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A continuing challenge in validating electrocardiographic imaging (ECGI) is the persistent

error in the associated forward problem observed in experimental studies. One possible

cause of this error is insufficient representation of the cardiac sources; cardiac source

measurements often sample only the ventricular epicardium, ignoring the endocardium

and the atria. We hypothesize that measurements that completely cover the pericardial

surface are required for accurate forward solutions. In this study, we used simulated and

measured cardiac potentials to test the effect of different levels of spatial source sampling

on the forward simulation. Not surprisingly, increasing the source sampling over the atria

reduced the average error of the forward simulations, but some sampling strategies were

more effective than others. Uniform and random distributions of samples across the atrial

surface were themost efficient strategies in terms of lowest error with the fewest sampling

locations, whereas “single direction” strategies, i.e., adding to the atrioventricular (AV)

plane or atrial roof only, were the least efficient. Complete sampling of the atria is needed

to eliminate errors from missing cardiac sources, but while high density sampling that

covers the entire atria yields the best results, adding as few as 11 electrodes on the

atria can significantly reduce these errors. Future validation studies of the ECG forward

simulations should use a cardiac source sampling that takes these considerations into

account, which will, in turn, improve validation and understanding of ECGI.

Keywords: ECG imaging, ECG forward simulation, cardiac source sampling, epicardial potentials, body-surface

potentials

1. INTRODUCTION

Electrocardiographic Imaging (ECGI) is a promising technology for diagnosing and treating
cardiac arrhythmias (Pullan et al., 2010; Rudy and Lindsay, 2015). Its goal is to compute some
formulation of cardiac sources from known patient torso geometry (typically extracted from
medical imaging) and body-surface potential mapping (BSPM) recordings (Barr et al., 1977;
Plonsey and Barr, 1987; Plonsey and van Oosterom, 1991; Gulrajani, 1998). This computation is
possible by first establishing a model of the ECG from knowledge of cardiac sources and geometry,
known as a numerical forward simulation (MacLeod and Buist, 2010) and then inverting this
process to solve the associated inverse problem (Pullan et al., 2010). Establishing well-validated
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ECG forward simulations is, therefore, critical to developing
ECGI as a technology.

The purpose of an ECG forward simulation is to predict
the electric potential response through a passive volume
conductor, i.e., the torso, from cardiac sources (MacLeod and
Buist, 2010). Cardiac sources are represented in the literature
in several ways, but the most common and most readily
measured method is a surface of potentials surrounding the
myocardium (Barr et al., 1977; Messinger-Rapport and Rudy,
1986; Plonsey and Barr, 1987; Plonsey and van Oosterom,
1991; Gulrajani, 1998). Predicting the resulting ECGs requires
solving a partial differential equation using numerical techniques,
such as boundary or finite element methods (BEM and FEM,
respectively) (Johnson et al., 1993; Johnson, 1997, 2015; MacLeod
and Buist, 2010).

Despite the existence of well-established methods of the ECG
forward simulation, previous validation studies have consistently
shown differences that were higher than might be expected
between simulated and measured body-surface potentials, such
as higher overall error and changes in extrema location (Ramsey
et al., 1977; Bear et al., 2015). The ECG forward problem is
well behaved, and we have sufficient confidence in all aspects
of the simulation and measurement protocols to expect errors
well below those reported. This disparity between confidence in
the simulation approaches and persistent errors in experimental
validation, along with the sensitivity of ECGI to model errors
due to its ill-posed nature (Pullan et al., 2010), provides powerful
motivation to explore possible explanations.

One as yet unexplored source of error in these studies is
insufficient cardiac source representation, i.e., either inadequate
coverage or spatial density of coverage of the cardiac sources. For
example, many experimental validation studies use an epicardial
sock electrode array to record cardiac surface potentials from the
animal heart (Ramsey et al., 1977; Stanley et al., 1986; Shome and
MacLeod, 2007; Bear et al., 2015). A common limitation of these
epicardial socks is that they position electrodes on the ventricles
only, ignoring the atria. Not only does such a set up exclude
measurement of atrial sources, but some ventricular sources, such
as locations either on the apex or at the base of the heart, lack
either adequate spatial coverage or stable mechanical contact
by sock electrodes. Such conditions are problematic as the
mathematical formulation of the ECG forward simulation with
potential sources assumes a complete and closed representative
surface that is adequately sampled; the compromises driven by
practical limitations in experiments suggest that missing sources
exist and they could have a significant impact on the predicted
potential values on the torso surface (Barr et al., 1977). Our
goal was to examine some aspects of this dilemma, using a
combination of experimental and numerical approaches.

In addition to experimental studies, we can also use
computer simulation to help answer questions about the effect
of cardiac sampling on the forward simulation. Simulation
methods such as pseudo-bidomain (Vigmond et al., 2003,
2008) and cellular automaton (Schulze et al., 2015) can
predict full pericardial potentials in a way that cannot be
measured experimentally due to regions of the epicardium being
inaccessible to measurement. Using simulated potentials together

with experimentally recorded values provides a more complete
evaluation of the effect of pericardial source sampling.

