PeerJ

Association between maternal rectovaginal group B streptococcus and the risk of stillbirth: a meta-analysis

Yujue Wang¹, Jingjing Liu², Jinlian Song¹ and Teng Zhang³

¹ Department of Clinical Laboratory, Qingdao Women and Children's Hospital, Qingdao, China

² Department of Infectious Disease, Liaocheng People's Hospital, Liaocheng, China

³ Center of Reproductive Medicine, Qingdao Women and Children's Hospital, Qingdao, China

ABSTRACT

Background: Group B streptococcus (GBS) colonization in pregnant women is associated with adverse perinatal outcomes, including stillbirth. This meta-analysis investigated the relationship between maternal rectovaginal GBS colonization and the risk of stillbirth.

Methods: We conducted a comprehensive literature search across several databases, including PubMed, Embase, Web of Science, Wanfang, and China National Knowledge Infrastructure, covering studies published from the inception of the database until September 9, 2024. The search focused on observational studies comparing the risk of stillbirth in pregnant women with and without rectovaginal GBS colonization. Results were summarized using odds ratios (ORs) and 95% confidence intervals (CIs), and a random-effects model was used to account for potential heterogeneity.

Results: A total of ten studies comprising 121,195 pregnant women were included in the analysis. The pooled results indicated no significant overall association between maternal rectovaginal GBS colonization and the risk of stillbirth (OR: 1.66, 95% CI [0.95–2.91], p = 0.08; $I^2 = 84\%$). However, sensitivity analyses revealed a significant association in studies that included intrapartum antibiotic prophylaxis (IAP) (OR: 1.36, 95% CI [1.02–1.80], p = 0.03). Subgroup analyses demonstrated a significant association between maternal rectovaginal GBS colonization and stillbirth risk in retrospective studies (OR: 2.62, p = 0.04) and in studies employing multivariate analysis (OR: 2.11, p = 0.04).

Conclusions: While the meta-analysis did not find a significant overall association between maternal rectovaginal GBS colonization and stillbirth, significant associations were noted under specific conditions, such as studies using IAP, retrospective designs, and multivariate analyses. Further research is needed to clarify these associations.

Subjects Developmental Biology, Gynecology and Obstetrics, Infectious Diseases **Keywords** Group B streptococcus, Meta-analysis, Pregnancy, Rectovaginal, Stillbirth

INTRODUCTION

Stillbirth, defined as the death of a fetus at or after 20 weeks of gestation, is a tragic event for families and a significant public health concern (*McClure et al., 2022; Page & Silver, 2020; Smith & Fretts, 2007*). The global incidence of stillbirth, estimated at approximately

Submitted 13 November 2024 Accepted 18 December 2024 Published 13 January 2025

Corresponding author Teng Zhang, zt90jy@163.com

Academic editor Wei Shen

Additional Information and Declarations can be found on page 15

DOI 10.7717/peerj.18834

Copyright 2025 Wang et al.

Distributed under Creative Commons CC-BY 4.0

OPEN ACCESS

one in 160 pregnancies, varies widely, with higher rates observed in low- and middle-income countries (*Hug et al., 2021*). Factors contributing to stillbirth are multifaceted, encompassing maternal, fetal, and environmental influences (*Escañuela Sánchez, Meaney & O.'Donoghue, 2019; Gardosi et al., 2013; Lawn et al., 2016*). Recognized risk factors include advanced maternal age, obesity, smoking, pre-existing medical conditions such as diabetes and hypertension, and certain infections (*Escañuela Sánchez, Meaney & O.'Donoghue, 2019; Gardosi et al., 2013; Lawn et al., 2016*). Understanding these risk factors is crucial for the development of effective prevention strategies aimed at reducing the incidence of stillbirth (*Silver & Reddy, 2024*).

Identifying novel risk factors, particularly reversible ones, is essential for enhancing maternal and fetal health. Group B streptococcus (GBS), a bacterium commonly found in the gastrointestinal and genitourinary tracts, is among these potential risk factors (*Dotters-Katz et al., 2022; Furfaro, Chang & Payne, 2018*). It is estimated that 10% to 30% of pregnant women are colonized with GBS rectovaginally, although this prevalence varies based on geographic and demographic factors (*Mei & Silverman, 2023; Russell et al., 2017*). The prevalence of GBS colonization varies by geographic region and demographic factors, with higher rates reported in African and Asian populations compared to Western countries (*van Kassel et al., 2021*). The diagnosis of GBS colonization typically involves culture methods or nucleic acid amplification tests from rectovaginal swabs taken during pregnancy, usually between 35 to 37 weeks of gestation (*Russell et al., 2017*). Despite the common nature of this bacterium, its influence on pregnancy outcomes, particularly stillbirth, has been a subject of ongoing research and debate (*Yuan et al., 2021*).

Maternal GBS colonization has been associated with several adverse pregnancy outcomes, including preterm labor, chorioamnionitis, and neonatal sepsis (Bianchi-Jassir et al., 2017; Patras & Nizet, 2018; Puopolo, Lynfield & Cummings, 2019). The mechanisms by which GBS influences these outcomes may involve the inflammatory response triggered by the bacterium, which can lead to premature rupture of membranes and other complications (Vornhagen, Adams Waldorf & Rajagopal, 2017). Additionally, there are concerns about the impact of intrapartum antibiotic prophylaxis (IAP) on the relationship between GBS colonization and adverse outcomes, including stillbirth (Ohlsson & Shah, 2014). Although IAP has significantly reduced the incidence of neonatal GBS disease, its impact on stillbirth associated with maternal colonization remains uncertain (Seale et al., 2017). This uncertainty highlights the importance of understanding the potential risks posed by maternal GBS colonization to guide prevention strategies beyond neonatal outcomes. While some studies suggest a potential link between maternal rectovaginal GBS colonization and increased risk of stillbirth (Seale et al., 2016; Yadeta et al., 2018; Zhu et al., 2019), the evidence remains inconsistent (Chen et al., 2023; Garland, Kelly & Ugoni, 2000; Hastings et al., 1986; Regan et al., 1996; Sweet et al., 1987; Zhang, Lu & Yuan, 2017; Zhou & *Mou*, 2023). Various studies have reported differing results, leading to confusion regarding the significance of GBS colonization as a risk factor for stillbirth. In view of this knowledge gap, this meta-analysis aims to clarify the association between maternal rectovaginal GBS colonization and the risk of stillbirth by synthesizing available observational studies. The intended audience for this meta-analysis includes healthcare professionals, researchers, and policymakers focused on maternal-fetal medicine, infectious disease, and public health. It aims to inform clinicians and researchers about the potential link between maternal rectovaginal GBS colonization and stillbirth risk, supporting improved screening and preventive strategies in pregnancy care.

METHODS

The study adhered to PRISMA 2020 (*Page et al., 2021a, 2021b*) and the Cochrane Handbook for Systematic Reviews and Meta-analyses (*Higgins et al., 2021*) guidelines for conducting this meta-analysis, including the study design, data collection, statistical analysis, and results interpretation. Additionally, the meta-analysis protocol was registered in the International Prospective Register of Systematic Reviews under registration identifier CRD42024594867.

Literature search

To identify studies pertinent to this meta-analysis, we searched the PubMed, Embase, Web of Science, Wanfang, and China National Knowledge Infrastructure databases using an extensive array of search terms, which included: ("Group B Streptococci" OR "GBS" OR "Streptococcus agalactia" OR "Group b Streptococcus" OR "*Streptococcus agalactiae*") AND ("maternal" OR "pregnancy" OR "pregnant") AND ("perinatal mortality" OR "perinatal death" OR "neonatal mortality" OR "neonatal death" OR "stillbirth" OR "fetal death" OR "stillborn"). The search was limited to research involving human subjects, and we only included studies published in English or Chinese as full-length articles in peer-reviewed journals. Additionally, we manually reviewed the references of relevant original and review articles to identify further pertinent studies. The literature was assessed from the inception of the searched databases up to September 9, 2024.

Inclusion and exclusion criteria

The inclusion criteria for potential studies were defined according to the PICOS framework:

P (patients): Pregnant women without significant comorbidities. For this analysis, comorbidities were defined as pre-existing maternal medical conditions such as diabetes mellitus, hypertension, autoimmune disorders, chronic infections (*e.g.*, HIV), or conditions known to significantly affect pregnancy outcomes.

I (exposure): Maternal rectovaginal GBS colonization confirmed *via* rectovaginal or vaginal swab tests during pregnancy.

C (comparison): Pregnant women without rectovaginal GBS colonization.

O (outcome): Incidence of stillbirth, compared between women with and without GBS colonization. Stillbirth is generally defined as the delivery of a fetus that has reached at least 28 weeks of gestation and exhibits no signs of life following complete separation from the mother.

S (study design): Observational studies with longitudinal follow-up, such as cohort studies, nested case-control studies, and *post-hoc* analysis of clinical trials.

The exclusion criteria included reviews, editorials, meta-analyses, preclinical studies, cross-sectional studies, studies including non-pregnant women, studies that did not include women with rectovaginal GBS colonization as the exposure, or studies that did not report the outcome of stillbirth. If two or more studies with overlapping populations were found, the study with the largest sample size was enrolled for the meta-analysis.

Study quality evaluation and data extraction

The literature search, study identification, quality assessment, and data extraction were conducted independently by two authors (Yujue Wang and Jingjing Liu), and any disagreements were resolved through a discussion with the corresponding author (Teng Zhang). The quality of included studies was evaluated using the Newcastle-Ottawa Scale (NOS) (*Wells et al., 2010*). The NOS assesses study quality across three domains: (1) Selection (0–4 points): Representativeness of the study population, selection of controls, and ascertainment of exposure; (2) Comparability (0–2 points): Adjustment for confounding factors such as maternal age, parity, or socioeconomic status; and (3) Outcome (0–3 points): Assessment of outcomes, adequacy of follow-up, and outcome measurement methods. Each study was assigned a total score ranging from 0 to 9, with higher scores indicating better methodological quality. Studies scoring ≥ 6 were considered of moderate to high quality. This detailed evaluation allowed us to reliably assess the robustness of the included studies and their potential influence on the meta-analysis results.

The data collected for analysis included the study details (author, year, country, and design), participant characteristics (number of pregnant women, mean age, timing and methods for evaluating rectovaginal GBS, the number of women with rectovaginal GBS colonization, and the number of women with IAP for GBS), the number of women who had stillbirth in the index pregnancy, variables adjusted or matched when the association between maternal GBS colonization and the risk of stillbirth was observed, and the overall incidence of stillbirth in the observed cohorts.

Statistical analyses

The association between maternal rectovaginal GBS colonization and the risk of stillbirth was analyzed using odds ratios (ORs) and 95% confidence intervals (CIs), which were calculated based on the events rate of stillbirth in women with and without GBS colonization. To assess heterogeneity, we used the Cochrane Q test and I^2 statistics (*Higgins & Thompson, 2002*), with $I^2 > 50\%$ indicating significant statistical heterogeneity. A random-effects model was applied to integrate the results to account for study variability (*Higgins et al., 2021*). By excluding individual studies sequentially, a sensitivity analysis was performed to evaluate the robustness of the findings. Predefined subgroup analyses were performed to explore the effects of various factors, such as geographic region, study design, methods for determination of GBS colonization (rectovaginal or vaginal swabs), overall incidence of stillbirth in the studied cohort, methods for analyzing the association between GBS colonization and stillbirth (univariate or multivariate analyses), and the Newcastle–Ottawa Scale (NOS) scores of the included studies. The medians of the

continuous variables were selected as the cutoff values for defining subgroups. Publication bias was evaluated using funnel plots and visual inspection for asymmetry, as supplemented by Egger's regression test (*Egger et al., 1997*). Analyses were performed using RevMan (Version 5.1; Cochrane Collaboration, Oxford, UK) and Stata software (version 12.0; Stata Corporation, College Station, TX, USA).

RESULTS

Study inclusion

The study inclusion process is illustrated in Fig. 1. Initially, 766 potentially relevant records were identified from the five searched databases, with 157 excluded due to duplication. A subsequent screening of the titles and abstracts led to the further exclusion of 580 studies, primarily because they did not align with the objectives of the meta-analysis. The full texts of the remaining 29 records were reviewed by two independent authors, resulting in the exclusion of 19 more studies for various reasons, as detailed in Fig. 1. Finally, ten cohort studies remained and were deemed appropriate for inclusion in the quantitative analysis (*Chen et al., 2023; Garland, Kelly & Ugoni, 2000; Hastings et al., 1986; Regan et al., 1996; Seale et al., 2016; Sweet et al., 1987; Yadeta et al., 2018; Zhang, Lu & Yuan, 2017; Zhou & Mou, 2023; Zhu et al., 2019*).

Overview of the study characteristics

Table 1 shows the summarized characteristics of the available studies included in the metaanalysis. Overall, four prospective cohort studies (Hastings et al., 1986; Regan et al., 1996; Seale et al., 2016; Sweet et al., 1987) and six retrospective studies (Chen et al., 2023; Garland, Kelly & Ugoni, 2000; Yadeta et al., 2018; Zhang, Lu & Yuan, 2017; Zhou & Mou, 2023; Zhu et al., 2019) were included in the meta-analysis. These studies were published from 1986 to 2023, and were conducted in the United Kingdom, the United States, Australia, Kenya, China, and Ethiopia. Overall, 121,195 pregnant women were included. The mean ages of these women at enrollment ranged from 22.7 to 30.7 years. The timing for evaluating rectovaginal GBS colonization was from gestational age (GA) of 23 to 26 weeks to the day of admission for delivery. Rectovaginal swabs were used to evaluate GBS colonization in six studies (Chen et al., 2023; Hastings et al., 1986; Seale et al., 2016; Yadeta et al., 2018; Zhang, Lu & Yuan, 2017; Zhou & Mou, 2023), whereas vaginal swabs were used in the other four studies (Garland, Kelly & Ugoni, 2000; Regan et al., 1996; Sweet et al., 1987; Zhu et al., 2019), and the GBS colonization was confirmed by standard bacterial culture and identification among all the included studies. Accordingly, 18,062 (14.9%) women had rectovaginal GBS colonization during pregnancy. The IAP was used for all women during labor in five studies (Chen et al., 2023; Garland, Kelly & Ugoni, 2000; Seale et al., 2016; Zhou & Mou, 2023; Zhu et al., 2019) and for partial women in two studies (Regan et al., 1996; Yadeta et al., 2018), whereas the use of IAP was not reported in three studies (Hastings et al., 1986; Sweet et al., 1987; Zhang, Lu & Yuan, 2017). Overall, 806 (0.67%) of the included women had stillbirth during the index pregnancy, and the overall incidence of stillbirth ranged from 0.06% to 8.53% among the studied cohorts. Potential confounding factors were not adjusted or matched between women with and without

rectovaginal GBS colonization in four early studies published until 2000 (*Garland, Kelly & Ugoni, 2000; Hastings et al., 1986; Regan et al., 1996; Sweet et al., 1987*), while six later studies (*Chen et al., 2023; Seale et al., 2016; Yadeta et al., 2018; Zhang, Lu & Yuan, 2017; Zhou & Mou, 2023; Zhu et al., 2019*) controlled factors such as maternal age, parity, and socioeconomic status of the subjects, *etc.* The NOS scores of the included studies were six to nine, suggesting an overall moderate to good study quality (Table 2).

