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ABSTRACT
The grammatical structures scholars use to express their assertions are intended to
convey various degrees of certainty or speculation. Prior studies have suggested a
variety of categorization systems for scholarly certainty; however, these have not
been objectively tested for their validity, particularly with respect to representing the
interpretation by the reader, rather than the intention of the author. In this study, we
use a series of questionnaires to determine how researchers classify various scholarly
assertions, using three distinct certainty classification systems. We find that there are
three distinct categories of certainty along a spectrum from high to low. We show that
these categories can be detected in an automated manner, using a machine learning
model, with a cross-validation accuracy of 89.2% relative to an author-annotated
corpus, and 82.2% accuracy against a publicly-annotated corpus. This finding provides
an opportunity for contextual metadata related to certainty to be captured as a part
of text-mining pipelines, which currently miss these subtle linguistic cues. We provide
an exemplar machine-accessible representation—a Nanopublication—where certainty
category is embedded as metadata in a formal, ontology-based manner within text-
mined scholarly assertions.

Subjects Bioinformatics, Computational Science, Data Mining and Machine Learning
Keywords Text mining, Scholarly communication, Certainty, FAIR Data, Machine learning

INTRODUCTION
Narrative scholarly articles continue to be the norm for communication of scientific results.
While there is an increasing push fromboth journals and funding agencies to publish source
data in public repositories, the resulting article, containing the interpretation of that data
and the reasoning behind those conclusions, continues to be, by and large, textual. The
norms of scholarly writing and scholarly argumentation are learned by students as they
progress through their careers, with the rules of scholarly expression being enforced by
journal editors and reviewers. Among the unique features of scholarly writing is the
tendency for authors to use hedging—that is, to avoid stating an assertion with certainty,
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How a claim becomes a fact

“These miRNAs neutralize p53- mediated CDK  inhibition, possibly through direct inhibition of the expression of the 

tumor  suppressor LATS2.” (Voorhoeve et al. 2007)

“In a genetic screen, miR-372 and miR-373  were found to allow proliferation of primary human cells that express  

oncogenic RAS and active p53, possibly by inhibiting the tumor suppressor  LATS2 (Voorhoeve et al., 2006).” 

(Kloosterman and Plasterk 2006)

“[On the other hand,] two miRNAs, miRNA-372 and-373,  function as potential novel oncogenes in testicular germ 

cell tumors by  inhibition of LATS2 expression, which suggests that Lats2 is an important  tumor suppressor 

(Voorhoeve et al., 2006).” (Yabuta et al. 2007)

“Two oncogenic miRNAs, miR-372 and miR-373, directly  inhibit the expression of Lats2, thereby allowing 

tumorigenic growth in the  presence of p53 (Voorhoeve et al., 2006).” (Okada et al. 2011)

Figure 1 How a claim becomes a fact. These statements represent a series of scholarly assertions about
the same biological phenomenon, revealing that the core assertion transforms from a hedging statement
into statements resembling fact through several steps, but without additional evidence (de Waard, 2012).

Full-size DOI: 10.7717/peerj.8871/fig-1

but rather to use phrases that suggest that the assertion is an interpretation of experimental
evidence or speculation about a state of affairs, which is essential when presenting unproven
propositions with appropriate caution (Hyland, 1996). For example, ‘‘These results suggest
that the APC is constitutively associated with the cyclin D1/CDK4 complex and are consistent
with a model in which the APC is responsible for cyclin D1 proteolysis in response to IR...’’
(Agami & Bernards, 2000); or ‘‘With the understanding that coexpression of genesmay imply
coregulation and participation in similar biological processes. . . ’’ (Campbell et al., 2007). As
a result, biology papers contain a wide range of argumentational structures that express
varying degrees of confidence or certainty. These subtle linguistic structures become
problematic, however, in the context of scholarly citation. As discussed by De Waard &
Maat (2012), citing papers may contain reformulations of the original claims in which the
degree of certainty of the original claim is modified (and usually made stronger) in the
absence of additional evidence (Fig. 1; Latour & Woolgar, 2013). This ‘‘drift’’ in certainty
can be very gradual over successive steps of a citation chain, but the consequences may be
profound, since statements with greater certainty than the original author intended can
be used as the basis for new knowledge. Although peer-review might protect the literature
from such ‘hedging erosion’, reviewers may lack the specific domain knowledge required
to know the legacy of a given scholarly claim. Even if they take the time to follow a citation,
subtle differences in expressed certainty over a single step in a citation chain may not
be detectable. This problem is worsened in the context of text mining algorithms that
currently do not richly capture the nuances of a scholarly assertion when extracting the
entity-relationships that make up the claim.