In this study, we tested the impact of cardiac source
representation of the atrial region on ECG forward simulations.
We hypothesize that, in the context of forward simulations
from epicardial potentials, measurements that completely cover
the heart are required for accurate prediction of the body-
surface potentials. To test this hypothesis, we used simulated and
measured cardiac potentials to determine the effect of different
levels of sampling on a typical forward simulation pipeline
(Burton et al., 2011). Our results support this hypothesis and
encourage us to propose some sampling strategies that may
minimize error resulting from incomplete sampling of cardiac
sources.

2. METHODS

We analyzed the effect of source representation coverage and
density of the atrial region of the heart on ECG forward
simulations by sampling the cardiac source with a range of
strategies, and then used those sources in our ECG forward
simulation pipeline. We tested these sampling strategies on
three different geometries and source models: (1) simulated
epicardial potentials using the CARP (Vigmond et al., 2003,
2008) cardiac propagation modeling software package, (2) a
second set of simulations provided in the EDGAR database
(Aras et al., 2015) by the Biomedical Engineering team a the
Karlsruhe Institute of Technology, KIT (Schulze et al., 2015), and
(3) one experimentally recorded dataset from the CardioVascular
Research and Training Institute (CVRTI) at the University of
Utah using a unique “cage” electrode (Milanic et al., 2014),
also available in the EDGAR database (Aras et al., 2015). We
then computed ECG forward simulations from subsampled
versions of the original sources, which we compared to FEM
simulations from our ground truth cardiac potential sources.
We also performed experiments in which we recorded source
potentials with a ventricular sock and an electrode plaque placed
on the atria and used these recorded potentials in our simulation
pipeline to compare the predicted body-surface potentials with
and without the additional atrial potential sources.

2.1. Datasets
2.1.0.1. CARP Dataset
The set of cardiac potentials generated using the CARP
(Vigmond et al., 2003, 2008) modeling software consisted of
simulated extracellular potentials using the pseudo-bidomain
method (Bishop and Plank, 2011) in an isolated rabbit ventricle
model previously described (Deo et al., 2009). The four pacing
profiles were sinus rhythm, left ventricle (LV) free wall pacing,
right ventricle (RV) free wall pacing, and apical pacing. The
heart geometry was then manually registered and scaled to a
human torso geometry of of dimensions ∼ 36 × 22 × 40 cm,
771 nodes, and an internodal distance of 24.6 mm (MacLeod
et al., 1995; Shome and MacLeod, 2007; Milanic et al., 2014). An
ellipsoidal cap was placed on a mesh of the epicardial surface
of the ventricles (to replicate a typical sock array) by fitting
a precomputed ellipsoid mesh to the points near the base of
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the ventricles and clipping it to cover the open region in the
sock. The combination of the sock mesh and the ellipsoid cap
formed a pericardial mesh of dimensions ∼ 6 × 6 × 7 cm
with 498 nodes with an average internodal spacing of 5.3 mm.
To compute the potentials on both the cap of the mesh and
the torso surface, we used the previously computed ventricular
surface extracellular potentials from both the endocardial and
epicardial surfaces and the FEM approach in SCIRun (http://
scirun.org, Parker et al., 1997; MacLeod et al., 2004) with the
Forward/Inverse Toolkit (Burton et al., 2011). This calculation
consisted of generating a tetrahedral mesh for the region between
the heart and torso surface, including the vertex locations for
the pericardial mesh with the ellipsoid cap. Then for each time
step, the endocardial and epicardial potentials were used to set
the Dirichlet boundary conditions along the cardiac surface and
Neumann boundary conditions on the torso surface to solve for
the potentials distribution throughout the homogeneous torso
volume. The potentials were extracted at the torso and pericardial
surfaces to use in the subsequent sampling tests described below.

2.1.0.2. KIT Dataset
The KIT geometric model of a single heart and torso geometry
was generated from a patient scan (Schulze et al., 2015) and is
available on the EDGAR database (http://edgar.sci.utah.edu, Aras
et al., 2015). The torso surface had the dimensions ∼ 47 × 30
× 35 cm, 2002 nodes, and an internodal distance of 19.0 mm.
The cardiac potentials computed from this model, also available
fromEDGAR, consisted of four activation profiles: septal, RV free
wall, LV free wall, and apical pacing. In contrast to the pseudo-
bidomain approach using CARP, the KIT investigators computed
cardiac potentials using a cellular automaton approach for the
activation sequence, and calculated first the transmembrane
potentials based on the activation times with a monodomain
simulation and the ten Tusscher electrophysiological model (ten
Tusscher and Panfilov, 2006; Loewe et al., 2015) and then the
extracellular potentials using the bidomain approach (Schulze
et al., 2015). As in the CARP dataset, we added an ellipsoidal
cap on a mesh of the epicardium to form a pericardial mesh of
dimensions ∼ 13 × 19 × 10 cm with 532 nodes with an average
spacing of 9.4 mm. We used the ventricular surface extracellular
potentials from both the endocardial and epicardial surfaces to
simulate the potential values on the ellipsoidal cap and the torso
surface using FEM, as described for the CARP dataset.