Results of the meta-analysis

Overall, the pooled results of the ten included studies (*Chen et al., 2023; Garland, Kelly & Ugoni, 2000; Hastings et al., 1986; Regan et al., 1996; Seale et al., 2016; Sweet et al., 1987; Yadeta et al., 2018; Zhang, Lu & Yuan, 2017; Zhou & Mou, 2023; Zhu et al., 2019)* showed that maternal rectovaginal GBS colonization in pregnancy was not significantly related to

Table 1 Char	acteristics	of the ii	ncluded stu	dies.							
Study	Country	Study design	No. of pregnant women	Mean age (years)	Timing for evaluating GBS colonization	Methods for evaluating GBS colonization	No. of women with GBS colonization	IAP use for women with GBS colonization	No. of stillbirth	Variables matched or adjusted	Overall incidence of stillbirth (%)
Hastings et al. (1986)	UK	PC	1,184	NR	GA: 28~36 weeks	Recto-vaginal swabs and bacterial culture	338	NR	×	None	0.68
Sweet et al. (1987)	USA	PC	3,341	22.7	GA: 30~34 weeks	Dacron swab from the lateral vaginal wall and bacterial culture	478	NR	48	None	1.44
Regan et al. (1996)	USA	PC	13,646	NR	GA: 23~26 weeks	Vaginal and endocervical swab and bacterial culture	2,877	17% received	82	None	0.60
Garland, Kelly & Ugoni (2000)	Australia	RC	1,541	NR	GA: 28~32 weeks	Vaginal swab and bacterial culture	583	100% received	-	None	0.06
Seale et al. (2016)	Kenya	РС	7,967	NR	At admission for delivery	Recto-vaginal swabs and bacterial culture	934	100% received	278	Maternal age, parity, education, SES, nutritional status, HIV infection, and multiple delivery	3.49
Zhang, Lu & Yuan (2017)	China	RC	403	27.9	GA: 37 weeks	Recto-vaginal swabs and bacterial culture	135	NR	-	Maternal age and parity	0.25
Yadeta et al. (2018)	Ethiopia	RC	1,688	26.6	At admission for delivery	Recto-vaginal swabs and bacterial culture	231	Partially received	144	Maternal age, parity, education, SES, anemia, hypertension, and GA at delivery, and IAP received	8.53
Zhu et al. (2019)	China	RC	49,908	29.5	GA: 35~37 weeks	Vaginal swab and bacterial culture	6,933	100% received	161	Maternal age, parity, SES, education, and previous abortion history	0.32
Chen et al. (2023)	China	RC	40,905	30.7	GA: 35~37 weeks	Recto-vaginal swabs and bacterial culture	5,502	100% received	81	Maternal age, parity, SES, GA at delivery, eclampsia, and thyroid dysfunction	0.20
Zhou & Mou (2023)	China	RC	612	26.3	GA: 35~37 weeks	Recto-vaginal swabs and bacterial culture	51	100% received	2	Maternal age, parity, BMI, GDM, and previous abortion history	0.33
Note: BMI, body mas	s index; GA,	gestation:	al age; GBS, g	troup B str	eptococcus; GD1	M, gestational diabetes	mellitus; HIV, hı	uman immunodef	ìciency virus;	IAP, intrapartum antibiotic propł	ıylaxis; NR, not

Table 2 Study qu	ality evaluation	<i>via</i> the Newca	stle-Ottawa S	Scale.						
Study	Representativeness of the exposed cohort	Selection of the non-exposed cohort	Ascertainment of exposure	Outcome not present at baseline	Control for maternal age	Control for other confounding factors	Assessment of outcome	Enough long follow-up duration	Adequacy of follow-up of cohorts	Total
Hastings et al. (1986)	1	1	1	1	0	0	1	1	1	7
Sweet et al. (1987)	1	1	1	1	0	0	1	1	1	7
Regan et al. (1996)	1	1	1	1	0	0	1	1	1	7
Garland, Kelly & Ugoni (2000)	0	1	1	1	0	0	1	1	1	6
Seale et al. (2016)	1	1	1	1	1	1	1	1	1	9
Zhang, Lu & Yuan (2017)	0	1	1	1	1	0	1	1	1	7
Yadeta et al. (2018)	0	1	1	1	1	1	1	1	1	8
Zhu et al. (2019)	0	1	1	1	1	1	1	1	1	8
Chen et al. (2023)	0	1	1	1	1	1	1	1	1	8
Zhou & Mou (2023)	0	1	1	1	1	1	1	1	1	8

	GBS	(+)	GBS	(-)		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
Hastings 1986	3	338	5	846	7.8%	1.51 [0.36, 6.34]	
Sweet 1987	6	478	42	2863	11.7%	0.85 [0.36, 2.02]	
Regan 1996	15	2663	67	10038	13.8%	0.84 [0.48, 1.48]	
Garland 2000	1	583	0	958	2.6%	4.94 [0.20, 121.38]	
Seale 2016	41	934	237	7033	15.2%	1.32 [0.94, 1.85]	-
Zhang 2017	1	135	0	268	2.6%	5.99 [0.24, 148.00]	
Yadeta 2018	59	231	85	1457	15.0%	5.54 [3.83, 8.00]	
Zhu 2019	32	6933	129	42975	14.9%	1.54 [1.04, 2.27]	
Chen 2023	10	5502	71	35403	13.1%	0.91 [0.47, 1.76]	
Zhou 2023	1	51	1	561	3.2%	11.20 [0.69, 181.78]	
Total (95% CI)		17848		102402	100.0%	1.66 [0.95, 2.91]	◆
Total events	169		637				
Heterogeneity: Tau ² =	0.51; Chi ²	= 56.35	, df = 9 (F	o < 0.000	01); l² = 84	4%	
Test for overall effect:	Z = 1.76 (F	P = 0.08)				Lower risk in GBS (+) Higher risk in GBS (+)

Figure 2 Forest plots for a meta-analysis of the association between maternal rectovaginal GBS colonization and the risk of stillbirth. GBS, group B streptococcus; OR indicates the odds of stillbirth associated with maternal GBS colonization; values greater than 1 suggest increased risk, whereas values less than 1 indicate a reduced risk. Full-size DOI: 10.7717/peerj.18834/fig-2

an overall increased risk of stillbirth (OR: 1.66, 95% CI [0.95–2.91], p = 0.08; $I^2 = 84\%$; Fig. 2). The sensitivity analyses were performed by excluding one dataset at a time, but did not significantly change the results (OR: 1.24–1.85, p all > 0.05). Interestingly, a further sensitivity analysis that was limited to the five studies including women all receiving IAP (*Chen et al., 2023*; *Garland, Kelly & Ugoni, 2000*; *Seale et al., 2016*; *Zhou & Mou, 2023*; *Zhu et al., 2019*) suggested an association between rectovaginal GBS colonization and an increased risk of stillbirth (OR: 1.36, 95% CI [1.02–1.80], p = 0.03; $I^2 = 15\%$). The subgroup analyses indicated that there was not a significant association between maternal rectovaginal GBS colonization in pregnancy and the risk of stillbirth in studies from western, Asian, or African countries (p = 0.73, 0.23, and 0.17; Fig. 3A). The association

	GBS	(+)	GBS	; (-)		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
1.2.1 Western countri	es						
Hastings 1986	3	338	5	846	7.8%	1.51 [0.36, 6.34]	
Sweet 1987	6	478	42	2863	11.7%	0.85 [0.36, 2.02]	
Regan 1996	15	2663	67	10038	13.8%	0.84 [0.48, 1.48]	
Garland 2000	1	583	0	958	2.6%	4.94 [0.20, 121.38]	
Subtotal (95% CI)		4062		14705	35.9%	0.92 [0.59, 1.44]	•
Total events	25		114				
Heterogeneity: Tau ² = 0	0.00; Chi ²	= 1.63,	df = 3 (P	= 0.65); I	² = 0%		
Test for overall effect: 2	Z = 0.35 (I	P = 0.73)				
1.2.2 Aian countries (China)						
Zhang 2017	1	135	0	268	2.6%	5.99 [0.24, 148.00]	
Zhu 2019	32	6933	129	42975	14.9%	1.54 [1.04, 2.27]	-
Chen 2023	10	5502	71	35403	13.1%	0.91 [0.47, 1.76]	
Zhou 2023	1	51	1	561	3.2%	11.20 [0.69, 181.78]	
Subtotal (95% CI)		12621		79207	33.9%	1.43 [0.79, 2.58]	◆
Total events	44		201				
Heterogeneity: Tau ² = 0	0.13; Chi ²	= 4.81,	df = 3 (P	= 0.19); I	² = 38%		
Test for overall effect: 2	Z = 1.19 (I	P = 0.23)				
1.2.3 African countrie	s						
Seale 2016	41	934	237	7033	15.2%	1.32 [0.94, 1.85]	
Yadeta 2018	59	231	85	1457	15.0%	5.54 [3.83, 8.00]	-
Subtotal (95% CI)		1165		8490	30.2%	2.69 [0.66, 11.01]	
Total events	100		322				
Heterogeneity: Tau ² =	1.00; Chi ²	= 31.68	, df = 1 (F	o < 0.000	01); l ² = 9 [·]	7%	
Test for overall effect: 2	Z = 1.38 (I	P = 0.17)				
Total (95% CI)		17848		102402	100.0%	1.66 [0.95, 2.91]	◆
Total events	169		637			-	
Heterogeneity: Tau ² = 0	0.51; Chi ²	= 56.35	, df = 9 (F	o < 0.000	01); l² = 84	4%	
Test for overall effect: 2	Z = 1.76 (I	P = 0.08)		,,		0.005 0.1 1 10 20
Test for subgroup differ	rences: C	$hi^2 = 2.8$, 7. df = 2	(P = 0.24)), l ² = 30 4	%	Lower risk in GBS (+) Higher risk in GBS (

	GBS	(+)	GBS	(-)		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
1.3.1 Prospective							
Hastings 1986	3	338	5	846	7.8%	1.51 [0.36, 6.34]	
Sweet 1987	6	478	42	2863	11.7%	0.85 [0.36, 2.02]	
Regan 1996	15	2663	67	10038	13.8%	0.84 [0.48, 1.48]	
Seale 2016	41	934	237	7033	15.2%	1.32 [0.94, 1.85]	
Subtotal (95% CI)		4413		20780	48.5%	1.14 [0.87, 1.50]	•
Total events	65		351				
Heterogeneity: Tau ² =	0.00; Chi ²	= 2.38,	df = 3 (P :	= 0.50); l [;]	² = 0%		
Test for overall effect:	Z = 0.97 (F	P = 0.33)				
1.3.2 Retrospective							
Garland 2000	1	583	0	958	2.6%	4.94 [0.20, 121.38]	· · ·
Zhang 2017	1	135	0	268	2.6%	5.99 [0.24, 148.00]	
Yadeta 2018	59	231	85	1457	15.0%	5.54 [3.83, 8.00]	
Zhu 2019	32	6933	129	42975	14.9%	1.54 [1.04, 2.27]	
Chen 2023	10	5502	71	35403	13.1%	0.91 [0.47, 1.76]	
Zhou 2023	1	51	1	561	3.2%	11.20 [0.69, 181.78]	
Subtotal (95% CI)		13435		81622	51.5%	2.62 [1.06, 6.46]	\bullet
Total events	104		286				
Heterogeneity: Tau ² =	0.74; Chi ²	= 34.40	, df = 5 (P	< 0.000	01); l² = 8	5%	
Test for overall effect:	Z = 2.09 (F	P = 0.04)				
Total (95% CI)		17848		102402	100.0%	1.66 [0.95, 2.91]	◆
Total events	169		637				
Heterogeneity: Tau ² =	0.51; Chi ²	= 56.35	, df = 9 (P	< 0.000	01); l² = 84	4%	
Test for overall effect:	Z = 1.76 (F	= 0.08)				0.005 0.1 1 10
Tost for subgroup diffs	roncos: Cl	$ni^2 - 20$, 6 df = 1 (12 - 66 2	0/	Lower risk in GBS (+) Higher risk in GBS

Figure 3 Forest plots of subgroup analyses of the association between maternal rectovaginal group B streptococcus colonization and the risk of stillbirth. (A) Subgroup analysis according to geographic regions; (B) subgroup analysis according to study design. OR indicates the odds of stillbirth associated with maternal GBS colonization; values greater than 1 suggest increased risk, whereas values less than 1 indicate a reduced risk.

Full-size 🖾 DOI: 10.7717/peerj.18834/fig-3

between maternal rectovaginal GBS colonization and the increased risk of stillbirth was not significant in prospective studies (OR: 1.14, p = 0.33), but significant in retrospective studies (OR: 2.62, p = 0.04). Although the difference between these subgroups was not statistically significant (p for subgroup difference = 0.09; Fig. 3B). Further subgroup analysis did not show a significant association between maternal GBS colonization and stillbirth in studies with vaginal or rectovaginal swab tests (p for subgroup effect = 0.50 and 0.07; Fig. 4A), or in cohorts with an overall incidence of stillbirth > or $\leq 0.05\%$ (p for subgroup effect = 0.31 and 0.16; Fig. 4B). Subsequent analysis suggested that maternal rectovaginal GBS colonization was related to an increased risk of stillbirth in studies with multivariate analysis, but not in studies with univariate analysis (OR: 2.11 *vs.* 0.92, p for subgroup effect = 0.04 and 0.73; p for subgroup difference = 0.06; Fig. 5A). Finally, the subgroup analysis showed that maternal rectovaginal GBS colonization in pregnancy was not significantly related to an overall increased risk of stillbirth in studies with NOS scores of 6 to 7, or those of 8 to 9 (p for subgroup effect = 0.85 and 0.07; Fig. 5B).

Publication bias

Upon visual inspection, the funnel plots for a meta-analysis of the association between maternal rectovaginal GBS colonization and the risk of stillbirth were symmetrical, indicating a low likelihood of publication bias (Fig. 6). Additionally, Egger's regression test results (p = 0.29) also supported this conclusion by suggesting a low risk of publication bias.

DISCUSSION

This meta-analysis aimed to elucidate the relationship between maternal rectovaginal GBS colonization and the risk of stillbirth. The pooled analysis from ten studies, comprising 121,195 pregnant women, revealed no significant overall association. However, the observed *p*-value (0.08) approaching significance indicates the possibility of an association that might not have been detected due to the low event rates of stillbirth across the included studies. Further sensitivity and subgroup analyses revealed a significant association in studies involving IAP, in retrospective studies, and in studies employing multivariate analysis. These findings underline the need for cautious interpretation, as the limited number of stillbirth occurrences may have rendered the studies underpowered for identifying a clear relationship, although significant associations were observed under specific conditions. Further research is still needed to elucidate the association between maternal rectovaginal GBS colonization and the risk of stillbirth.