Given that the volume of literature published grows by approximately a half-million
papers per year in the biomedical domain alone, text mining is becoming an increasingly
important way to capture this new knowledge in a searchable and machine-accessible
way. Accurate, automated knowledge capture will therefore require accurate capture
of the certainty with which the claim was expressed. Moreover, there is increasing
pressure to publish knowledge, ab initio, explicitly for machines, in particular with the
adoption of the FAIR Data Principles for scholarly publishing (Wilkinson et al., 2016), and
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several machine-accessible knowledge publication formats have recently been suggested,
including NanoPublications (Groth, Gibson & Velterop, 2010), and Micropublications
(Clark, Ciccarese & Goble, 2014). In order to capture the intent of the author in these
machine-readable publications, it will be necessary for them to include formal machine-
readable annotations of certainty.

A number of prior studies have attempted to categorize and capture the expression
of scholarly certainty. These, and other certainty categorization studies, are summarized,
compared and contrasted in Table 1, where the columns represent relevant study features
that distinguish these various investigations, and affect the interpretation of their outcomes.
For example, the use of linguistic experts, versus biomedical domain experts, will likely
affect the quality of the annotations, while using explicit rule-matching/guidelines will
result in strict, predetermined categorizations. Similarly, the use of abstracts consisting of
concise reporting language, versus full text which contains more exploratory narratives,
will affect the kinds of statements in the corpus (Lorés, 2004), and their degree of certainty.

According to Wilbur, Rzhetsky & Shatkay (2006) ‘‘each [statement] fragment conveys
a degree of certainty about the validity of the assertion it makes’’. While intuitively
correct, it is not clear if certainty can be measured/quantified, if these quantities can
be categorized or if they are more continuous, and moreover, if the perception of the
degree of certainty is shared between readers. Most studies in this domain assume that
certainty can be measured and categorized, though they differ in the number of degrees
or categories that are believed to exist, and thus there is no generally-accepted standard
for certainty/confidence levels in biomedical text (Rubinstein et al., 2013). Wilbur et al.
suggested a four category classification: complete certainty/proven fact, high likelihood,
low certainty and complete uncertainty. Similarly, Friedman et al. (1994) suggest that
there are four categories of certainty: high, moderate, low, and no certainty, with an
additional ‘‘cannot evaluate’’ category. Aligning with both of these previous studies,
De Waard & Schneider (2012) encoded four categories of certainty into their Ontology of
Reasoning, Certainty, and Attribution (ORCA) ontology as follows: Lack of knowledge,
Hypothetical (low certainty), Dubitative (higher, but short of full certainty), Doxastic
(complete certainty, accepted knowledge or fact). Other studies have suggested fewer or
more certainty categories, and differ in the manner in which these categories are applied
to statements.

BioScope (Vincze et al., 2008) is a manually-curated corpus, containing 20,924
speculative and negative statements from three sources (clinical free-texts, five articles
from FlyBase and four articles from BMC Bioinformatics) and three different types of
text (Clinical reports, Full text articles and abstracts). Two independent annotators and
a chief linguistic annotator classified text spans as being ‘speculative’ or ‘negative’; other
kinds of assertions were disregarded. Thus, the study splits certainty into two categories -
speculative, or not.

Thompson et al. (2011) apply five meta-knowledge features - manner, source, polarity,
certainty, and knowledge type - to the GENIA event corpus (GENIA Event Extraction ,
GENIA). This corpus is composed of Medline abstracts split into individual statements.
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Table 1 Comparison of corpora and approaches used in prior investigations into scholarly certainty.

No of
annotators

Annotator
expertise

Text
provenance

Discourse
segment
source

Approach to
automated
detection

Number of
certainty
classification
classes

Corpus
size

Meta
knowledge
examined

Light, Qiu & Srinivasan (2004) 4 following
annotation
guidelines

Medline Abstract SVM 3 2,093
statements

certainty

Malhotra et al. (2013) 3 following
annotation
guidelines

Medline Abstract Maximum
Entropy

4 350 abstracts certainty

Zerva et al. (2017) 7+2 biomedical GENIA-MK,
BioNLP-ST

Abstract,
Text Event

Random
Forest
classifier
+
Rule Induction

up to 5 652 passages certainty

De Waard & Maat (2012) 2 publishing 2 articles Full text N/A 4 812 clauses certainty,
basis,
source