2.1.0.3. Utah Cage Dataset
The cage dataset available in EDGAR consists of measurements
from our group using a perfused, isolated canine heart
preparation placed inside a cylindrical cage of dimensions ∼
10 × 10 × 15 cm (600 electrodes, with average spacing of 10.7
mm) within a human torso-shaped electrolytic tank (dimensions
∼ 36 × 22 × 40 cm) instrumented with 192 surface electrodes
(average spacing of 40 mm MacLeod et al., 1995; Shome and
MacLeod, 2007; Milanic et al., 2014). For this study, we used
recorded signals from three activation profiles: sinus rhythm
and left and right ventricular pacing. The geometric model and
measured potentials are all available on the EDGAR database.We
used the cage electrodes as a pericardial source and compared

forward computed and measured torso-tank surface potentials.
We also generated simulated ground truth torso potentials from
the recorded cage potentials using FEM, just as for the other two
datasets.

2.2. Sampling Strategies
The main goal of the study was to evaluate the effect of source
representation in the forward solution by varying coverage and
sampling density of the signals representing that source. We used
five different incremental sampling strategies with each of the
datasets to analyze the specific effect of atrial sampling on the
simulated ECG, as shown in Figure 1. Sampling locations were
added to the atria in an increasing fashion: (1) starting near the
atrioventricular (AV) plane (closest to the ventricular sock) and
moving toward the atrial roof, (2) from the atrial roof to the AV
plane, (3) combining sites from the AV plane and atrial roof, (4)
adding sites in a uniformly distributed order, and (5) adding sites
in a randomly distributed order. The sampling locations were
added in nine iterations for the KIT dataset, seven for the CARP
dataset, and seven for the cage dataset.

In addition to testing a variable number of added electrodes
to the atria, we also tested the effect of adding a cluster of
electrodes, similar to a plaque electrode array, in a variety of
different locations (Figure 1): 22 for the KIT dataset, 34 for the
CARP dataset, and 72 for the cage datasets. The simulated plaque
was generated by picking the nearest electrodes to each of the
central locations. The number of plaque electrodes match the
number of electrodes added in each iteration explained above,
i.e., 11 for the KIT dataset, 15 for the CARP dataset, and 40 for
the cage datasets.

In addition to testing the effect of missing atrial source
samples, this study also evaluated the effect of missing ventricular
source samples. To test this, source samples were incrementally
removed from the basal region of the ventricles (Figure 1).
Sampling locations were removed in eight iterations for the KIT
dataset, six for the CARP dataset, and six for the cage datasets.

2.3. ECG Forward Simulation Pipeline
To simulate the body surface potentials from pericardial
surface potentials with various sampling strategies, we
first interpolated values from the sampled cardiac surface
mesh to the entire cardiac surface and then simulated the
torso surface potentials. For the interpolation step, we
used Laplacian interpolation (Oostendorp et al., 1989) to
estimate the values missing due to undersampling and for
the forward simulation we used the BEM, as implemented
in SCIRun (Parker et al., 1997; MacLeod et al., 2004) with
the Forward/Inverse toolkit (Burton et al., 2011). Similar to
the simulations and experiments that provided the ground
truth data, the torso was modeled as homogeneous outside the
heart.

We compared simulated torso potentials with those from
the ground truth data using several standard approaches. We
first visually compared potential maps of the results during
ventricular activation, identify similarities of the main features of
activation. The quantitative comparisons that followed consisted
of three standard error metrics, root mean square error (Ē),
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FIGURE 1 | Cardiac source sampling strategies tested. Recording locations were added from the AV plane of the heart to the atrial roof, from the roof to the AV plane,

a combination of the first two, uniform sampling, and random sampling of the atria. Black spheres indicate added atrial sampling locations.

relative root mean squared error (rRMSE), and correlation (ρ),
defined as follows:

Ē =
||8gt − 8s||√

n
(1)

rRMSE =
||8gt − 8s||

||8gt||
(2)

ρ =
8T

gt8s

||8gt||||8s||
, (3)

where 8gt is a vector of the ground truth BSPM values, 8s is a
vector of the associated simulated BSPMs, and n is the number of
body surface electrodes.

2.4. Validation Experiments
With data acquired in experiments, we tested the sampling
strategy of placing a regularly spaced array of electrodes
on the atria to validate the prediction of our hypothesis.
In an in situ open-chest preparation (Aras, 2015; Aras
et al., 2016), we placed a cardiac sock with 247 electrodes
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around the ventricles and a plaque electrode array with 24
electrodes fixed to the atria on an accessible anterior epicardial
region near the AV plane. With the electrodes in place,
we recorded electrograms in sinus rhythm and as the heart
developed ventricular tachycardia through the duration of the
experiments.

