many disparate systems of spe-

cies and pathogens. Great care should be made toward understanding that excellent

explanatory models may not be highly predictive.

A tool for predicting rVBA responses non-invasively may be useful for monitoring the

health of wild populations susceptible to rabies. Currently, serology tools to monitor ORV in

the US require animal capture for biological sampling [5]. Bait markers are also used to moni-

tor vaccine exposure and evaluate bait uptake. However, identification of an optimal marker

compound for this purpose can be challenging. For example, analysis of tetracycline
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deposition in the teeth of animals that have ingested ORV baits is intrusive, time consuming,

and requires animal anesthesia [5]. Alternatively, fecal analyses do not require capture and

handling of animals, and could be a useful noninvasive sample [47]. This study suggests that

rabies antibody responses may be reliably predicted via analysis of the volatile metabolome in

fecal samples. However, several procedural evaluations are required before an ORV monitor-

ing program consisting of fecal collection and volatile analyses can be implemented. First, the

age and condition of the feces are likely to influence the volatile metabolome (the current

study enjoyed the advantage of fresh sample collection and animals consuming a standardized

diet). Second, rVBA predictions appeared superior in raccoons versus skunks. It must be

determined whether these differences can be attributed to species, the kit(s) used, or the labo-

ratory which performed the assays. Importantly, these are not insurmountable. If properly

addressed, the volatile metabolome may serve as an effective means to monitor animal health.
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Table 3. Natural origin of metabolites associated with rabies volatile fecal metabolome.

Compound Name Fatty

Acid

Metabolism1

Food1 GI2 Micro3 Synth/

Enviro4

Benzaldehyde X X

2-Butyl-2-octenal X

2-Ethylhexanoic acid X X X

2-Ethyl-1-hexanol X X

Hexanal X X

Isobutyric acid X X X X

Methyl isobutyl ketone X X X

2-Methylquinoline X

4-Nonanone X

γ-Nonalactone X

1-Octen-3-ol X X

2-Pentylfuran X X

Phenol X X X

Propanoic acid X X X X

Propanoic acid, 2-methyl-2,2-dimethyl-1-(2-hydroxy-1-methylethyl)propyl ester X5

Toluene X X X

Unknown compound A

Unknown compound B

1Endogenous source according to HMBD 4.0 [48]
2Human fecal metabolites associated with gastrointestinal diseases [17]
3Microbiological source according to HMBD 4.0 [48]
4Industrial application according to HMBD 4.0 [48]
5Family of plasticizers
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