Friedman et al. (1994) 3 physics Columbia
Presbyterian
Medical Database

Free text Natural
Language
Processor

4 230
reports

certainty,
degree,
change,
status,
quantity,
descriptor

Wilbur, Rzhetsky & Shatkay (2006) 3+9 following
annotation
guidelines

Ten research
articles

Full text N/A 4 101 sentences focus, polarity,
certainty,
evidence,
and directionality

Vincze et al. (2008) 3 linguistics Clinical,
FlyBase,
BMC Bioinfo

Free Text,
Full Text,
Abstract

N/A 2 20,924
statements

certainty,
negation

Thompson et al. (2011) 2 following
annotation
guidelines

Medline Abstract N/A 3 36,858
events

manner,
source,
polarity,
certainty,
knowledge type

This manuscript 375 biomedical TAC 2014 Full Text Neural Network 3 45 statements certainty
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With respect to certainty annotations, the corpus utilizes a classification system of three
certainty levels - certain, probable (some degree of speculation), and doubtful (currently
under investigation). Annotation was carried out by two linguistic specialists specifically
trained in the meta-knowledge scheme.

Light, Qiu & Srinivasan (2004) investigate speculative language in biomedical abstracts.
Using Medline abstracts they attempt to distinguish high and low degrees of speculation.
Four annotators used rule-matching to classify statements. Using this annotated corpus,
they trained a model based on Support Vector Machines (SVM) to generate an automatic
classifier. This automatic classifier, therefore, is specifically tasked for speculative
statements, and categorizes them in a manner resembling their predefined rule-sets.

Malhotra et al. (2013) classify hypotheses (speculative statements) in scholarly text. Three
annotators classified speculative statements in Medline abstracts related to Alzheimer’s
disease using a four-class categorization, with predefined pattern-matching rules for
sorting statements into three speculative patterns (strong, moderate, and weak) and a
fourth category representing definitive statements. Additionally, they explore several
automated methods to distinguish speculative from non-speculative statements.

Zerva et al. (2017) use a combination of the BioNLP-ST and GENIA-MK corpora - both
of which consist of statements manually-annotated with respect to their certain/uncertain
classification (degrees of uncertainty, when available, were merged resulting in a two-
category corpus). They applied rule induction combined with a Random Forest Classifier
to create an automated binary classification model. This model was run on 260 novel
statements, and the output classification was provided to seven annotators who were
asked for simple agree/disagree validation of each automated classification. The degree
of disagreement between annotators was in some cases surprisingly high, leading the
authors to note that ‘‘the perception of (un)certainty can vary among users’’. In a separate
experiment, two annotators ranked the certainty of 100 statements on a scale of 1–5. They
noted low absolute annotator agreement (only 43% at the statement-level), but high relative
agreement (only 8% of statements were separated by more than one point on the 5-point
scale). Comparing again to the automated annotations, they found high correlation at the
extremes (i.e., scored by the annotators as 1 or 5) but much less correlation for statements
rated at an intermediate level, leading them to conclude ‘‘...looking into finer-grained
quantification of (un)certainty would be a worthwhile goal for future work’’.

These previous works share important distinctions relevant to the current investigation.
First, in every case, the number of certainty categories were predetermined, and in
many cases, categorization rules were manually created. Second, in most cases (Light,
Qiu & Srinivasan, 2004; Malhotra et al., 2013; De Waard & Maat, 2012; Wilbur, Rzhetsky
& Shatkay, 2006; Vincze et al., 2008; Thompson et al., 2011), the work involved a small
number of annotators with a knowledge of linguistics, or specifically trained on the
annotation system, rather than being experts in the knowledge-domain represented
by the statements, but untrained as annotators. Third, in all cases where automated
approaches were introduced, the automated task was to distinguish ‘‘speculation’’ from
‘‘non-speculation’’, rather than categorize degrees of certainty. Notably, there was little
agreement on the number of categories, nor the labels for these categories, among these
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studies. Moreover, the categories themselves were generally not validated against the
interpretation of an (untrained) domain-expert reader. As such, it is difficult to know
which, if any, of these approaches could be generalized to annotation of certainty within
the broader scholarly literature, in a manner that reflects how domain experts interpret
these texts.

To achieve this would require several steps: (1) determine if there are clearly delimited
categories of certainty that are perceived by readers of scholarly assertions; (2) if so,
determine how many such categories exist; and (3) determine the consistency of the
transmission of certainty among independent readers (i.e., agreement). If these are
determined robustly, it should then be possible to apply machine-learning to the problem
of automatically assigning certainty annotations to scholarly statements that would match
the perceptions of human readers.