Generating datasets for validation required the electrograms
from the experiments be placed inside a complete geometric
model of the torso. At the end of the experiments, we used
a manual digitizer (Microscribe, Solution Technologies,
Inc.) to capture the locations of anatomically distinct
landmarks. We identified correspondance points from a
previously generated geometric model of a human thorax,
resulting in two meshes of the heart surfaces with a set of
corresponding spatial reference points. These meshes were
then registered using a combination of the RANSAC (Fischler
and Bolles, 1981), Iterative closest point (ICP) (Besl and
McKay, 1992), and thin plate spline techniques, followed by
any necessary manual adjustments, implemented in MATLAB
and SCIRun. To process the electrogram recordings, we
isolated representative beats and performed baseline correction
and filtering with the default settings in PFEIFER (https://
www.sci.utah.edu/software/pfeifer.html; Rodenhauser et al.,
2018).

The resulting registered meshes and processed cardiac
surface recordings served as the input for our ECG forward
simulation pipeline. The forward computations of body
surface potentials also required closed surfaces, so we
integrated the cardiac sock and atrial plaque meshes into
an ellipsoidal cap similar to those described in section 2.1.
Laplacian interpolation was then used to estimate the missing
potential values on the cap. The resulting complete set of
cardiac potentials was used in the ECG forward simulation
pipeline, as explained in section 2.3. Torso potentials were
simulated from cardiac potentials, with and without the
additional plaque recordings, and compared using the metrics
explained in section 2.3. We compared the resulting metrics
to those from the simulated cardiac potentials described above
(Figure 1).

2.5. Ethics
All experiments were performed with approval from the
Institutional Animal Care and Use Committee at the University
of Utah and conform to the Guide for the Care and Use of
Laboratory Animals (National Institutes of Health publication
No. 85-23).

2.6. Data Availability
Some of the data used in this study (KIT and cage datasests) are
available in the EDGAR database (http://edgar.sci.utah.edu), as
previously noted. The rabbit model used in the CARP dataset
was obtained from a third party, and requests for that data
should be directed to the CARP software team ( Deo et al.,
2009). The raw data collected or generated for this study will be
made available by the authors, without undue reservation, to any
qualified researcher.

3. RESULTS

Removing potentials from the atrial region of the cardiac
surface had a significant impact on the computed forward
simulations. For all pacing profiles and data sets, the errors in
computed body-surface potentials increased when atrial samples
were omitted. Furthermore, the errors grew monotonically with
reduced numbers of atrial sample sites. Our experimentally
recorded data also produced similar effects on the torso surface
to those observed with the simulated data.

Figures 2, 3 show representative tracings of the various
metrics over the course of ventricular activation with and without
atrial sampling. As shown, the rRMSE tracings of the forward
simulation using full pericardial sampling more closely match
those of the ground truth. The values of ρ computed from
pericardial potentials both with and without atrial sampling were
high during most of the time signals, but the minima were
reduced or eliminated when we included atrial sampling. The
mean ρ without atrial sampling was 0.94 compared to 0.99 with
atrial sampling. The rRMSE values showed a similar trend when
comparing the forward solution with and without full atrial
sampling; the maxima were reduced or eliminated when atrial
samples were included. In a few time steps, adding atrial sampling
produced a slight increase in rRMSE error, as seen in the KIT
(Figure 2) and cage experiment datasets (Figure 3). However, the
mean rRMSE was always reduced, with the total mean rRMSE
reduced from 0.54 to 0.08. The peak Ē with only ventricular
sampling ranged from 0.05 to 0.77 mV, while the peak Ē with full
sampling dropped substantially, ranging from 0.01 to 0.19 mV
and the peak Ē was reduced for each simulation by a mean of
0.40 mV.

Figure 4 shows the representative cases of the general effect
of excluding the potential sources in the atrial region. Comparing
the potential maps simulated from only ventricular sources to the
ground truth demonstrates qualitative differences, especially in
the right anterior region in the CARP and KIT datasets, and over
the entire anterior region with the cage datasets. However, there
were no qualitative differences in the location of the extrema.
The observed differences in the potential maps were reduced
when we used full sampling of the atrial surface. The areas
with the greatest differences were consistent across all activation
profiles, as were the improvements whenever we included atrial
sampling.