Hypothetically, GBS colonization could contribute to adverse pregnancy outcomes through several pathophysiological mechanisms. The primary mode involves the inflammatory response elicited by GBS colonization in maternal and fetal tissues (*Afsari*, *White & Adhikari*, 2024). Upon colonization, GBS can provoke an immune response characterized by the release of pro-inflammatory cytokines, such as interleukin-6 and tumor necrosis factor-alpha (*Vadeboncoeur et al.*, 2003). This inflammatory cascade can lead to chorioamnionitis, an infection or inflammation of the fetal membranes, which is known to be associated with adverse outcomes, including preterm labor and fetal hypoxia (*Conde-Agudelo et al.*, 2020). The inflammatory mediators released during this process can

	GBS	(+)	GBS	(-)		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.4.1 Vaginal swabs							
Sweet 1987	6	478	42	2863	11.7%	0.85 [0.36, 2.02]	
Regan 1996	15	2663	67	10038	13.8%	0.84 [0.48, 1.48]	
Garland 2000	1	583	0	958	2.6%	4.94 [0.20, 121.38]	
Zhu 2019	32	6933	129	42975	14.9%	1.54 [1.04, 2.27]	
Subtotal (95% CI)		10657		56834	43.0%	1.16 [0.76, 1.76]	
Total events	54		238				
Heterogeneity: Tau ² = 0	0.06; Chi ²	= 4.44, c	lf = 3 (P =	= 0.22); l ²	² = 32%		
Test for overall effect: Z	z = 0.67 (F	P = 0.50)	,	,,			
1.4.2 Recto-vaginal sw	vabs						
Hastings 1986	3	338	5	846	7.8%	1.51 [0.36, 6.34]	
Seale 2016	41	934	237	7033	15.2%	1.32 [0.94, 1.85]	-
Zhang 2017	1	135	0	268	2.6%	5.99 [0.24, 148.00]	
Yadeta 2018	59	231	85	1457	15.0%	5.54 [3.83, 8.00]	-
Chen 2023	10	5502	71	35403	13.1%	0.91 [0.47, 1.76]	_ _ _
Zhou 2023	1	51	1	561	3.2%		
Subtotal (95% CI)		7191		45568	57.0%	2.24 [0.92 5.45]	
Total events	115		200		0.1070	[0.01, 0.40]	-
Heterogeneity: $Tau^2 = 0$	1 80. Chi2	= 41 79	df = 5 (P)1)· 2 − 90	0/	
Test for overall effect: Z	. = 1.79 (F	P = 0.07	ui – 5 (P	< 0.000l	51), 1° – 68	70	
Total (95% CI)		17848		102402	100.0%	1.66 [0.95, 2.91]	•
Total events	169		637				
Heterogeneity: Tau ² = 0) 51 [.] Chi ²	= 56 35	df = 9 (P)	< 0.000	$(1)^{1} ^{2} = 84$	%	-+ + +
Test for overall effect: 7	' = 1 76 (F	P = 0.08	u. u (.	0.0000	,		0.005 0.1 1 10 2
Test for subgroup differ	ences: Ch	$-12^{2} = 1.75$	df = 1 (P = 0.19	$l^2 = 42.90$	26	Lower risk in GBS (+) Higher risk in GBS
1	GBS	(+)	GBS	; (-)		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% C	I IV, Random, 95% Cl
Study or Subgroup 1.5.1 Incidence of still	Events birth > 0.	Total .5%	Events	Total	Weight	IV, Random, 95% C	CI IV, Random, 95% CI
Study or Subgroup 1.5.1 Incidence of still Hastings 1986	Events birth > 0	<u>Total</u> .5% 338	Events 5	<u>Total</u> 846	Weight 7.8%	IV, Random, 95% C	CI IV, Random, 95% CI
Study or Subgroup 1.5.1 Incidence of still Hastings 1986 Sweet 1987	Events birth > 0 3 6	<u>Total</u> .5% 338 478	Events 5 42	Total 846 2863	Weight 7.8% 11.7%	IV, Random, 95% C 1.51 [0.36, 6.34] 0.85 [0.36, 2.02]	CI IV. Random, 95% CI
Study or Subgroup 1.5.1 Incidence of still Hastings 1986 Sweet 1987 Regan 1996	Events birth > 0 3 6 15	Total .5% 338 478 2663	Events 5 42 67	Total 846 2863 10038	7.8% 7.8% 11.7% 13.8%	IV. Random, 95% C 1.51 [0.36, 6.34] 0.85 [0.36, 2.02] 0.84 [0.48, 1.48]	CI IV, Random, 95% CI
Study or Subgroup 1.5.1 Incidence of still Hastings 1986 Sweet 1987 Regan 1996 Seale 2016	Events birth > 0. 3 6 15 41	Total .5% 338 478 2663 934	Events 5 42 67 237	Total 846 2863 10038 7033	Weight 7.8% 11.7% 13.8% 15.2%	IV. Random, 95% C 1.51 [0.36, 6.34] 0.85 [0.36, 2.02] 0.84 [0.48, 1.48] 1.32 [0.94, 1.85]	CI IV, Random, 95% CI
Study or Subgroup 1.5.1 Incidence of still Hastings 1986 Sweet 1987 Regan 1996 Seale 2016 Yadeta 2018	Events birth > 0 3 6 15 41 59	Total .5% 338 478 2663 934 231	5 42 67 237 85	Total 846 2863 10038 7033 1457	Weight 7.8% 11.7% 13.8% 15.2% 15.0%	IV. Random, 95% C 1.51 [0.36, 6.34] 0.85 [0.36, 2.02] 0.84 [0.48, 1.48] 1.32 [0.94, 1.85] 5.54 [3.83, 8.00]	CI
Study or Subgroup 1.5.1 Incidence of still Hastings 1986 Sweet 1987 Regan 1996 Seale 2016 Yadeta 2018 Subtotal (95% CI)	Events birth > 0 3 6 15 41 59	Total .5% 338 478 2663 934 231 4644	5 42 67 237 85	Total 846 2863 10038 7033 1457 22237	Weight 7.8% 11.7% 13.8% 15.2% 15.0% 63.5%	IV, Random, 95% C 1.51 [0.36, 6.34] 0.85 [0.36, 2.02] 0.84 [0.48, 1.48] 1.32 [0.94, 1.85] 5.54 [3.83, 8.00] 1.55 [0.66, 3.65]	CI
Study or Subgroup 1.5.1 Incidence of still Hastings 1986 Sweet 1987 Regan 1996 Seale 2016 Yadeta 2018 Subtotal (95% CI) Total events	Events birth > 0. 3 6 15 41 59 124	Total .5% 338 478 2663 934 231 4644	5 42 67 237 85 436	Total 846 2863 10038 7033 1457 22237	Weight 7.8% 11.7% 13.8% 15.2% 15.0% 63.5%	IV. Random. 95% C 1.51 [0.36, 6.34] 0.85 [0.36, 2.02] 0.84 [0.48, 1.48] 1.32 [0.94, 1.85] 5.54 [3.83, 8.00] 1.55 [0.66, 3.65]	CI
Study or Subgroup 1.5.1 Incidence of still Hastings 1986 Sweet 1987 Regan 1996 Seale 2016 Yadeta 2018 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0	Events birth > 0 3 6 15 41 59 124 80: Chi ²	Total .5% 338 478 2663 934 231 4644 = 48 26	5 42 67 237 85 436 df = 4 (5	Total 846 2863 10038 7033 1457 22237	Weight 7.8% 11.7% 13.8% 15.2% 15.0% 63.5%	IV. Random. 95% C 1.51 [0.36, 6.34] 0.85 [0.36, 2.02] 0.84 [0.48, 1.48] 1.32 [0.94, 1.85] 5.54 [3.83, 8.00] 1.55 [0.66, 3.65] 2%	CI IV, Random, 95% CI
Study or Subgroup 1.5.1 Incidence of still Hastings 1986 Sweet 1987 Regan 1996 Seale 2016 Yadeta 2018 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0 Test for overall effect: Z	Events birth > 0. 3 6 15 41 59 124 0.80; Chi ² 2 = 1.01 (I	Total 5% 338 478 2663 934 231 4644 = 48.26, P = 0.31	Events 5 42 67 237 85 436 df = 4 (F	Total 846 2863 10038 7033 1457 22237 > < 0.000	Weight 7.8% 11.7% 13.8% 15.2% 15.0% 63.5% 001); I ² = 9	IV, Random, 95% C 1.51 [0.36, 6.34] 0.85 [0.36, 2.02] 0.84 [0.48, 1.48] 1.32 [0.94, 1.85] 5.54 [3.83, 8.00] 1.55 [0.66, 3.65] 2%	CI
Study or Subgroup 1.5.1 Incidence of still Hastings 1986 Sweet 1987 Regan 1996 Seale 2016 Yadeta 2018 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = 0 Test for overall effect: Z 1.5.2 Incidence of still	Events birth > 0. 3 6 15 41 59 124 0.80; Chi ² 2 = 1.01 (I birth ≤ 0	Total 5% 338 478 2663 934 231 4644 = 48.26 P = 0.31 0.5%	5 42 67 237 85 436 df = 4 (F	Total 846 2863 10038 7033 1457 22237 2<0.000	Weight 7.8% 11.7% 13.8% 15.2% 15.0% 63.5% 001); I ² = 9	IV. Random. 95% C 1.51 [0.36, 6.34] 0.85 [0.36, 2.02] 0.84 [0.48, 1.48] 1.32 [0.94, 1.85] 5.54 [3.83, 8.00] 1.55 [0.66, 3.65] 2%	CI IV, Random, 95% CI
Study or Subgroup 1.5.1 Incidence of still Hastings 1986 Sweet 1987 Regan 1996 Seale 2016 Yadeta 2018 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = 0 Test for overall effect: Z 1.5.2 Incidence of still Garland 2000	Events birth > 0. 3 6 15 41 59 124 0.80; Chi ² 2 = 1.01 (I birth ≤ (Total 5% 338 478 2663 934 231 4644 = 48.26 P = 0.31 0.5% 583	Events 5 42 67 237 85 436 df = 4 (F	Total 846 2863 10038 7033 1457 22237 2<0.000	Weight 7.8% 11.7% 13.8% 15.2% 15.0% 63.5% 001); I² = 9 2 6%	IV. Random. 95% C 1.51 [0.36, 6.34] 0.85 [0.36, 2.02] 0.84 [0.48, 1.48] 1.32 [0.94, 1.85] 5.54 [3.83, 8.00] 1.55 [0.66, 3.65] 2%	CI
Study or Subgroup 1.5.1 Incidence of still Hastings 1986 Sweet 1987 Regan 1996 Seale 2016 Yadeta 2018 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = 0 Test for overall effect: Z 1.5.2 Incidence of still Garland 2000 Zhang 2017	Events birth > 0. 3 6 15 41 59 124 0.80; Chi ² 2 = 1.01 (I birth ≤ 0 1 1	Total .5% 338 478 2663 934 231 4644 = 48.26 P = 0.31 0.5% 583 135	Events 5 42 67 237 85 436 df = 4 (F	Total 846 2863 10038 7033 1457 22237 2 < 0.000 958 268	Weight 7.8% 11.7% 13.8% 15.2% 15.0% 63.5% 001); I ² = 9 2.6% 2 6%	IV. Random. 95% C 1.51 [0.36, 6.34] 0.85 [0.36, 2.02] 0.84 [0.48, 1.48] 1.32 [0.94, 1.85] 5.54 [3.83, 8.00] 1.55 [0.66, 3.65] 2% 4.94 [0.20, 121.38] 5 99 [0 24, 148 00]	CI
Study or Subgroup 1.5.1 Incidence of still Hastings 1986 Sweet 1987 Regan 1996 Seale 2016 Yadeta 2018 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = 0 Test for overall effect: Z 1.5.2 Incidence of still Garland 2000 Zhang 2017 Zhu 2019	Events birth > 0. 3 6 15 41 59 124 0.80; Chi ² 2 = 1.01 (I birth ≤ 0 1 2 2	Total 5% 338 478 2663 934 231 4644 = 48.26 P = 0.31 0.5% 583 135 6033	Events 5 42 67 237 85 436 df = 4 (F 0 0 0	Total 846 2863 10038 7033 1457 22237 2<0.000 958 268 42975	Weight 7.8% 11.7% 13.8% 15.2% 15.0% 63.5% 001); I² = 9 2.6% 2.6% 14.9%	IV. Random. 95% C 1.51 [0.36, 6.34] 0.85 [0.36, 2.02] 0.84 [0.48, 1.48] 1.32 [0.94, 1.85] 5.54 [3.83, 8.00] 1.55 [0.66, 3.65] 2% 4.94 [0.20, 121.38] 5.99 [0.24, 148.00] 1.54 [1.04, 2.27]	CI
Study or Subgroup 1.5.1 Incidence of still Hastings 1986 Sweet 1987 Regan 1996 Seale 2016 Yadeta 2018 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0 Test for overall effect: Z 1.5.2 Incidence of still Garland 2000 Zhang 2017 Zhu 2019 Chog 2023	Events birth > 0. 3 6 15 41 59 124 0.80; Chi² 2 = 1.01 (I birth ≤ (1 1 32 10	Total 5% 338 478 2663 934 231 4644 = 48.26 P = 0.31 0.5% 583 135 6933 5503	Events 5 42 67 237 85 436 df = 4 (F 0 0 129 7	Total 846 2863 10038 7033 1457 22237 2<0.000 958 268 42975 25402	Weight 7.8% 11.7% 13.8% 15.2% 15.0% 63.5% 001); I² = 9 2.6% 2.6% 14.9% 13.1%	IV. Random. 95% C 1.51 [0.36, 6.34] 0.85 [0.36, 2.02] 0.84 [0.48, 1.48] 1.32 [0.94, 1.85] 5.54 [3.83, 8.00] 1.55 [0.66, 3.65] 2% 4.94 [0.20, 121.38] 5.99 [0.24, 148.00] 1.54 [1.04, 2.27] 0.91 [0.47, 4.72]	CI IV, Random, 95% CI