Here, we attempt a data-driven certainty categorization approach. We execute a series
of questionnaire-based studies using manually-curated scholarly assertions, in English, to
attempt to objectively define categories of perceived certainty. A different set of certainty
categories are provided in each questionnaire, and readers are asked to categorize each
statement as to their perception of its level of certainty. We use these results to examine
the degree of consistency of perceived certainty among readers, and run statistical tests
to evaluate the degree to which the categorization system provided in each survey reflects
the perception of those asked to use those categories. The categorization system with
the highest score—that is, the one that provided the highest level of agreement—was
then used to manually create a corpus of certainty-annotated statements. This, in turn,
was used to generate a machine-learning model capable of automatically classifying new
statements into these categories with high accuracy. We propose that this model could
be used within existing text-mining algorithms to capture additional metadata reflecting
the nuanced expression of certainty in the original text. Finally, we provide an example of
a machine-accessible scholarly publication—a NanoPublication—within which we have
embedded this novel contextual certainty metadata.

MATERIALS & METHODS
Broad overview
Using TACBiomedical SummarizationCorpus (Min-Yen, 2018), we extracted 45manually-
curated scholarly assertions (selection process described below). Using these, a total of 375
researchers in the biomedical domain, in comparable research institutes and organizations,
were presented with a series of assertions and asked to categorize the strength of those
assertions into four, three, or two certainty categories over the three independently-
executed questionnaires. G Index (Holley & Guilford, 1964) coefficient analysis was applied
to determine the degree of agreement between annotators, as a means to evaluate the
power of each categorization system—that is, to test the discriminatory effectiveness of
the categories themselves, versus the quality of the annotations or annotators. Prior to
performing the statistical analysis, due to the data being compositional in nature, we
applied rank transformation to our data. We extracted the essential features of inter-rater
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agreement from the questionnaire data using Principal Component Analysis (PCA) to guide
our interpretation of the way annotators were responding to the categories presented.
The essential number of components identified by PCA were extracted using Horn’s
parallel analysis, with three categories appearing to be the optimal. We then clustered our
collection of statements into these three categories using the k-means algorithm (Jolliffe,
2011; Dunham, 2006). Finally, we manually generated an author-annotated corpus of
statements (‘‘author-annotated’’, versus a corpus of statements annotated by participants
which will be described as ‘‘publicly-annotated’’) using this 3-category system, and applied
deep-learning techniques over this corpus to generate an automated classifier model. To
evaluate its accuracy, 20-fold Cross-Validation (CV) was used.

Survey statement selection
The 45 text blocks used in the three surveys were extracted from published articles
related to genetic and molecular topics, and were selected from the ‘‘Citation text’’ and
‘‘Reference text’’ portions of the TAC 2014 Biomedical Summarization Track. Each text
block contained a sentence or sentence fragment representing a single scholarly assertion
that we highlighted and asked the respondents to evaluate, with the remainder of the
text being provided for additional context. The 45 assertions were selected using different
epistemic modifiers, such as modal verbs, qualifying adverbs and adjectives, references
and reporting verbs, which are believed to be grammatical indicators of ‘‘value of truth’’
statements (De Waard & Maat, 2012). Given that they are intended to be used for a human
survey, with the aim of avoiding annotator fatigue, these were further filtered based on the
length of the statement to give preference to shorter ones. These were then separated into
groups based on the type of epistemic modifier used, and from these groups, a subset of
statements were selected arbitrarily to give coverage of all groups in our final statement
corpus (Prieto, 2019a; Prieto, 2019b). An example survey interface presentation is shown
in Fig. 2.

Survey design
We designed three surveys—S1, S2 and S3—where respondents were asked to assign
certainty based on a number of certainty categories—four, two, and three respectively for
surveys S1, S2, and S3. All surveys used the same corpus of 45 scholarly assertions. To
minimize the bias of prior exposure to the corpus, the surveys were deployed over three
comparable but distinct groups of researchers, all of whom will have sufficient biomedical
expertise to understand the statements in the corpus.

All participants were presented a series of assertions selected randomly from the 45 in
the corpus—15 assertions in S1, increased to 20 assertions in S2 and S3 in order to obtain
deeper coverage of the statement set. In S1, participants were asked to assess the certainty
of every highlighted sentence fragment based on a 4-point scale with the following response
options: High, Medium High, Medium Low, and Low. A 2-point scale was used for S2:
Relatively High and Relatively Low and 3-point numerical scale for S3: 1, 2 or 3. In addition
to the assessment of certainty, for each assertion, participants were asked to indicate their
impression of the basis of the assertion, using a single-answer, multiple-choice question,
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Figure 2 Example of the Survey 1 questionnaire interface. A scholarly assertion is highlighted in blue,
in its original context. Participants are asked to characterize the blue assertion, using one of four levels of
certainty (High, Medium High, Medium Low or Low).