Increasing the number of recording locations on the atrial
surface systematically resulted in reduced error in the forward
simulations. Every dataset and activation profile showed a
progressive decrease in the peak rRMSE, except the apical
stimulation of the KIT dataset, which showed an increase in
the peak rRMSE from the previous iteration when adding 22
electrodes (from 11) near the AV plane (2.85 from 1.84). The
mean peak rRMSE over all datasets and activation profiles
decreased from 2.40 to 0.06. The mean rRMSE also progressively
decreased as atrial sampling increased in all datasets, with the
same exception of the apical stimulation of the KIT dataset,
which showed an increase in mean the rRMSE from the previous
iteration (0.30 from 0.27) when adding 22 electrodes (from 11).
The mean rRMSE decreased from 0.54 to 0.08.
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FIGURE 2 | Effects of removing atrial and some ventricular sampling over time on the sinus or septal activation profile for each dataset. Each row presents the error

for each dataset. Each column corresponds to a metric, RMS voltage, relative RMS error (rRMSE), and correlation (ρ). Each plot shows a tracing of the error over the

ventricular activation in four case: ground truth (RMS voltage only), using ventricle-only sources, full pericardial sources, and when some ventricular sources are

removed from the basal region.

Figure 5 shows the mean peak rRMSE for each dataset.
An increase in the number of samples resulted in a near
asymptotic reduction in error, so that adding even a few
recording locations to the atrial surface provided a significant
reduction in error. Every sampling strategy we employed reduced
the mean peak rRMSE in a similarly asymptotic relationship,
but some strategies approached the minimum error with fewer
added electrodes. In general, the single-direction strategies, i.e.,
applying electrodes only to the atrial roof or the AV plane,
were less efficient than the more distributed approaches, i.e., the
uniform and random distributions. The approach that combined
adding electrodes to both the atrial roof and the AV plane was
usually more efficient in reducing the mean peak rRMSE than
the single-direction strategies. However, for the CARP dataset,
the combined approach was only more efficient than adding
electrodes to the atrial roof first. The specific order of most
efficient strategies varied based on the dataset and activation

profile. For example, the randomdistribution showed the greatest
reduction of mean peak rRMSE after one iteration for all but the
CARP dataset.

Figures 6,7 show how the peak rRMSE and the mean rRMSE,
respectively, were affected by the different activation profiles
when adding a limited number of recording electrodes to the
atria with various sampling strategies. In general, the uniform,
random, and combined distributions produced lower error for
each of the activation profiles than the remaining two strategies.
The uniform distribution produced the lowest error of any of the
strategies for most of the tested activation profiles. The random
distribution had the second lowest error for most activation
profiles and the combined approach was third lowest for most
activation profiles. Adding recording electrodes to the atrial roof
first generally had the highest error of any of sampling strategy,
both in terms of the mean and peak rRMSE. Though there
are some overall trends, there are noticeable anomalies in the
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FIGURE 3 | Effects of removing atrial and some ventricular sampling over time on the left ventricle simtulation activation profile for each dataset. Each row presents

the error for each dataset. Each column corresponds to a metric, RMS voltage, relative RMS error (rRMSE), and correlation (ρ). Each plot shows a tracing of the error

over the ventricular activation in four case: ground truth (RMS voltage only), using ventricle-only sources, full pericardial sources, and when some ventricular sources

are removed from the basal region.

responses to sampling. For instance, the apical stimulation of the
CARP dataset had a noticeably higher mean and peak rRMSE for
all sampling strategies than the other activation profiles in the
same dataset. There are also cases with the CARP dataset in which
the AV plane or atrial roof strategies produced lower or similar
errors compared to the distributed strategies.

Simulated BSPM results from ventricular epicardial sources
with potentials from an additional simulated plaque array
placed in various locations showed a consistent reduction in
error when compared to the simulations with ventricle-only
sources. The mean rRMSE from all the plaque placements was
0.28 and the mean ρ was 0.97, compared to 0.40 and 0.95
with the ventricle-only sampling. The peak Ē was reduced
by a mean of 0.45 mV. The placement that resulted in the
lowest error was at the roof of the atria, yet there was
no other trend to predict the plaque location with lower
error.

When source samples were removed from the ventricular
sock, there was a general increase in error for most of the QRS
complex, as shown in Figure 2. By reducing the number of
ventricular leads by approximately 45% of the total added on
the atria (45, 34, and 121 for the CARP, KIT, and cage datasets,
respectively), the mean ρ dropped from 0.94 to 0.84, the mean
rRMSE increased from 0.16 to 0.28, and the peak Ē increased by
a mean of 0.40 mV.