Study or Subgroup 1.5.1 Incidence of still Hastings 1986 Sweet 1987 Regan 1996 Seale 2016 Yadeta 2018 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0 Test for overall effect: Z 1.5.2 Incidence of still Garland 2000 Zhang 2017 Zhu 2019 Chen 2023 Zhou 2023	Events birth > 0. 3 6 15 41 59 124 0.80; Chi² 2 = 1.01 (I birth ≤ (1 1 32 10 2	Total 5% 338 478 2663 934 231 4644 = 48.26 P = 0.31 0.5% 583 135 6933 5502 51	Events 5 42 67 237 85 436 df = 4 (F 0 0 129 71	Total 846 2863 10038 7033 1457 22237 2<0.0000 958 268 42975 35403	Weight 7.8% 11.7% 13.8% 15.2% 15.0% 63.5% 001); I² = 9 2.6% 2.6% 14.9% 3.1% 2.2%	IV. Random. 95% C 1.51 [0.36, 6.34] 0.85 [0.36, 2.02] 0.84 [0.48, 1.48] 1.32 [0.94, 1.85] 5.54 [3.83, 8.00] 1.55 [0.66, 3.65] 2% 4.94 [0.20, 121.38] 5.99 [0.24, 148.00] 1.54 [1.04, 2.27] 0.91 [0.47, 1.76] 11 20 [0.60, 144, 72]	CI
Study or Subgroup 1.5.1 Incidence of still Hastings 1986 Sweet 1987 Regan 1996 Seale 2016 Yadeta 2018 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0 Test for overall effect: Z 1.5.2 Incidence of still Garland 2000 Zhang 2017 Zhu 2019 Chen 2023 Zhou 2023 Subtotal (95% CI)	Events birth > 0. 3 6 15 41 59 124 .80; Chi² 0.80; Chi² = 1.01 (I birth ≤ (I) 1 32 10 1 32	Total 5% 338 478 2663 934 231 4644 = 48.26 P = 0.31 0.5% 583 135 6933 5502 511 13204	Events 5 42 67 237 85 436 df = 4 (F 0 0 129 71 1	Total 846 2863 10038 7033 1457 22237 2 < 0.000 958 268 42975 35403 561 80165	Weight 7.8% 11.7% 13.8% 15.2% 15.0% 63.5% 001); I² = 9 2.6% 2.6% 14.9% 13.1% 3.2%	IV. Random. 95% C 1.51 [0.36, 6.34] 0.85 [0.36, 2.02] 0.84 [0.48, 1.48] 1.32 [0.94, 1.85] 5.54 [3.83, 8.00] 1.55 [0.66, 3.65] 2% 4.94 [0.20, 121.38] 5.99 [0.24, 148.00] 1.54 [1.04, 2.27] 0.91 [0.47, 1.76] 11.20 [0.69, 181.78] 1.46 [0.85 2.40]	CI IV. Random, 95% CI
Study or Subgroup 1.5.1 Incidence of still Hastings 1986 Sweet 1987 Regan 1996 Seale 2016 Yadeta 2018 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0 Test for overall effect: Z 1.5.2 Incidence of still Garland 2000 Zhang 2017 Zhu 2019 Chen 2023 Zhou 2023 Subtotal (95% CI)	Events birth > 0. 3 6 15 41 59 124 0.80; Chi ² 2 = 1.01 (I birth ≤ 0 1 32 10 1	Total 5% 338 478 2663 934 231 4644 = 48.26 P = 0.31 0.5% 583 135 6933 5502 51 13204	Events 5 42 67 237 85 436 df = 4 (F 0 0 129 71 1	Total 846 2863 10038 7033 1457 22237 2 < 0.000 958 268 42975 35403 561 80165	Weight 7.8% 11.7% 13.8% 15.2% 63.5% 001); I² = 9 2.6% 2.6% 14.9% 13.1% 3.2% 36.5%	IV. Random. 95% C 1.51 [0.36, 6.34] 0.85 [0.36, 2.02] 0.84 [0.48, 1.48] 1.32 [0.94, 1.85] 5.54 [3.83, 8.00] 1.55 [0.66, 3.65] 2% 4.94 [0.20, 121.38] 5.99 [0.24, 148.00] 1.54 [1.04, 2.27] 0.91 [0.47, 1.76] 11.20 [0.69, 181.78] 1.46 [0.86, 2.49]	CI
Study or Subgroup 1.5.1 Incidence of still Hastings 1986 Sweet 1987 Regan 1996 Seale 2016 Yadeta 2018 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0 Test for overall effect: Z 1.5.2 Incidence of still Garland 2000 Zhang 2017 Zhu 2019 Chen 2023 Zhou 2023 Subtotal (95% CI) Total events	Events birth > 0. 3 6 15 41 59 124 0.80; Chi ² 2 = 1.01 (I birth ≤ 0 1 32 10 1 32 10 1 45	Total 5% 338 478 2663 934 231 4644 = 48.26 P = 0.31 0.5% 583 135 6933 5502 51 13204	Events 5 42 67 237 85 436 df = 4 (F 0 0 129 71 1 201	Total 846 2863 10038 7033 1457 22237 2 < 0.000 958 268 42975 35403 561 80165	Weight 7.8% 11.7% 13.8% 15.2% 01); I² = 9 2.6% 2.6% 14.9% 13.1% 3.2% 36.5%	IV. Random. 95% C 1.51 [0.36, 6.34] 0.85 [0.36, 2.02] 0.84 [0.48, 1.48] 1.32 [0.94, 1.85] 5.54 [3.83, 8.00] 1.55 [0.66, 3.65] 2% 4.94 [0.20, 121.38] 5.99 [0.24, 148.00] 1.54 [1.04, 2.27] 0.91 [0.47, 1.76] 11.20 [0.69, 181.78] 1.46 [0.86, 2.49]	CI
Study or Subgroup 1.5.1 Incidence of still Hastings 1986 Sweet 1987 Regan 1996 Seale 2016 Yadeta 2018 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0 Test for overall effect: Z 1.5.2 Incidence of still Garland 2000 Zhang 2017 Zhu 2019 Chen 2023 Zhou 2023 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0 Total events Chen 2023 Subtotal (95% CI)	Events birth > 0. 3 6 15 41 59 124 0.80; Chi ² 2 = 1.01 (I birth ≤ 0 1 32 10 1 32 10 1 0.09; Chi ²	Total 5% 338 478 2663 934 231 4644 = 48.26 P = 0.31 0.5% 583 135 6933 5502 51 13204 = 5.40, (Events 5 42 67 237 85 436 df = 4 (F 0 0 129 71 1 201 df = 4 (P	Total 846 2863 10038 7033 1457 22237 2 < 0.000 958 268 42975 35403 561 80165 = 0.25);	Weight 7.8% 11.7% 13.8% 15.2% 15.0% 63.5% 001); I² = 9 2.6% 2.6% 14.9% 13.1% 3.2% 36.5% I² = 26%	IV. Random, 95% C 1.51 [0.36, 6.34] 0.85 [0.36, 2.02] 0.84 [0.48, 1.48] 1.32 [0.94, 1.85] 5.54 [3.83, 8.00] 1.55 [0.66, 3.65] 2% 4.94 [0.20, 121.38] 5.99 [0.24, 148.00] 1.54 [1.04, 2.27] 0.91 [0.47, 1.76] 11.20 [0.69, 181.78] 1.46 [0.86, 2.49]	CI
Study or Subgroup 1.5.1 Incidence of still Hastings 1986 Sweet 1987 Regan 1996 Seale 2016 Yadeta 2018 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0 Test for overall effect: Z 1.5.2 Incidence of still Garland 2000 Zhang 2017 Zhu 2019 Chen 2023 Zhou 2023 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0 Test for overall effect: Z	Events birth > 0. 3 6 15 41 59 124 0.80; Chi ² 2 = 1.01 (I birth \leq (I 1 32 10 1 45 0.09; Chi ² 2 = 1.40 (I	Total 5% 338 478 2663 934 231 4644 = 48.26 P = 0.31 0.5% 583 135 6933 5502 511 13204 = 5.40, (P = 0.16)	Events 5 42 67 237 85 436 df = 4 (F 0 0 129 71 1 201 df = 4 (P	Total 846 2863 10038 7033 1457 22237 2 < 0.000 958 268 42975 35403 5611 80165 = 0.25);	Weight 7.8% 11.7% 13.8% 15.2% 15.0% 63.5% 001); I ² = 9 2.6% 2.6% 14.9% 3.2% 36.5% I ² = 26%	IV. Random. 95% C 1.51 [0.36, 6.34] 0.85 [0.36, 2.02] 0.84 [0.48, 1.48] 1.32 [0.94, 1.85] 5.54 [3.83, 8.00] 1.55 [0.66, 3.65] 2% 4.94 [0.20, 121.38] 5.99 [0.24, 148.00] 1.54 [1.04, 2.27] 0.91 [0.47, 1.76] 11.20 [0.69, 181.78] 1.46 [0.86, 2.49]	CI
Study or Subgroup 1.5.1 Incidence of still Hastings 1986 Sweet 1987 Regan 1996 Seale 2016 Yadeta 2018 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0 Test for overall effect: Z 1.5.2 Incidence of still Garland 2000 Zhang 2017 Zhu 2019 Chen 2023 Zhou 2023 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0 Test for overall effect: Z Total (95% CI)	Events birth > 0. 3 6 15 41 59 124 0.80; Chi ² 2 1.01 (I birth ≤ 0 1 32 10 1 45 0.09; Chi ² 2 1.40 (I	Total 5% 338 478 2663 934 231 4644 = 48.26, P = 0.31 0.5% 583 135 6933 5502 51 13204 = 5.40, P = 0.16] 17848	Events 5 42 67 237 85 436 df = 4 (F 0 0 0 129 71 1 201 df = 4 (P 9	Total 846 2863 10038 7033 1457 22237 P < 0.000 958 268 42975 35403 561 80165 = 0.25); 102402	Weight 7.8% 11.7% 13.8% 15.2% 15.0% 63.5% 001); I² = 9 2.6% 2.6% 14.9% 13.1% 3.2% 36.5% I² = 26% 100.0%	IV. Random, 95% C 1.51 [0.36, 6.34] 0.85 [0.36, 2.02] 0.84 [0.48, 1.48] 1.32 [0.94, 1.85] 5.54 [3.83, 8.00] 1.55 [0.66, 3.65] 2% 4.94 [0.20, 121.38] 5.99 [0.24, 148.00] 1.54 [1.04, 2.27] 0.91 [0.47, 1.76] 11.20 [0.69, 181.78] 1.46 [0.86, 2.49] 1.66 [0.95, 2.91]	CI IV, Random, 95% CI
Study or Subgroup 1.5.1 Incidence of still Hastings 1986 Sweet 1987 Regan 1996 Seale 2016 Yadeta 2018 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0 Test for overall effect: Z 1.5.2 Incidence of still Garland 2000 Zhang 2017 Zhu 2019 Chen 2023 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0 Test for overall effect: Z Total events Heterogeneity: Tau ² = 0 Test for overall effect: Z	Events birth > 0. 3 6 15 41 59 124 0.80; Chi ² 2 = 1.01 (I birth \leq 0 1 32 10 1 45 0.09; Chi ² 2 = 1.40 (I 169	Total 5% 338 478 2663 934 231 4644 = 48.266 P = 0.31 0.5% 583 135 6933 5502 51 13204 = 5.40, 0 P = 0.16 17848	Events 5 42 67 237 85 436 df = 4 (F 0 0 0 129 71 1 201 1 ff = 4 (P 637	Total 846 2863 10038 7033 1457 22237 2 < 0.000 958 268 42975 35403 561 80165 = 0.25); 102402	Weight 7.8% 11.7% 13.8% 15.2% 15.0% 63.5% 001); I² = 9 2.6% 2.6% 13.1% 3.2% 36.5% I² = 26% 100.0%	IV. Random. 95% C 1.51 [0.36, 6.34] 0.85 [0.36, 2.02] 0.84 [0.48, 1.48] 1.32 [0.94, 1.85] 5.54 [3.83, 8.00] 1.55 [0.66, 3.65] 2% 4.94 [0.20, 121.38] 5.99 [0.24, 148.00] 1.54 [1.04, 2.27] 0.91 [0.47, 1.76] 11.20 [0.69, 181.78] 1.46 [0.86, 2.49] 1.66 [0.95, 2.91]	CI IV, Random, 95% CI
Study or Subgroup1.5.1 Incidence of stillHastings 1986Sweet 1987Regan 1996Seale 2016Yadeta 2018Subtotal (95% CI)Total eventsHeterogeneity: Tau ² = 0Test for overall effect: Z1.5.2 Incidence of stillGarland 2000Zhang 2017Zhu 2019Chen 2023Zhou 2023Subtotal (95% CI)Total eventsHeterogeneity: Tau ² = 0Test for overall effect: ZTotal eventsHeterogeneity: Tau ² = 0Total eventsHeterogeneity: Tau ² = 0	Events birth > 0. 3 6 15 41 59 124 0.80; Chi ² 2 = 1.01 (I birth \leq (I 1 32 10 1 45 0.09; Chi ² 2 = 1.40 (I 169 0.51; Chi ²	Total 5% 338 478 2663 934 231 4644 = 48.266 P = 0.31 0.5% 583 135 6933 5502 51 13204 = 5.40, 6 P = 0.16 17848 = 56.35	Events 5 42 67 237 85 436 df = 4 (F 0 0 0 129 71 1 201 df = 4 (P 637 df = 9 (F	Total 846 2863 10038 7033 1457 22237 2 < 0.000 958 268 42975 35403 561 80165 = 0.25); I 102402 2 < 0.000	Weight 7.8% 11.7% 13.8% 15.2% 15.0% 63.5% 001); I² = 9 2.6% 2.6% 13.1% 3.2% 36.5% I2 = 26% 100.0% 001); I² = 8	IV. Random. 95% C 1.51 [0.36, 6.34] 0.85 [0.36, 2.02] 0.84 [0.48, 1.48] 1.32 [0.94, 1.85] 5.54 [3.83, 8.00] 1.55 [0.66, 3.65] 2% 4.94 [0.20, 121.38] 5.99 [0.24, 148.00] 1.54 [1.04, 2.27] 0.91 [0.47, 1.76] 11.20 [0.69, 181.78] 1.46 [0.86, 2.49] 1.66 [0.95, 2.91] 4%	CI IV. Random, 95% CI