Progressively reducing the number of ventricular samples also
generally increased the error, but not consistently. As shown in
Figure 8, using the KIT dataset, the mean peak rRSME decreased
initially, but then increased continuously as samples were
removed. The CARP dataset showed a increased continuously
as samples were removed, with the exception of the final step.
Results from the cage datasets showed a similar trend: an increase
in mean peak rRMSE with the first set of removed sources, a
reduction with the second, and then a fairly consistent mean
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FIGURE 4 | Effect of atrial region sampling on simulated BSPMs. Shown is the ground truth potential map and the forward simulation with sampling of the ventricles

only and with full coverage of the ventricles and atria. The cardiac/cage surface potentials with the two sampling methods are also shown. Results are from the same

representative beats shown in Figure 2 and at the time sample 25 ms into the QRS complex for the CARP dataset, 78 ms for the KIT dataset, and 18 ms for the cage

datasets.

peak rRMSE for the remaining steps. The plateau mean peak
rRMSE remained higher than for the full ventricular sampling
for the cage experiment dataset, yet it was slightly lower for the
cage simulation dataset. Themean rRMSE gradually increased for
the CARP and cage datasets as ventricle samples were remove.
However, for the KIT dataset, the mean rRMSE decreased slightly
for the first four iterations before dramatically increase for the
final stages. The mean ρ consistently dropped as samples were
removed for the CARP dataset and for all but one step in the
cage datasets. For the KIT dataset, the mean ρ increase slightly
for three iterations, then decrease for the remaining steps.

Figure 9 illustrates representative cases of changes in
the predicted BSPMs as ventricle samples were reduced.

Most notably, removing ventricular sources produced greater
qualitative differences than could be generated by removing
the atrial sources (Figure 4). In each dataset, removing the
ventricular sources produced changes in the apparent location
of the extrema on the BSPM, or, as in the case of the simulated
cage dataset, removed an extremum. Interestingly, although an
extremum remained missing from the BSPMs, reducing the
sampling further actually otherwise improved the qualitative and
quantitative accuracy of the BSPM (Figures 8, 9). This result was
likely due to removing a more balanced distribution of potentials
in the more extreme sampling reduction.

Comparing forward simulations using experimentally
recorded cardiac sock potentials, with and without additional
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FIGURE 5 | Peak rRMSE of the forward simulation using different sampling strategies with increasing number of electrodes. The plots are the CARP, KIT, simulated

cage, and recorded cage datasets.

FIGURE 6 | Peak rRMSE of the forward simulation from different activation profiles using different sampling strategies. The plots are the CARP, KIT, simulated cage,

and recorded cage datasets.

atrial plaque recordings, showed that the using a plaque
electrode could alter the accuracy of the forward simulation.
The comparison showed a mean rRMSE of 0.21 and a mean ρ

of 0.98 across all experiments. Figure 10 shows a representative
comparison over time for each of the experiments. The RMS
values of the potential maps showed only minor variations,

and the rRMSE showed some time frames with high error,
most notably near the beginning of the QRS complex. The ρ

remained high throughout ventricular activation, except at the
beginning time instants (Figure 10, panels 1 & 2) Repeating
the same experiment with simulated results yielded similar
results.
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FIGURE 7 | Mean rRMSE of the forward simulation from different activation profiles using different sampling strategies. The plots are the CARP, KIT, simulated cage,

and recorded cage datasets.

FIGURE 8 | Peak rRMSE of the forward simulation in response to reduced ventricular sampling.

Repeating the same experiment with simulated data, i.e.,
comparing forward simulation using cardiac sock potentials
with and without an additional plaque, yielded similar results
(Figure 10). The mean rRMSE and ρ were 0.26 and 0.98,

respectively. The comparison of the BSPM over the time showed
different rRMSE and ρ profiles compared to the experimental
data, in that there peaks or dips near the middle of ventricular
activation in addition to near the beginning or the end
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FIGURE 9 | Effect of removing ventricular source sampling on simulated BSPMs. Shown is the ground truth potential map and the forward simulation with

progressively reduced sampling of the ventricles. The same representative beats and time samples are shown as in Figure 4.

(Figure 10). However, these profiles were similar, yet with a
lower amplitude, to the corresponding profiles in Figure 2

comparing the ventricle-only recordings to the ground truth
data.

Figure 11 shows the potential maps generated with
and without additional recorded electrograms from a
plaque based over the roof of the atria. The difference
between BSPMs was relatively minor overall, but the
region of greatest difference was in the right anterior
region. The right posterior region also showed observable
differences.

4. DISCUSSION

The goal of this study was to evaluate the hypothesis that
complete sampling of the cardiac surface is needed to accurately
perform forward simulations of body surface potentials based
on pericardial potentials, a hypothesis our results support.
Moreover, our findings indicate that the accuracy of the forward
simulation depends in subtle ways on the specific atrial sampling
strategies. Surprisingly, some strategies are more effective than
others even though they contain fewer points, indicating that
sampling location is as important as sampling number. The
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FIGURE 10 | Comparison of forward simulations with cardiac sock recordings to those with additional plaque electrode recordings over time on a representative beat.

Metrics from the experimental simulations and a similar comparison with simulated datasets are shown. Each row presents the error for each dataset. Each column

corresponds to a metric, RMS voltage, relative RMS error (rRMSE), and correlation (ρ).

results of this study could serve as guidance when carrying
out simulations or animal and human experiments to validate
electrocardiographic imaging approaches and may even impact
the ECGI strategy for dealing with missing samples.

The motivation for the study came from reports and our
own observations that forward simulations with ventricular
pericardial sources often produced errors that exceed
anticipated levels based on the relatively well-posed nature
of the electrocardiographic forward problem (Ramsey
et al., 1977; Bear et al., 2015). Previous, unreported results

from our group based on studies with torso-tank phantoms
(Shome and MacLeod, 2007) also produced a similar level of
error.

The results of this study indicate that, in general, any source
sampling added to the atrial region will reduce the error between
the measured potentials and computed forward simulation. Even
a relatively small number, e.g., 11–40, of additional source
samples produced a reduction in the overall error (Figures 5–7)
across every dataset and with every sampling strategy. Similarly,
simulations that included measurements from atrial plaque
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FIGURE 11 | Effect of additional atrial sampling from a plaque electrode array on the forward simulation. Time frame shown is from the same representative beats

shown in Figure 10 and is 30 ms into the QRS complex for Experiment A and 25 ms for the Experiment B.

electrodes also improved the agreement between ground truth
torso potentials and simulations.

Although all strategies for additional atrial sampling improved
the errors, we also sought specific strategies for picking the
sample locations in future validation experiments. Analysis of
the approaches we tested reveals that selecting evenly distributed
points, such as the random and uniform strategies, are likely
to produce greater accuracy with fewer added samples than
other strategies (Figure 5). The combined strategy (i.e., basal plus
atrial roof locations) also performed well, although not with the
CARP dataset. The distributed nature of these strategies is likely
a reason for their efficiency, because they reduce the need for
interpolation over large distances that is an either explicit or
implicit component of solving the forward problem.

Our analysis of the effect of various atrial plaque
configurations on the simulated torso potentials revealed
that the most valuable location may be at the roof of the atria, but
placements even slightly away from the roof had lower accuracy.
Therefore, it is difficult to identify and achieve the best location
of additional measurement sites, typically in the form of a plaque
electrode, in an experimental setting. Nevertheless, every plaque
placement reduced the overall error of the simulated BSPMs,
so it is likely that any plaque electrode placed on the atria will
improve the overall accuracy of the forward simulation.

In comparing our results to similar studies, we found that
eliminating the atrial sampling produced rRMSE and Ē values

in the simulated torso potentials similar to those reported as
early as the mid 1970s by Ramsey et al. (1977) and as recently
as by Bear et al. (2015). We eliminated or dramatically reduced
these errors by including sampling over the atria, which suggests
that the absence of atrial sampling contributed to the errors
in their studies. However, both these studies showed higher
qualitative differences in simulated BSPMs, e.g., differences in
extrema location, than we could account for by removing atrial
sampling locations, which suggests additional causes of error,
possibly from registration, segmentation, or addition missing
sampling.

One potentially significant additional source of error is in
missing ventricular sampling locations. Such undersampling of
the ventricle is possible even when using a ventricular sock
because parts of the epicardium may not be sufficiently sampled,
for example, because of poor electrode contact around the base
of the heart or a lack of electrode density in regions of high
spatial complexity of the potentials. Our results indicate that
eliminating sampling locations from the ventricle can produce
shifts in extrema locations, or remove them entirely, (Figure 9),
and, in general, will decrease the overall accuracy of the forward
simulations (Figures 2, 8). Removing ventricular samples can
increase the rRMSE even beyond that reported by Bear et al.
(2015). All these results suggest that adequate sampling of both
ventricles and atria is required to achieve the expected match
between measured and predicted torso potentials.
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The strategy of using more distributed sampling over the
atria did not always produce the lowest error in the forward
simulations (Figures 6, 7). The spatial variability of cardiac
potentials means that there are likely sampling configurations
that could reduce error more efficiently for specific geometries
and activation profiles, for example, those that combined AV
plane and atrial roof strategy produced the lowest error for
apical stimulation in the KIT dataset, but in no other example
(Figures 6, 7). Moreover, reducing error during different times
of the cardiac cycle could also motivate different sampling
strategies. There can be dramatic changes in the error and
correlation through the cardiac cycle, as seen in the late stages
of the CARP dataset sinus beat and cage datasets following
left ventricular stimulation (Figures 2, 3). In a similar vein, the
dramatic shift in error and correlation when the atria and basal
region of the ventricles were undersampled could be attributed
to incorrectly interpolating late activity near the AV plane over
the atrial surface. The reduction in sampling either removes
local potential extrema in this region, or could possibly remove
transition regions to cause the extrema to become larger with
the interpolation. In both these examples, we found that adding
samples near the AV plane of the atria reduced error more than
adding samples to the atrial roof (Figures 6, 7), which indicates
that strategies that sample the AV plane would be important
for late sinus activation or left ventricular activation. Therefore,
with some a priori knowledge about activation profile and the
regions of interest within the cardiac cycle, researchers could
design specific strategies to correctly record them.