Figure 4 Forest plots for subgroup analyses of the association between maternal rectovaginal GBS colonization and the risk of stillbirth. (A) Subgroup analysis according to methods for determining rectovaginal GBS colonization; (B) subgroup analysis according to overall incidence of stillbirth among the studied cohorts. GBS, group B streptococcus; OR indicates the odds of stillbirth associated with maternal GBS colonization; values greater than 1 suggest increased risk, whereas values less than 1 indicate a reduced risk. Full-size DOI: 10.7717/peerj.18834/fig-4

	GBS	(+)	GBS	(-)		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
1.6.1 Univariate							
Hastings 1986	3	338	5	846	7.8%	1.51 [0.36, 6.34]	
Sweet 1987	6	478	42	2863	11.7%	0.85 [0.36, 2.02]	
Regan 1996	15	2663	67	10038	13.8%	0.84 [0.48, 1.48]	
Garland 2000	1	583	0	958	2.6%	4.94 [0.20, 121.38]	
Subtotal (95% CI)		4062		14705	35.9%	0.92 [0.59, 1.44]	•
Total events	25		114				
Heterogeneity: Tau ² =	0.00; Chi ²	= 1.63, 0	df = 3 (P	= 0.65); l [:]	² = 0%		
Test for overall effect:	Z = 0.35 (F	P = 0.73)					
1.6.2 Multivariate							
Seale 2016	41	934	237	7033	15.2%	1.32 [0.94, 1.85]	
Zhang 2017	1	135	0	268	2.6%	5.99 [0.24, 148.00]	
Yadeta 2018	59	231	85	1457	15.0%	5.54 [3.83, 8.00]	-
Zhu 2019	32	6933	129	42975	14.9%	1.54 [1.04, 2.27]	
Chen 2023	10	5502	71	35403	13.1%	0.91 [0.47, 1.76]	
Zhou 2023	1	51	1	561	3.2%	11.20 [0.69, 181.78]	+
Subtotal (95% CI)		13786		87697	64.1%	2.11 [1.02, 4.40]	◆
Total events	144		523				
Heterogeneity: Tau ² =	0.57; Chi ²	= 44.34.	df = 5 (F	o < 0.000	01); l² = 89	9%	
Test for overall effect:	Z = 2.01 (F	P = 0.04)					
Total (95% CI)		17848		102402	100.0%	1.66 [0.95. 2.91]	
Total events	160		637				
Heterogeneity: $Tau^2 =$	0.51. Chi2	= 56 35	df = Q (F)		רו 11)∙ I² = 8ע	1%	
Test for overall offect:	7 - 1.76 (E	- 00.00, - 0.08	ui – 5 (i	\$ 0.0000	51), 1 = 0-	+ 70	0.005 0.1 1 10 20
	z = 1.7010						Lower rick in CDC (1) Ligher rick in CDC (1)
Test for subaroup diffe	erences: Ch	ni² = 3.59	9. df = 1 (P = 0.06). I² = 72.2	%	
Test for subaroup diffe	GBS	ni² = 3.59). df = 1 (GBS	(-)). I² = 72.2	% Odds Ratio	Odds Ratio
Test for subaroup diffe	GBS (Events	(+) Total	9. df = 1 (GBS Events	P = 0.06 (-) <u>Total</u>	. I² = 72.2 <u>Weight</u>	% Odds Ratio IV. Random, 95% Cl	Odds Ratio IV. Random. 95% Cl
Test for subaroup diffe	GBS	(+) Total	9. df = 1 (GBS <u>Events</u>	P = 0.06) (-) <u>Total</u>). I ² = 72.2 <u>Weight</u>	% Odds Ratio IV, Random, 95% Cl	Odds Ratio
Test for subaroup diffe Study or Subgroup 1.7.1 NOS = 6~7 Hastings 1986	GBS Events	(+) Total	9. df = 1 (GBS <u>Events</u> 5	(P = 0.06) (-) <u>Total</u> 846). ² = 72.2 <u>Weight</u> 7.8%	% Odds Ratio <u>IV, Random, 95% CI</u> 1.51 [0.36, 6.34]	Odds Ratio
Test for subaroup diffe Study or Subgroup 1.7.1 NOS = 6~7 Hastings 1986 Sweet 1987	GBS Events 3	(+) <u>Total</u> 338 478	9. df = 1 (GBS <u>Events</u> 5 42	(P = 0.06) (-) <u>Total</u> 846 2863). ² = 72.2 Weight 7.8% 11.7%	% Odds Ratio <u>IV, Random, 95% Cl</u> 1.51 [0.36, 6.34] 0.85 [0.36, 2.02]	Odds Ratio IV. Random. 95% Cl
Test for subaroup diffe Study or Subgroup 1.7.1 NOS = 6~7 Hastings 1986 Sweet 1987 Regan 1996	GBS (<u>GBS</u>) <u>Events</u> 3 6 15	(+) <u>Total</u> 338 478 2663	9. df = 1 (GBS Events 5 42 67	(P = 0.06) (-) <u>Total</u> 846 2863 10038). I ² = 72.2 <u>Weight</u> 7.8% 11.7% 13.8%	% Odds Ratio <u>IV, Random, 95% Cl</u> 1.51 [0.36, 6.34] 0.85 [0.36, 2.02] 0.84 [0.48, 1.48]	Odds Ratio IV. Random. 95% Cl
Test for subaroup diffe Study or Subgroup 1.7.1 NOS = 6~7 Hastings 1986 Sweet 1987 Regan 1996 Garland 2000	GBS (GBS (<u>Events</u> 3 6 15	(+) <u>Total</u> 338 478 2663 583	9. df = 1 (GBS <u>Events</u> 5 42 67 0	P = 0.06 [°] (-) <u>Total</u> 846 2863 10038 958). I ² = 72.2 <u>Weight</u> 7.8% 11.7% 13.8% 2.6%	% Odds Ratio IV. Random, 95% Cl 1.51 [0.36, 6.34] 0.85 [0.36, 2.02] 0.84 [0.48, 1.48] 4.94 [0.20, 121.38]	Odds Ratio IV. Random, 95% Cl
Test for subgroup diffe Study or Subgroup 1.7.1 NOS = 6~7 Hastings 1986 Sweet 1987 Regan 1996 Garland 2000 Zhang 2017	GBS (GBS (Events 3 6 15 1 1	(+) <u>Total</u> 338 478 2663 583 135	9. df = 1 (GBS <u>Events</u> 5 42 67 0 0	P = 0.06 (-) <u>Total</u> 846 2863 10038 958 268). I ² = 72.2 Weight 7.8% 11.7% 13.8% 2.6% 2.6%	% Odds Ratio IV. Random, 95% Cl 1.51 [0.36, 6.34] 0.85 [0.36, 2.02] 0.84 [0.48, 1.48] 4.94 [0.20, 121.38] 5.99 [0.24, 148.00]	Odds Ratio IV. Random, 95% Cl
Test for subgroup diffe Study or Subgroup 1.7.1 NOS = 6~7 Hastings 1986 Sweet 1987 Regan 1996 Garland 2000 Zhang 2017 Subtotal (95% CI)	3 6 15 15 1	(+) <u>Total</u> 338 478 2663 583 135 4197	 A. df = 1 (GBS Events 5 42 67 0 0 	P = 0.06 (-) <u>Total</u> 846 2863 10038 958 268 14973). I ² = 72.2 Weight 7.8% 11.7% 13.8% 2.6% 2.6% 38.5%	% Odds Ratio IV. Random, 95% Cl 1.51 [0.36, 6.34] 0.85 [0.36, 2.02] 0.84 [0.48, 1.48] 4.94 [0.20, 121.38] 5.99 [0.24, 148.00] 0.96 [0.62, 1.48]	Odds Ratio IV. Random, 95% Cl
Test for subgroup diffe Study or Subgroup 1.7.1 NOS = 6~7 Hastings 1986 Sweet 1987 Regan 1996 Garland 2000 Zhang 2017 Subtotal (95% CI) Total events	3 6 15 1 2 - 1.70 (r GBS (Events 3 6 15 1 1 26	(+) Total 338 478 2663 583 135 4197	9. df = 1 (GBS <u>Events</u> 5 42 67 0 0 114	P = 0.06 (-) <u>Total</u> 846 2863 10038 958 268 14973). I ² = 72.2 Weight 7.8% 11.7% 13.8% 2.6% 2.6% 38.5%	% Odds Ratio IV. Random, 95% Cl 1.51 [0.36, 6.34] 0.85 [0.36, 2.02] 0.84 [0.48, 1.48] 4.94 [0.20, 121.38] 5.99 [0.24, 148.00] 0.96 [0.62, 1.48]	Odds Ratio IV. Random, 95% Cl
Test for subgroup diffe Study or Subgroup 1.7.1 NOS = 6~7 Hastings 1986 Sweet 1987 Regan 1996 Garland 2000 Zhang 2017 Subtotal (95% Cl) Total events Heterogeneity: Tau ² =	3 6 15 1 26 0.00; Chi ²	(+) <u>Total</u> 338 478 2663 583 135 4197 = 2.91, d	9. df = 1 (GBS Events 5 42 67 0 0 114 4f = 4 (P	P = 0.06 (-) Total 846 2863 10038 958 268 14973 = 0.57); F	 l² = 72.2 Weight 7.8% 11.7% 13.8% 2.6% 2.6% 38.5% ² = 0% 	% Odds Ratio IV. Random, 95% Cl 1.51 [0.36, 6.34] 0.85 [0.36, 2.02] 0.84 [0.48, 1.48] 4.94 [0.20, 121.38] 5.99 [0.24, 148.00] 0.96 [0.62, 1.48]	Odds Ratio IV. Random, 95% Cl
Test for subaroup diffe Study or Subgroup 1.7.1 NOS = 6~7 Hastings 1986 Sweet 1987 Regan 1996 Garland 2000 Zhang 2017 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = Test for overall effect:	3 6 Events 3 6 15 1 1 26 0.00; Chi ² Z = 0.19 (F	(+) Total 338 478 2663 583 135 4197 = 2.91, (= 0.85)	9. df = 1 (GBS <u>Events</u> 5 42 67 0 0 114 df = 4 (P	P = 0.06 (-) Total 846 2863 10038 958 268 14973 = 0.57); F	 l² = 72.2 Weight 7.8% 11.7% 13.8% 2.6% 2.6% 38.5% ² = 0% 	% Odds Ratio IV, Random, 95% Cl 1.51 [0.36, 6.34] 0.85 [0.36, 2.02] 0.84 [0.48, 1.48] 4.94 [0.20, 121.38] 5.99 [0.24, 148.00] 0.96 [0.62, 1.48]	Odds Ratio IV. Random, 95% Cl
Test for subaroub diffe Study or Subgroup 1.7.1 NOS = 6~7 Hastings 1986 Sweet 1987 Regan 1996 Garland 2000 Zhang 2017 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = Test for overall effect: 1.7.2 NOS = 8~9	GBS (<u>Events</u> 3 6 15 1 1 26 0.00; Chi ² Z = 0.19 (F	(+) Total 338 478 2663 583 135 4197 = 2.91, (= 0.85)	9. df = 1 (GBS Events 5 42 67 0 0 114 5f = 4 (P	P = 0.06 (-) Total 846 2863 10038 958 268 14973 = 0.57); F	 l² = 72.2 Weight 7.8% 11.7% 13.8% 2.6% 2.6% 38.5% ² = 0% 	% Odds Ratio IV. Random, 95% Cl 1.51 [0.36, 6.34] 0.85 [0.36, 2.02] 0.84 [0.48, 1.48] 4.94 [0.20, 121.38] 5.99 [0.24, 148.00] 0.96 [0.62, 1.48]	Odds Ratio IV, Random, 95% CI
Test for subaroub diffe Study or Subgroup 1.7.1 NOS = 6~7 Hastings 1986 Sweet 1987 Regan 1996 Garland 2000 Zhang 2017 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = Test for overall effect: 1.7.2 NOS = 8~9 Seale 2016	3 6 15 1 26 0.00; Chi ² 2 = 0.19 (F	(+) Total 338 478 2663 583 135 4197 = 2.91, (= 2.91, (= 0.85) 934	9. df = 1 (GBS Events 5 42 67 0 0 0 114 df = 4 (P 237	P = 0.06 (-) <u>Total</u> 846 2863 10038 958 268 14973 = 0.57); F	 l² = 72.2 Weight 7.8% 11.7% 13.8% 2.6% 2.6% 38.5% ² = 0% 15.2% 	% Odds Ratio IV, Random, 95% Cl 1.51 [0.36, 6.34] 0.85 [0.36, 2.02] 0.84 [0.48, 1.48] 4.94 [0.20, 121.38] 5.99 [0.24, 148.00] 0.96 [0.62, 1.48] 1.32 [0.94, 1.85]	Odds Ratio IV, Random, 95% Cl
Test for subaroub diffe Study or Subgroup 1.7.1 NOS = 6~7 Hastings 1986 Sweet 1987 Regan 1996 Garland 2000 Zhang 2017 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = Test for overall effect: 1.7.2 NOS = 8~9 Seale 2016 Yadeta 2018	3 6 5 2 - 1.70 (f crences: Cl 3 6 15 1 1 26 0.00; Chi ² Z = 0.19 (f 41 59	(+) Total 338 478 2663 583 135 4197 = 2.91, c P = 0.85 934 231	9. df = 1 (GBS Events 5 42 67 0 0 114 df = 4 (P 237 85	P = 0.06 (-) Total 846 2863 10038 958 268 14973 = 0.57); F 7033 1457	 l² = 72.2 Weight 7.8% 11.7% 13.8% 2.6% 2.6% 38.5% ² = 0% 15.2% 15.2% 15.0% 	% Odds Ratio IV. Random, 95% Cl 1.51 [0.36, 6.34] 0.85 [0.36, 2.02] 0.84 [0.48, 1.48] 4.94 [0.20, 121.38] 5.99 [0.24, 148.00] 0.96 [0.62, 1.48] 1.32 [0.94, 1.85] 5.54 [3.83, 8.00]	Odds Ratio IV, Random, 95% Cl
Test for subaroub diffe Study or Subgroup 1.7.1 NOS = 6~7 Hastings 1986 Sweet 1987 Regan 1996 Garland 2000 Zhang 2017 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = Test for overall effect: 1.7.2 NOS = 8~9 Seale 2016 Yadeta 2018 Zhu 2019	3 6 Events 3 6 15 1 1 26 0.00; Chi ² Z = 0.19 (F 41 59 32	(+) Total 338 478 2663 583 135 4197 = 2.91, c 934 231 6933	e. df = 1 (GBS Events 5 42 67 0 0 114 df = 4 (P 237 85 129	P = 0.06 Total 846 2863 10038 958 268 14973 = 0.57); F 7033 1457 42975	 l² = 72.2 Weight 7.8% 11.7% 13.8% 2.6% 2.6% 38.5% ² = 0% 15.2% 15.0% 14.9% 	% Odds Ratio IV, Random, 95% Cl 1.51 [0.36, 6.34] 0.85 [0.36, 2.02] 0.84 [0.48, 1.48] 4.94 [0.20, 121.38] 5.99 [0.24, 148.00] 0.96 [0.62, 1.48] 1.32 [0.94, 1.85] 5.54 [3.83, 8.00] 1.54 [1.04, 2.27]	Odds Ratio IV. Random, 95% Cl
Test for subaroub diffe Study or Subgroup 1.7.1 NOS = 6~7 Hastings 1986 Sweet 1987 Regan 1996 Garland 2000 Zhang 2017 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = Test for overall effect: 1.7.2 NOS = 8~9 Seale 2016 Yadeta 2018 Zhu 2019 Chen 2023	$\begin{array}{c} 2 = 1.70 \text{ (fr}\\ \hline \text{erences: Cl}\\ \hline \text{GBS (}\\ \hline \text{Events}\\ \end{array} \\ \begin{array}{c} 3\\ 6\\ 15\\ 1\\ 1\\ 26\\ 0.00; \text{Chi}^2\\ Z = 0.19 \text{ (F}\\ \hline \text{Z} = 0.19 \text{ (F}\\ 59\\ 32\\ 10\\ \end{array} \end{array}$	(+) Total 338 478 2663 583 135 4197 = 2.91, c = 2.91, c = 0.85 934 231 6933 5502	9. df = 1 (GBS <u>Events</u> 5 42 67 0 0 114 df = 4 (P 237 85 129 71	P = 0.06 Total 846 2863 10038 958 268 14973 = 0.57); F 7033 1457 42975 35403	 l² = 72.2 Weight 7.8% 11.7% 13.8% 2.6% 2.6% 38.5% ² = 0% 15.2% 15.2% 15.0% 14.9% 13.1% 	% Odds Ratio IV, Random, 95% Cl 1.51 [0.36, 6.34] 0.85 [0.36, 2.02] 0.84 [0.48, 1.48] 4.94 [0.20, 121.38] 5.99 [0.24, 148.00] 0.96 [0.62, 1.48] 1.32 [0.94, 1.85] 5.54 [3.83, 8.00] 1.54 [1.04, 2.27] 0.91 [0.47, 1.76]	Odds Ratio IV. Random, 95% Cl
Test for subaroub diffe Study or Subgroup 1.7.1 NOS = 6~7 Hastings 1986 Sweet 1987 Regan 1996 Garland 2000 Zhang 2017 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = Test for overall effect: 1.7.2 NOS = 8~9 Seale 2016 Yadeta 2018 Zhu 2019 Chen 2023 Zhou 2023	$\begin{array}{c} 2 = 1.70 \text{ (f} \\ \hline \text{erences: Cl} \\ \hline \text{GBS (} \\ \hline \text{Events} \\ \end{array} \\ \begin{array}{c} 3 \\ 6 \\ 15 \\ 1 \\ 1 \\ 26 \\ 0.00; \text{Chi}^2 \\ \text{Z} = 0.19 \text{ (f} \\ \hline \text{Z} = 0.19 \text{ (f} \\ 59 \\ 32 \\ 10 \\ 1 \\ \end{array} $	(+) Total 338 478 2663 583 135 4197 = 2.91, c = 2.91, c = 0.85 934 231 6933 5502 51	D. df = 1 (GBS Events 5 42 67 0 0 114 df = 4 (P 237 85 129 71 1	P = 0.06 Total 846 2863 10038 958 268 14973 = 0.57); F 7033 1457 42975 35403 561	 l² = 72.2 Weight 7.8% 11.7% 13.8% 2.6% 2.6% 38.5% ² = 0% 15.2% 15.2% 15.0% 14.9% 13.1% 3.2% 	% Odds Ratio IV, Random, 95% Cl 1.51 [0.36, 6.34] 0.85 [0.36, 2.02] 0.84 [0.48, 1.48] 4.94 [0.20, 121.38] 5.99 [0.24, 148.00] 0.96 [0.62, 1.48] 1.32 [0.94, 1.85] 5.54 [3.83, 8.00] 1.54 [1.04, 2.27] 0.91 [0.47, 1.76] 11.20 [0.69, 181.78]	Odds Ratio IV. Random, 95% Cl