Implementing many of the strategies we tested in an
experimental setting has many practical and logistical obstacles.
For example, placing uniformly distributed recording electrodes
on the epicardial surfaces of the atria is virtually impossible,
due to limited access to the active myocardium. A combined
approach including sampling near the atrial roof and near the
AV plane would be feasible using multiple plaque electrodes
and/or and a ventricle sock that extended over the base to the
atrial surface. Such sampling would likely be feasible in an in
situ animal preparations, although placement of the plaque would
remain a challenge due to the many vessels attached to the atria.
The isolated, perfused heart suspended in a torso-shaped tank
phantom (MacLeod et al., 1995; Shome and MacLeod, 2007;
Milanic et al., 2014), similar to the one used to acquire the cage
dataset, could provide the best option for recording full coverage
cardiac source potentials because the vessels supplying the heart
are gathered and fed through a small opening, and the rest of
the surrounding surface can be instrumented with electrodes. A
limitation of this approach is that the atria are not filled with
blood and so collapse to lie on the base of the ventricles and lack
both realistic shape and a stable surface for attaching electrodes.

Limitations to the study generally involved compromises in
capturing cardiac sources and the associated torso potentials.
By using fully simulated potentials, we could achieve levels
of coverage and resolution not possible with experiments but
with the caveat that these are simulations and reflect certain
assumptions and conditions. For example, we ignored any
electrical activation of the atria, assumed that the conductivity
of the atria was the same as for the torso, and greatly simplified

the atrial epicardial surface by replacing it with a parameterized
and smooth epicardial cap. Additionally, we did not account
for possible scar or fibrosis formation which would occur in
many disease states, possibly affecting any attempt to use these
strategies in patients. Another source of validation data was a set
of potentials from an isolated, perfused heart, captured with an
instrumented rigid cage surrounding the heart. This arrangement
provides full coverage of the heart and thus a complete source
model, but the distance between heart and cage electrodes causes
the signals to be smoother than on the epicardium and does
not reflect perfectly the ECGI application. Finally, we assumed
in this study that the only error would be due to insufficient
source sampling of the atrial region, and thus we ignored other
possible causes of error in source sampling, such as sampling
density, uncertainty in individual electrode locations, or any
other possible errors in capturing and representing the geometric
model. These additional sources of error may compound those
due to incomplete sampling over the atria.

This study focused specifically on the sampling of the atrial
region and how it generally affected the forward simulation,
but there are several additional, related questions that could be
addressed in future studies. For example, of great interest would
be a more direct spatial sensitivity analysis of the relationship
between the potentials on the cardiac surface and the torso, or
from the endocardial surface to the atria. Such results could
suggest sampling strategies that would be specialized for specific
regions of tissue, or types of activation. Other questions that
could be similarly explored relate to the shape, location, and
orientation of the heart, and how they might influence the
forward simulation. Inclusion of torso heterogeneity due to other
organs would affect the flow of current through the torso andmay
therefore affect the sampling strategies needed tomore accurately
predict BSPM. These questions and others could be the focus of
future studies to help fully understand the effect of discretizing
the cardiac electrical source with potential recordings.

This study illustrates the need to acquire adequate cardiac
source sampling in ECG forward simulations, as well as the
challenges in doing so. These findings also have implications for
solving and validating the inverse solutions required for ECGI.
Most mathematical formulations of ECGI solve for a subset
of the cardiac sources without any cost to accuracy, but they
are based on the assumption of a robust forward solution, i.e.,
that the relationship between the cardiac sources and the torso
potentials is represented accurately (Barr et al., 1977; Plonsey and
Barr, 1987; Plonsey and van Oosterom, 1991; Gulrajani, 1998).
Our results suggest that coverage of the atrial surface with at
least a schematic multielectrode cap could improve the resulting
ECGI solutions. Additionally, our results have implications for
how researchers validate ECGI methods using forward simulated
BSPM data (Erem et al., 2011; Wang et al., 2011). Our findings
suggest that the computed BSPMs used as inputs in these ECGI
pipelines may contain errors due to inadequate cardiac sampling.
Using BSPMs with such errors may bias the tuning of the
constraints in the ECGI inverse problem and even alter the levels
of accuracy achieved.

We conclude that complete sampling of the cardiac surface
potentials is required to create realistic source descriptions for
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validation experiments and simulations of ECGI. Ignoring or
crudely interpolating over sources on the atrial surfaces or even
parts of the ventricular surface will also reduce the accuracy of
simulations. Researchers can mitigate these effects by ensuring
that both the full ventricular epicardium and at least some
locations on the atria are sampled. Even modest coverage of
the atria can increase the accuracy of the resulting simulations
dramatically. Distributed sampling over the atrial will likely
produce the lowest error, yet may be a challenge to implement
experimentally. These efforts to improve source sampling will
also improve the accuracy of the ECG forward simulations, which
will further clarify the aspects of ECGI that need more research
and development.
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