Test for subaroub diffe Study or Subgroup 1.7.1 NOS = 6~7 Hastings 1986 Sweet 1987 Regan 1996 Garland 2000 Zhang 2017 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = Test for overall effect: 1.7.2 NOS = 8~9 Seale 2016 Yadeta 2018 Zhu 2019 Chen 2023 Zhou 2023 Subtotal (95% Cl)	$\begin{array}{c} 2 = 1.70 \text{ (f} \\ \hline \text{erences: Cl} \\ \hline \text{GBS (} \\ \hline \text{Events} \\ \end{array} \\ \begin{array}{c} 3 \\ 6 \\ 15 \\ 1 \\ 1 \\ 26 \\ 0.00; \text{Chi}^2 \\ \text{Z} = 0.19 \text{ (f} \\ \hline \text{Z} = 0.19 \text{ (f} \\ 59 \\ 32 \\ 10 \\ 1 \\ \end{array} \end{array}$	(+) Total 338 478 2663 583 135 4197 = 2.91, (= 2.91, (= 0.85) 934 231 6933 5502 51 13651	9. df = 1 (GBS Events 5 42 67 0 0 114 df = 4 (P 237 85 129 71 1	P = 0.06 (-) Total 846 2863 10038 958 268 14973 = 0.57); F 7033 1457 42975 35403 561 87429	 l² = 72.2 Weight 7.8% 11.7% 13.8% 2.6% 2.6% 38.5% ² = 0% 15.2% 15.2% 15.0% 14.9% 13.1% 3.2% 61.5% 	% Odds Ratio IV. Random, 95% Cl 1.51 [0.36, 6.34] 0.85 [0.36, 2.02] 0.84 [0.48, 1.48] 4.94 [0.20, 121.38] 5.99 [0.24, 148.00] 0.96 [0.62, 1.48] 1.32 [0.94, 1.85] 5.54 [3.83, 8.00] 1.54 [1.04, 2.27] 0.91 [0.47, 1.76] 11.20 [0.69, 181.78] 2.02 [0.95. 4.30]	Odds Ratio IV. Random. 95% Cl
Test for subaroup diffe Study or Subgroup 1.7.1 NOS = 6~7 Hastings 1986 Sweet 1987 Regan 1996 Garland 2000 Zhang 2017 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = Test for overall effect: 1.7.2 NOS = 8~9 Seale 2016 Yadeta 2018 Zhu 2019 Chen 2023 Zhou 2023 Subtotal (95% Cl) Total events	$\begin{array}{c} 2 = 1.70 \text{ (f} \\ \hline \text{erences: Cl} \\ \hline \text{GBS (} \\ \hline \text{Events} \\ \end{array} \\ \begin{array}{c} 3 \\ 6 \\ 15 \\ 1 \\ 1 \\ 26 \\ 0.00; \text{Chi}^2 \\ 1 \\ 2 = 0.19 \text{ (f} \\ \hline \text{S9} \\ 32 \\ 10 \\ 1 \\ 143 \end{array}$	(+) Total 338 478 2663 583 135 4197 = 2.91, (-) = 0.85) 934 231 6933 5502 51 13651	e). df = 1 (GBS Events 5 42 67 0 0 114 df = 4 (P 237 85 129 71 1 523	P = 0.06 (-) Total 846 2863 10038 958 268 14973 = 0.57); F 7033 14973 = 0.57); F 7033 1457 42975 35403 561 87429	 l² = 72.2 Weight 7.8% 11.7% 13.8% 2.6% 2.6% 38.5% ² = 0% 15.2% 15.0% 14.9% 13.1% 3.2% 61.5% 	% Odds Ratio IV, Random, 95% Cl 1.51 [0.36, 6.34] 0.85 [0.36, 2.02] 0.84 [0.48, 1.48] 4.94 [0.20, 121.38] 5.99 [0.24, 148.00] 0.96 [0.62, 1.48] 1.32 [0.94, 1.85] 5.54 [3.83, 8.00] 1.54 [1.04, 2.27] 0.91 [0.47, 1.76] 11.20 [0.69, 181.78] 2.02 [0.95, 4.30]	Odds Ratio IV. Random. 95% CI
Test for subaroub diffe Study or Subgroup 1.7.1 NOS = 6~7 Hastings 1986 Sweet 1987 Regan 1996 Garland 2000 Zhang 2017 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = Test for overall effect: 1.7.2 NOS = 8~9 Seale 2016 Yadeta 2018 Zhu 2019 Chen 2023 Zhou 2023 Subtotal (95% Cl) Total events Heterogeneity: Tau ² =	$\begin{array}{c} 2 = 1.70 \text{ (f} \\ \hline \text{erences: Cl} \\ \hline \text{GBS (} \\ \hline \text{Events} \\ \end{array} \\ \begin{array}{c} 3 \\ 6 \\ 15 \\ 1 \\ 1 \\ 26 \\ 0.00; \text{Chi}^2 \\ \text{Z} = 0.19 \text{ (f} \\ \hline \text{Z} = 0.19 \text{ (f} \\ \frac{41}{59} \\ 32 \\ 10 \\ 1 \\ 143 \\ 0.58; \text{Chi}^2 \text{ Chi}^2 \end{array}$	$\begin{array}{r} 3.38\\ 4.78\\ 2.663\\ 5.83\\ 1.35\\ 4.197\\ = 2.91, 0\\ 2.31\\ 6.933\\ 5.502\\ 5.1\\ 1.3651\\ = 4.3.91\end{array}$	2. df = 1 (GBS Events 5 42 67 0 0 114 df = 4 (P 237 85 129 71 1 523 df = 4 (F	P = 0.06 (-) Total 846 2863 10038 958 268 14973 = 0.57); F 7033 1457 42975 35403 561 87429 2 < 0.0000	 l² = 72.2 Weight 7.8% 11.7% 13.8% 2.6% 2.6% 38.5% ² = 0% 15.2% 15.0% 14.9% 13.1% 3.2% 61.5% 01): l² = 92 	% Odds Ratio IV. Random, 95% Cl 1.51 [0.36, 6.34] 0.85 [0.36, 2.02] 0.84 [0.48, 1.48] 4.94 [0.20, 121.38] 5.99 [0.24, 148.00] 0.96 [0.62, 1.48] 1.32 [0.94, 1.85] 5.54 [3.83, 8.00] 1.54 [1.04, 2.27] 0.91 [0.47, 1.76] 11.20 [0.69, 181.78] 2.02 [0.95, 4.30]	Odds Ratio IV. Random, 95% Cl
Test for subaroub diffe Study or Subgroup 1.7.1 NOS = 6~7 Hastings 1986 Sweet 1987 Regan 1996 Garland 2000 Zhang 2017 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = Test for overall effect: 1.7.2 NOS = 8~9 Seale 2016 Yadeta 2018 Zhu 2019 Chen 2023 Zhou 2023 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = Test for overall effect:	2 = 1.70 (r prences: Cl GBS (Events 3 6 15 1 1 26 0.00; Chi ² Z = 0.19 (F 41 59 32 10 1 143 0.58; Chi ² Z = 1.82 (F	(+) Total 338 478 2663 583 135 4197 = 2.91, c = 2.91, c = 0.85 934 231 6933 5502 51 13651 = 43.91, P = 0.07	9. df = 1 (GBS Events 5 42 67 0 0 114 df = 4 (P 237 85 129 71 1 523 df = 4 (F	P = 0.06 (-) Total 846 2863 10038 958 268 14973 = 0.57); F 7033 1457 42975 35403 561 87429 P < 0.0000	 l² = 72.2 Weight 7.8% 11.7% 13.8% 2.6% 2.6% 38.5% ² = 0% 15.2% 15.0% 14.9% 13.1% 3.2% 61.5% 01); l² = 9² 	% Odds Ratio IV, Random, 95% Cl 1.51 [0.36, 6.34] 0.85 [0.36, 2.02] 0.84 [0.48, 1.48] 4.94 [0.20, 121.38] 5.99 [0.24, 148.00] 0.96 [0.62, 1.48] 1.32 [0.94, 1.85] 5.54 [3.83, 8.00] 1.54 [1.04, 2.27] 0.91 [0.47, 1.76] 11.20 [0.69, 181.78] 2.02 [0.95, 4.30]	Odds Ratio IV. Random, 95% Cl
Test for subaroub diffe Study or Subgroup 1.7.1 NOS = 6~7 Hastings 1986 Sweet 1987 Regan 1996 Garland 2000 Zhang 2017 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.7.2 NOS = 8~9 Seale 2016 Yadeta 2018 Zhu 2019 Chen 2023 Zhou 2023 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: Total events Heterogeneity: Tau ² = Test for overall effect:	$\begin{array}{c} 2 = 1.70 \text{ (f} \\ \hline \text{erences: Cl} \\ \hline \text{GBS (} \\ \hline \text{Events} \\ \end{array} \\ \begin{array}{c} 3 \\ 6 \\ 15 \\ 1 \\ 1 \\ 26 \\ 0.00; \text{Chi}^2 \\ Z = 0.19 \text{ (F} \\ \end{array} \\ \begin{array}{c} 41 \\ 59 \\ 32 \\ 10 \\ 1 \\ 143 \\ 0.58; \text{Chi}^2 \\ Z = 1.82 \text{ (F} \end{array} \end{array}$	(+) Total 338 478 2663 583 135 4197 = 2.91, (= 2.91, (= 0.85) 934 231 6933 5502 51 13651 = 43.91, = 0.07) 17849	9. df = 1 (GBS Events 5 42 67 0 0 114 df = 4 (P 237 85 129 71 1 523 df = 4 (F	P = 0.06 (-) Total 846 2863 10038 958 268 14973 = 0.57); I' 7033 1457 42975 35403 561 87429 P < 0.0000	 1² = 72.2 Weight 7.8% 11.7% 13.8% 2.6% 2.6% 38.5% ² = 0% 15.2% 15.0% 14.9% 13.1% 3.2% 61.5% 01); l² = 9² 	% Odds Ratio IV. Random, 95% CI 1.51 [0.36, 6.34] 0.85 [0.36, 2.02] 0.84 [0.48, 1.48] 4.94 [0.20, 121.38] 5.99 [0.24, 148.00] 0.96 [0.62, 1.48] 1.32 [0.94, 1.85] 5.54 [3.83, 8.00] 1.54 [1.04, 2.27] 0.91 [0.47, 1.76] 11.20 [0.69, 181.78] 2.02 [0.95, 4.30] 1%	Odds Ratio IV, Random, 95% Cl
Test for subaroub diffe Study or Subgroup 1.7.1 NOS = 6~7 Hastings 1986 Sweet 1987 Regan 1996 Garland 2000 Zhang 2017 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.7.2 NOS = 8~9 Seale 2016 Yadeta 2018 Zhu 2019 Chen 2023 Zhou 2023 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: Total events Heterogeneity: Tau ² = Test for overall effect: Total (95% CI)	$\begin{array}{c} 2 = 1.70 \text{ (f} \\ \hline \text{erences: Cl} \\ \hline \text{GBS (} \\ \hline \text{Events} \\ \end{array} \\ \begin{array}{c} 3 \\ 6 \\ 15 \\ 1 \\ 1 \\ 26 \\ 0.00; \text{Chi}^2 \\ \text{Z} = 0.19 \text{ (f} \\ \hline \text{Z} = 0.19 \text{ (f} \\ 10 \\ 1 \\ 143 \\ 0.58; \text{Chi}^2 \\ \text{Z} = 1.82 \text{ (f} \\ \end{array} \end{array}$	(+) Total 338 478 2663 583 135 4197 = 2.91, (= 2.91, (= 0.85) 934 231 6933 5502 51 13651 = 43.91, = 0.07) 17848	9. df = 1 (GBS Events 5 42 67 0 0 114 df = 4 (P 237 85 129 71 1 523 df = 4 (F	P = 0.06 (-) Total 846 2863 10038 958 268 14973 = 0.57); F 7033 1457 42975 35403 561 87429 P < 0.0000 102402	 l² = 72.2 Weight 7.8% 11.7% 13.8% 2.6% 2.6% 38.5% ² = 0% 15.2% 15.0% 14.9% 13.1% 3.2% 61.5% D1); l² = 9⁻¹ 100.0% 	% Odds Ratio IV. Random, 95% CI 1.51 [0.36, 6.34] 0.85 [0.36, 2.02] 0.84 [0.48, 1.48] 4.94 [0.20, 121.38] 5.99 [0.24, 148.00] 0.96 [0.62, 1.48] 1.32 [0.94, 1.85] 5.54 [3.83, 8.00] 1.54 [1.04, 2.27] 0.91 [0.47, 1.76] 11.20 [0.69, 181.78] 2.02 [0.95, 4.30] 1% 1.66 [0.95, 2.91]	Odds Ratio IV, Random, 95% Cl
Test for subaroub diffe Study or Subgroup 1.7.1 NOS = 6~7 Hastings 1986 Sweet 1987 Regan 1996 Garland 2000 Zhang 2017 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = Test for overall effect: 1.7.2 NOS = 8~9 Seale 2016 Yadeta 2018 Zhu 2019 Chen 2023 Zhou 2023 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = Test for overall effect: Total events Heterogeneity: Tau ² = Test for overall effect:	$\begin{array}{c} 2 = 1.70 \text{ (f} \\ \hline \text{erences: Cl} \\ \hline \text{GBS} \\ \hline \text{Events} \\ \hline \end{array} \\ \begin{array}{c} 3 \\ 6 \\ 15 \\ 1 \\ 1 \\ 26 \\ 0.00; \text{Chi}^2 \\ Z = 0.19 \text{ (f} \\ \hline \end{array} \\ \begin{array}{c} 41 \\ 59 \\ 32 \\ 10 \\ 1 \\ 143 \\ 0.58; \text{Chi}^2 \\ Z = 1.82 \text{ (f} \\ Z = 1.82 \text{ (f} \\ 169 \\ 0.541 \text{ (f} \\ 2 \end{bmatrix} \end{array}$	(+) Total 338 478 2663 583 135 4197 = 2.91, (= 2.91, (= 0.85) 934 231 6933 5502 51 13651 = 43.91, = 0.07) 17848 = 50.07	$\begin{array}{l} \text{Or } \text{df} = 1 \text{ (} \\ \text{GBS} \\ \hline \text{Events} \\ 5 \\ 42 \\ 67 \\ 0 \\ 0 \\ 114 \\ \text{df} = 4 \text{ (P} \\ 237 \\ 85 \\ 129 \\ 71 \\ 1 \\ 523 \\ \text{df} = 4 \text{ (F} \\ 637 \\ \text{df} = 4 \text{ (F} \\ 637 \\ \text{df} = 0 \text{ (} \end{array}$	P = 0.06 (-) Total 846 2863 10038 958 268 14973 = 0.57); F 7033 1457 42975 35403 561 87429 P < 0.0000 102402	 l² = 72.2 Weight 7.8% 11.7% 13.8% 2.6% 2.6% 38.5% ² = 0% 15.2% 15.0% 14.9% 13.1% 3.2% 61.5% D1); l² = 97 100.0% 	% Odds Ratio IV. Random, 95% CI 1.51 [0.36, 6.34] 0.85 [0.36, 2.02] 0.84 [0.48, 1.48] 4.94 [0.20, 121.38] 5.99 [0.24, 148.00] 0.96 [0.62, 1.48] 1.32 [0.94, 1.85] 5.54 [3.83, 8.00] 1.54 [1.04, 2.27] 0.91 [0.47, 1.76] 11.20 [0.69, 181.78] 2.02 [0.95, 4.30] 1% 1.66 [0.95, 2.91]	Odds Ratio IV. Random, 95% CI
Test for subaroub diffe Study or Subgroup 1.7.1 NOS = 6~7 Hastings 1986 Sweet 1987 Regan 1996 Garland 2000 Zhang 2017 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = Test for overall effect: 1.7.2 NOS = 8~9 Seale 2016 Yadeta 2018 Zhu 2019 Chen 2023 Zhou 2023 Subtotal (95% Cl) Total events Heterogeneity: Tau ² = Test for overall effect: Total (95% Cl) Total events Heterogeneity: Tau ² = Test for overall effect: Total events Heterogeneity: Tau ² = Test for overall effect:	3 6 Events 3 6 15 1 1 26 0.00; Chi ² Z = 0.19 (F 41 59 32 10 1 143 0.58; Chi ² Z = 1.82 (F 169 0.51; Chi ² Z = 7.70	(+) Total 338 478 2663 583 135 4197 = 2.91, (= 2.91, (= 0.85) 934 231 6933 5502 51 13651 = 43.91, = 0.07) 17848 = 56.35,	9. df = 1 (GBS Events 5 42 67 0 0 114 df = 4 (P 237 85 129 71 1 523 df = 4 (F 637 df = 9 (F	P = 0.06 (-) Total 846 2863 10038 958 268 14973 = 0.57); F 7033 1457 42975 35403 561 87429 P < 0.0000 102402 P < 0.0000	 l² = 72.2 Weight 7.8% 11.7% 13.8% 2.6% 2.6% 38.5% ² = 0% 15.2% 15.0% 14.9% 13.1% 3.2% 61.5% D1); l² = 9² 100.0% D1); l² = 8⁴ 	% Odds Ratio IV. Random, 95% CI 1.51 [0.36, 6.34] 0.85 [0.36, 2.02] 0.84 [0.48, 1.48] 4.94 [0.20, 121.38] 5.99 [0.24, 148.00] 0.96 [0.62, 1.48] 1.32 [0.94, 1.85] 5.54 [3.83, 8.00] 1.54 [1.04, 2.27] 0.91 [0.47, 1.76] 11.20 [0.69, 181.78] 2.02 [0.95, 4.30] 1% 1.66 [0.95, 2.91]	Odds Ratio IV. Random, 95% CI
Test for suboroub diffe Study or Subgroup 1.7.1 NOS = 6~7 Hastings 1986 Sweet 1987 Regan 1996 Garland 2000 Zhang 2017 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: 1.7.2 NOS = 8~9 Seale 2016 Yadeta 2018 Zhu 2019 Chen 2023 Zhou 2023 Subtotal (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: Total (95% CI) Total events Heterogeneity: Tau ² = Test for overall effect: Total events Heterogeneity: Tau ² = Test for overall effect: Test for subgroup diffe	$\begin{array}{c} 2 = 1.76 \ (\text{if} \\ \text{Prences: Cl} \\ \text{GBS} \\ \text{Events} \\ \end{array}$ $\begin{array}{c} 3 \\ 6 \\ 15 \\ 1 \\ 1 \\ 26 \\ 0.00; \ \text{Chi}^2 \\ \text{Z} = 0.19 \ (\text{F} \\ 2 \\ \text{Z} = 0.19 \ (\text{F} \\ 10 \\ 1 \\ 143 \\ 0.58; \ \text{Chi}^2 \\ \text{Z} = 1.82 \ (\text{F} \\ 169 \\ 0.51; \ \text{Chi}^2 \\ \text{Z} = 1.76 \ (\text{F} \\ 2 \\ \text{Z} = 1.76 \ (\text{F} \\ 169 \\ \text{Chi}^2 \\ \text{Z} = 1.76 \ (\text{F} \\ 169 \\ \text{Chi}^2 \\ \text{Z} = 1.76 \ (\text{F} \\ \text{Chi}^2 \\ \text{Z} = 1.76 \ (\text{F} \\ \text{Chi}^2 \\ $	$\begin{array}{r} 338\\ 478\\ 2663\\ 583\\ 135\\ 4197\\ = 2.91, (2)\\ 934\\ 231\\ 6933\\ 5502\\ 51\\ 13651\\ = 43.91, (2)\\ = 0.07\\ 17848\\ = 56.35, (2)\\ = 0.08\\ (3)\\ = 0.07\\ 17848\\ = 56.35, (2)\\ = 0.08\\ (3)\\ = 0.$	9. $df = 1$ (GBS Events 5 42 67 0 0 114 df = 4 (P 237 85 129 71 1 523 df = 4 (F 637 df = 9 (F 1 df = 1	P = 0.06 (-) Total 846 2863 10038 958 268 14973 = 0.57); I' 7033 1457 42975 35403 561 87429 P < 0.0000 102402 P < 0.0000 P = 0.000	 1² = 72.2 Weight 7.8% 11.7% 13.8% 2.6% 2.6% 38.5% ² = 0% 15.2% 15.0% 14.9% 13.1% 3.2% 61.5% 01); 1² = 9² 100.0% 01); 1² = 84 	% Odds Ratio IV. Random, 95% Cl 1.51 [0.36, 6.34] 0.85 [0.36, 2.02] 0.84 [0.48, 1.48] 4.94 [0.20, 121.38] 5.99 [0.24, 148.00] 0.96 [0.62, 1.48] 1.32 [0.94, 1.85] 5.54 [3.83, 8.00] 1.54 [1.04, 2.27] 0.91 [0.47, 1.76] 11.20 [0.69, 181.78] 2.02 [0.95, 4.30] 1% 1.66 [0.95, 2.91] 4%	Odds Ratio IV, Random, 95% Cl

Figure 5 Forest plots for subgroup analyses of the association between maternal rectovaginal GBS colonization and the risk of stillbirth. (A) Subgroup analysis according to analytic model for the association between GBS colonization and the risk of stillbirth; (B) subgroup analysis according to the NOS scores of the included studies. GBS, group B streptococcus; OR indicates the odds of stillbirth associated with maternal GBS colonization; values greater than 1 suggest increased risk, whereas values less than 1 indicate a reduced risk.

Full-size DOI: 10.7717/peerj.18834/fig-5

compromise placental function, impairing blood flow and oxygen delivery to the fetus, ultimately leading to fetal distress and demise (*Jain et al., 2022*). Moreover, GBS colonization may induce mechanical stress on the membranes and placenta, thereby weakening their structural integrity (*Surve et al., 2016*). This could lead to premature rupture of membranes (PROM), a known risk factor for preterm labor and stillbirth (*Regan, Chao & James, 1981*). The inflammatory process can also trigger uterine contractions, further increasing the risk of preterm birth and related complications. The fetal response to maternal GBS colonization is critical, as the developing fetus is particularly vulnerable to maternal inflections (*Kumar, Saadaoui & Al Khodor, 2022*). The inflammatory markers can result in fetal heart rate abnormalities and reduced fetal movements, ultimately contributing to fetal demise in severe cases (*Goldstein et al., 2020*).

The sensitivity analyses performed in this meta-analysis yielded a significant association in studies in which all women received IAP. This finding underscores the importance of contextual factors when evaluating the risk of stillbirth in the presence of GBS colonization. The subgroup analysis also highlighted significant associations between maternal rectovaginal GBS colonization and stillbirth risk in retrospective studies and in studies employing multivariate analyses controlling for maternal age and parity. These findings suggest that the context of GBS colonization—such as the use of IAP and study design—can significantly influence the observed associations and may provide insights into the mechanisms linking GBS colonization to stillbirth. While this meta-analysis provides valuable insights into the association between maternal rectovaginal GBS colonization and stillbirth risk, significant heterogeneity was observed. Several factors may contribute to this heterogeneity, including variations in study design and population characteristics, such as geographic location and socioeconomic status, which can influence GBS colonization rates and outcomes. Methodological differences, including the timing and type of specimens used for GBS assessment, as well as the definitions and reporting of stillbirth, may also introduce discrepancies. The use of IAP in some studies could further complicate the relationship between GBS colonization and stillbirth. Additionally, differences in statistical analysis techniques and adjustments for confounding factors may lead to varying effect estimates. To mitigate these sources of heterogeneity in future research, it is essential to adopt standardized protocols for GBS screening and stillbirth definitions, along with robust statistical methods to control for potential confounders. Exploring the impact of GBS genotypes and their associated virulence factors on stillbirth risk could also enhance understanding of this complex relationship.

Despite the lack of significant results in the overall analysis, the strengths of this meta-analysis include a comprehensive literature search across multiple databases, ensuring a broad representation of available studies, and the incorporation of sensitivity analyses that provide insights into how different factors influence the results. However, several limitations must be acknowledged. First, six of the included studies were retrospective, which may be prone to recall and selection biases (Talari & Goyal, 2020). These biases could lead to overestimation or underestimation of the association between GBS colonization and stillbirth, particularly if data on key confounding factors, such as maternal comorbidities or socioeconomic status, were incomplete. Future studies employing prospective designs and rigorous data collection methods are needed to reduce such biases. Second, variability in population characteristics, definitions of stillbirth, and methods for assessing GBS colonization (vaginal vs. rectovaginal swabs) likely contributed to heterogeneity in the results. This heterogeneity may have attenuated the observed association. Standardized definitions and protocols for evaluating GBS colonization should be adopted to enhance comparability across studies. Besides, genotypic variations in GBS may play a role in its pathogenicity and association with adverse pregnancy outcomes, including stillbirth. Specific GBS serotypes, such as Ia, Ib, and III, have been linked to increased virulence and invasive disease in neonates (Huebner et al., 2022; Liu & Ai, 2024). These differences could influence the inflammatory response, placental invasion, or fetal immune tolerance, potentially exacerbating the risk of stillbirth. However, none of the included studies in this meta-analysis provided genotypic data, limiting our ability to explore this factor further. Future studies should investigate the impact of GBS genotypes on pregnancy outcomes to better understand these mechanisms and refine prevention strategies. Moreover, the observational nature of the included studies precludes causal inferences. Residual confounding, even in studies employing multivariate analyses, may have influenced the findings. This could result in either overestimation (if unmeasured confounders are positively associated with both GBS colonization and stillbirth) or underestimation (if key protective factors were not accounted for). Large-scale studies with individual participant data meta-analyses could help overcome this limitation by enabling more precise adjustments for confounders. Lastly, the low event rate of stillbirth in most included studies may have reduced statistical power, potentially leading to an underestimation of the association. Collaborative studies pooling data from multiple centers or regions could increase the sample size and improve statistical precision.

Although the overall analysis did not reveal a strong association between GBS colonization and stillbirth, the significant associations observed in specific subgroups may provide useful information when conducting future studies. For example, the influence of IAP use, study design, and possible confounding factors should be considered when designing future studies for an evaluation of the association between maternal rectovaginal GBS colonization and stillbirth. In addition, understanding the mechanisms by which GBS colonization may contribute to adverse pregnancy outcomes could guide future research and clinical practices aimed at mitigating these risks.

CONCLUSIONS

In conclusion, while this meta-analysis did not establish a statistically significant association between maternal rectovaginal GBS colonization and stillbirth, the underlying pathophysiological mechanisms underscore the complexity of this relationship. The potential for GBS to induce inflammatory responses, disrupt the vaginal microbiome, and compromise placental integrity suggests that it may still pose a risk for adverse outcomes in certain contexts. Further research should focus on identifying and mitigating risk factors associated with GBS colonization, particularly in high-risk populations, to improve maternal and fetal health outcomes. Understanding these mechanisms will be critical for developing interventions that can enhance pregnancy outcomes, especially for vulnerable populations. Future studies should aim to address the limitations identified in this meta-analysis and explore the interplay between GBS colonization, IAP, possible confounding factors, and stillbirth risk in greater detail.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The authors received no funding for this work.

Competing Interests

The authors declare that they have no competing interests.

Author Contributions

- Yujue Wang conceived and designed the experiments, performed the experiments, prepared figures and/or tables, authored or reviewed drafts of the article, and approved the final draft.
- Jingjing Liu performed the experiments, authored or reviewed drafts of the article, and approved the final draft.
- Jinlian Song analyzed the data, prepared figures and/or tables, and approved the final draft.

• Teng Zhang conceived and designed the experiments, authored or reviewed drafts of the article, and approved the final draft.

Data Availability

The following information was supplied regarding data availability: This is a systematic review/meta-analysis.

Supplemental Information

Supplemental information for this article can be found online at http://dx.doi.org/10.7717/ peerj.18834#supplemental-information.

REFERENCES

- Afsari M, White A, Adhikari EH. 2024. Group B Streptococcus and intraamniotic inflammation and infection. *Clinical Obstetrics & Gynecology* 67(3):576–588 DOI 10.1097/GRF.0000000000884.
- Bianchi-Jassir F, Seale AC, Kohli-Lynch M, Lawn JE, Baker CJ, Bartlett L, Cutland C, Gravett MG, Heath PT, Ip M, Le Doare K, Madhi SA, Saha SK, Schrag S, Sobanjo-Ter Meulen A, Vekemans J, Rubens CE. 2017. Preterm birth associated with group B Streptococcus maternal colonization worldwide: systematic review and meta-analyses. *Clinical Infectious Diseases* 65(suppl_2):S133–S142 DOI 10.1093/cid/cix661.
- Chen X, Cao S, Fu X, Ni Y, Huang B, Wu J, Chen L, Huang S, Cao J, Yu W, Ye H. 2023. The risk factors for group B Streptococcus colonization during pregnancy and influences of intrapartum antibiotic prophylaxis on maternal and neonatal outcomes. *BMC Pregnancy and Childbirth* 23:207 DOI 10.1186/s12884-023-05478-9.
- Conde-Agudelo A, Romero R, Jung EJ, Garcia Sánchez ÁJ. 2020. Management of clinical chorioamnionitis: an evidence-based approach. *American Journal of Obstetrics and Gynecology* 223(6):848–869 DOI 10.1016/j.ajog.2020.09.044.
- Dotters-Katz SK, Kuller J, Heine RP, Wheeler SM. 2022. Group B Streptococcus and pregnancy: critical concepts and management nuances. *Obstetrical & Gynecological Survey* 77(12):753–762 DOI 10.1097/OGX.00000000001092.
- Egger M, Davey Smith G, Schneider M, Minder C. 1997. Bias in meta-analysis detected by a simple, graphical test. *BMJ* 315(7109):629–634 DOI 10.1136/bmj.315.7109.629.
- Escañuela Sánchez T, Meaney S, O.'Donoghue K. 2019. Modifiable risk factors for stillbirth: a literature review. *Midwifery* **79(239)**:102539 DOI 10.1016/j.midw.2019.102539.
- Furfaro LL, Chang BJ, Payne MS. 2018. Perinatal streptococcus agalactiae epidemiology and surveillance targets. *Clinical Microbiology Reviews* 31(4):1 DOI 10.1128/CMR.00049-18.
- Gardosi J, Madurasinghe V, Williams M, Malik A, Francis A. 2013. Maternal and fetal risk factors for stillbirth: population based study. *BMJ* 346:f108 DOI 10.1136/bmj.f108.
- Garland SM, Kelly N, Ugoni AM. 2000. Is antenatal group B streptococcal carriage a predictor of adverse obstetric outcome? *Infectious Diseases in Obstetrics and Gynecology* 8:138–142 DOI 10.1002/(ISSN)1098-0997.
- Goldstein JA, Gallagher K, Beck C, Kumar R, Gernand AD. 2020. Maternal-fetal inflammation in the placenta and the developmental origins of health and disease. *Frontiers in Immunology* 11:531543 DOI 10.3389/fimmu.2020.531543.

- Hastings MJ, Easmon CS, Neill J, Bloxham B, Rivers RP. 1986. Group B streptococcal colonisation and the outcome of pregnancy. *Journal of Infection* 12(1):23–29 DOI 10.1016/S0163-4453(86)94775-4.
- Higgins J, Thomas J, Chandler J, Cumpston M, Li T, Page M, Welch V. 2021. Cochrane Handbook for Systematic Reviews of Interventions version 6.2. In: *The Cochrane Collaboration*. London UK: Wiley Press.
- Higgins JP, Thompson SG. 2002. Quantifying heterogeneity in a meta-analysis. *Statistics in Medicine* 21(11):1539–1558 DOI 10.1002/sim.1186.
- Huebner EM, Gudjónsdóttir MJ, Dacanay MB, Nguyen S, Brokaw A, Sharma K, Elfvin A, Hentz E, Rivera YR, Burd N, Shivakumar M, Coler B, Li M, Li A, Munson J, Orvis A, Coleman M, Jacobsson B, Rajagopal L, Adams Waldorf KM. 2022. Virulence, phenotype and genotype characteristics of invasive group B Streptococcus isolates obtained from Swedish pregnant women and neonates. *Annals of Clinical Microbiology and Antimicrobials* 21(1):43 DOI 10.1186/s12941-022-00534-2.
- Hug L, You D, Blencowe H, Mishra A, Wang Z, Fix MJ, Wakefield J, Moran AC, Gaigbe-Togbe V, Suzuki E, Blau DM, Cousens S, Creanga A, Croft T, Hill K, Joseph KS, Maswime S, McClure EM, Pattinson R, Pedersen J, Smith LK, Zeitlin J, Alkema L. 2021. Global, regional, and national estimates and trends in stillbirths from 2000 to 2019: a systematic assessment. *Lancet* 398(10302):772–785 DOI 10.1016/S0140-6736(21)01112-0.
- Jain VG, Willis KA, Jobe A, Ambalavanan N. 2022. Chorioamnionitis and neonatal outcomes. Pediatric Research 91(2):289–296 DOI 10.1038/s41390-021-01633-0.
- Kumar M, Saadaoui M, Al Khodor S. 2022. Infections and pregnancy: effects on maternal and child health. *Frontiers in Cellular and Infection Microbiology* 12:873253 DOI 10.3389/fcimb.2022.873253.
- Lawn JE, Blencowe H, Waiswa P, Amouzou A, Mathers C, Hogan D, Flenady V, Frøen JF, Qureshi ZU, Calderwood C, Shiekh S, Jassir FB, You D, McClure EM, Mathai M, Cousens S. 2016. Stillbirths: rates, risk factors, and acceleration towards 2030. *Lancet* 387(10018):587–603 DOI 10.1016/S0140-6736(15)00837-5.
- Liu Y, Ai H. 2024. Current research update on group B streptococcal infection related to obstetrics and gynecology. *Frontiers in Pharmacology* 15:1395673 DOI 10.3389/fphar.2024.1395673.
- McClure EM, Silver RM, Kim J, Ahmed I, Kallapur M, Ghanchi N, Nagmoti MB, Dhaded S, Aceituno A, Tikmani SS, Saleem S, Guruprasad G, Goudar SS, Goldenberg RL. 2022. Maternal infection and stillbirth: a review. *The Journal of Maternal-Fetal & Neonatal Medicine* 35(23):4442–4450 DOI 10.1080/14767058.2020.1852206.
- Mei JY, Silverman NS. 2023. Group B Streptococcus in pregnancy. Obstetrics and Gynecology Clinics of North America 50(2):375–387 DOI 10.1016/j.ogc.2023.02.009.
- Ohlsson A, Shah VS. 2014. Intrapartum antibiotics for known maternal group B streptococcal colonization. *Cochrane Database of Systematic Reviews: CD007467* 2016(8):280A DOI 10.1002/14651858.CD007467.pub4.
- Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hrobjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D. 2021a. The PRISMA, 2020 statement: an updated guideline for reporting systematic reviews. *BMJ* 372(n71):n71 DOI 10.1136/bmj.n71.
- Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hrobjartsson A,

Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, McKenzie JE. 2021b. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. *BMJ* 372: n160 DOI 10.1136/bmj.n160.

- Page JM, Silver RM. 2020. Stillbirth: evaluation and follow-up. Obstetrics and Gynecology Clinics of North America 47(3):439–451 DOI 10.1016/j.ogc.2020.04.008.
- Patras KA, Nizet V. 2018. Group B streptococcal maternal colonization and neonatal disease: molecular mechanisms and preventative approaches. *Frontiers in Pediatrics* 6:27 DOI 10.3389/fped.2018.00027.
- Puopolo KM, Lynfield R, Cummings JJ. 2019. Management of infants at risk for group B streptococcal disease. *Pediatrics* 144(2):e20191881 DOI 10.1542/peds.2019-1881.
- Regan JA, Chao S, James LS. 1981. Premature rupture of membranes, preterm delivery, and group B streptococcal colonization of mothers. *American Journal of Obstetrics and Gynecology* 141(2):184–186 DOI 10.1016/S0002-9378(16)32589-3.
- Regan JA, Klebanoff MA, Nugent RP, Eschenbach DA, Blackwelder WC, Lou Y, Gibbs RS, Rettig PJ, Martin DH, Edelman R. 1996. Colonization with group B streptococci in pregnancy and adverse outcome. VIP study group. American Journal of Obstetrics and Gynecology 174(4):1354–1360 DOI 10.1016/S0002-9378(96)70684-1.
- Russell NJ, Seale AC, O'Driscoll M, O'Sullivan C, Bianchi-Jassir F, Gonzalez-Guarin J, Lawn JE, Baker CJ, Bartlett L, Cutland C, Gravett MG, Heath PT, Le Doare K, Madhi SA, Rubens CE, Schrag S, Sobanjo-Ter Meulen A, Vekemans J, Saha SK, Ip M. 2017. Maternal colonization with group B Streptococcus and serotype distribution worldwide systematic review and metaanalyses. *Clinical Infectious Diseases* 65(suppl_2):S100–S111 DOI 10.1093/cid/cix658.
- Seale AC, Bianchi-Jassir F, Russell NJ, Kohli-Lynch M, Tann CJ, Hall J, Madrid L, Blencowe H, Cousens S, Baker CJ, Bartlett L, Cutland C, Gravett MG, Heath PT, Ip M, Le Doare K, Madhi SA, Rubens CE, Saha SK, Schrag SJ, Sobanjo-Ter Meulen A, Vekemans J, Lawn JE. 2017. Estimates of the burden of group B streptococcal disease worldwide for pregnant women, stillbirths, and children. *Clinical Infectious Diseases* 65(suppl_2):S200–S219 DOI 10.1093/cid/cix664.
- Seale AC, Koech AC, Sheppard AE, Barsosio HC, Langat J, Anyango E, Mwakio S, Mwarumba S, Morpeth SC, Anampiu K, Vaughan A, Giess A, Mogeni P, Walusuna L, Mwangudzah H, Mwanzui D, Salim M, Kemp B, Jones C, Mturi N, Tsofa B, Mumbo E, Mulewa D, Bandika V, Soita M, Owiti M, Onzere N, Walker AS, Schrag SJ, Kennedy SH, Fegan G, Crook DW, Berkley JA. 2016. Maternal colonization with Streptococcus agalactiae and associated stillbirth and neonatal disease in coastal Kenya. *Nature Microbiology* 1(7):16067 DOI 10.1038/nmicrobiol.2016.67.
- Silver RM, Reddy U. 2024. Stillbirth: we can do better. *American Journal of Obstetrics and Gynecology* 231(2):152–165 DOI 10.1016/j.ajog.2024.05.042.
- Smith GC, Fretts RC. 2007. Stillbirth. *Lancet* 370(9600):1715–1725 DOI 10.1016/S0140-6736(07)61723-1.
- Surve MV, Anil A, Kamath KG, Bhutda S, Sthanam LK, Pradhan A, Srivastava R, Basu B, Dutta S, Sen S, Modi D, Banerjee A. 2016. Membrane vesicles of group B Streptococcus disrupt feto-maternal barrier leading to preterm birth. *PLOS Pathogens* 12(9):e1005816 DOI 10.1371/journal.ppat.1005816.
- Sweet RL, Landers DV, Walker C, Schachter J. 1987. Chlamydia trachomatis infection and pregnancy outcome. American Journal of Obstetrics and Gynecology 156(4):824–833 DOI 10.1016/0002-9378(87)90338-3.

- Talari K, Goyal M. 2020. Retrospective studies-utility and caveats. *Journal of the Royal College of Physicians of Edinburgh* **50(4)**:398–402 DOI 10.4997/jrcpe.2020.409.
- Vadeboncoeur N, Segura M, Al-Numani D, Vanier G, Gottschalk M. 2003. Pro-inflammatory cytokine and chemokine release by human brain microvascular endothelial cells stimulated by Streptococcus suis serotype 2. *FEMS Immunology & Medical Microbiology* 35(1):49–58 DOI 10.1111/j.1574-695X.2003.tb00648.x.
- van Kassel MN, Janssen SWCM, Kofman S, Brouwer MC, van de Beek D, Bijlsma MW. 2021. Prevalence of group B streptococcal colonization in the healthy non-pregnant population: a systematic review and meta-analysis. *Clinical Microbiology and Infection* 27(7):968–980 DOI 10.1016/j.cmi.2021.03.024.
- Vornhagen J, Adams Waldorf KM, Rajagopal L. 2017. Perinatal group B streptococcal infections: virulence factors, immunity, and prevention strategies. *Trends in Microbiology* 25(11):919–931 DOI 10.1016/j.tim.2017.05.013.
- Wells GA, Shea B, O'Connell D, Peterson J, Welch V, Losos M, Tugwell P. 2010. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in metaanalyses. Available at http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp.
- Yadeta TA, Worku A, Egata G, Seyoum B, Marami D, Berhane Y. 2018. Maternal group B Streptococcus recto vaginal colonization increases the odds of stillbirth: evidence from Eastern Ethiopia. *BMC Pregnancy and Childbirth* 18(1):410 DOI 10.1186/s12884-018-2044-2.
- Yuan XY, Liu HZ, Liu JF, Sun Y, Song Y. 2021. Pathogenic mechanism, detection methods and clinical significance of group B Streptococcus. *Future Microbiology* 16(9):671–685 DOI 10.2217/fmb-2020-0189.
- Zhang MJ, Lu HP, Yuan TM. 2017. Effects of late-stage group B Streptococcus colonization on mothers and newborns. *Chinese Journal of Neonatology* 32:365–367 DOI 10.3760/cma.j.issn.2096-2932.2017.05.010.
- Zhou KX, Mou YL. 2023. A study on the correlation between group B Streptococcus screening and typing in the reproductive tract of pregnant women and pregnancy outcomes. *Chinese Journal of Clinical Obstetrics and Gynecology* 24:530–531 DOI 10.13390/j.issn.1672-1861.2023.05.029.
- Zhu Y, Huang J, Lin XZ, Chen C. 2019. Group B Streptococcus colonization in late pregnancy and invasive infection in neonates in China: a population-based 3-Year study. *Neonatology* 115(4):301–309 DOI 10.1159/000494133.