Full-size DOI: 10.7717/peerj.8871/fig-2

with the options: Direct Evidence, Indirect Evidence/Reasoning, Speculation, Citation or I
don’t know.

Survey distribution and participant selection
Participation in the surveys was primarily achieved through personal contact with
department leads/heads of five institutions with a focus on biomedical/biotechnology
research. For S1, the majority of participants came from the Centro de Biotecnologia
y Genomica de Plantas (UPM-INIA), Spain. It was conducted between November and
December of 2016. S2 was executed by members from the Leiden University Medical
Center, Netherlands, between November and December of 2017. S3 was conducted
between October and November of 2018 by members of the University Medical Center
Utrecht, Cell Press and the Agronomical Faculty of Universidad Politécnica de Madrid.
Participation was anonymous and no demographic data was collected.

Survey execution
Participants of the surveys were engaged using the platform Survey Gizmo (S1) or Qualtrics
(Qualtrics, 2017, S2 and S3)—two online platforms dedicated toWeb-based questionnaires.
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The change in survey platform was based only on cost and availability; the two platforms
have largely comparable interfaces with respect to data-gathering fields such as response-
selection buttons and one-question-per-page presentation, with the primary differences
between the platforms being aesthetic (color, font, branding).

Statistical analysis of agreement
We evaluated each survey by quantifying the degree of agreement between participants
who were presented the same assertion, with respect to the level of certainty they indicated
was expressed by that statement given the categories provided in that survey.

Agreement between participants was assessed by Holley and Guilford’s G Index of
agreement (Holley & Guilford, 1964), which is a variant of Cohen’s Weighted Kappa (Kw;
(Cohen, 1968). Ideally G measures the agreement between participants. It was performed
based on the following formula:

G=
(Probability Observed(Po)−Probability by Chance(Pc))

1−Pc

The key difference betweenKw andG index is in how chance agreement (Pc) is estimated.
According to Xu & Lorber (2014), ‘‘G appears to have the most balanced profile, leading
us to endorse its use as an index of overall interrater agreement in clinical research’’. For
the G index, Pc is defined a priori, being homogeneously distributed among categories as
the inverse of the number of response categories (Xu & Lorber, 2014), thus making Pc =
0.25 for S1; Pc = 0.50 for S2; and Pc = 0.33 for S3.The accepted threshold for measuring
agreement and its interpretation has been suggested by Landis, Richard Landis & Koch
(1977) as follows: 0.00–0.20 = Poor, 0.21–0.40 = Fair, 0.41–0.60 = Moderate, 0.61–0.80
= Substantial, 0.81–1.00 = Almost Perfect. Anything other than the ‘Poor’ category is
considered in other studies to represent an acceptable level of agreement (Deery et al.,
2000; Lix et al., 2008).

Clustering
As an initial step, due to the compositional structure of the data, it was necessary to
perform a transformation of the data prior to Principal Component Analysis (PCA) and
correlation statistical analysis (Mucha, Bartel & Dolata, 2008). Compositional data are
data in which the sum of all components represents the complete set or a constant value
(Mateu-Figueras et al., 2003). We applied rank transformations (Baxter, 1995), due to the
presence of essential zeros, indicating an absence of content in a variable (Foley et al.,
2018). ’’The presence of zeros prevent us for [sic] applying any measure or technique
based upon ratios of components’’ (Palarea-Albaladejo, Martín-Fernández & Soto, 2012).
Subsequently, we investigated the ideal number of clusters into which statements group
based on the profile of the annotators’ responses or inter-survey analyses. To estimate this,
Hierarchical Clustering analysis (HCA) and Spearman correlation test were performed to
determine certainty category association between questionnaires (Fig. 3), using the shared
classified statements in that category as the metric (Narayanan et al., 2011; Campbell et al.,
2010; Sauvageot et al., 2013; Narayanan et al., 2014); though these constitute conceptually
distinct analyses, we represent them in the same chart because the outputs are mutually
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Figure 3 Spearman Rank Correlation and hierarchically-clustered heatmap on ranked transformed
values comparing the statements assigned to the Certainty Categories among all three questionnaires.
The clustering tree and heatmap are based on participants’ responses adjusted by rank transformation
from questionnaires S1, S2 and S3. Certainty categories clustered hierarchically. Boxes shows color legend
and coefficients based on Spearman’s rank-order correlation of the certainty categories.

Full-size DOI: 10.7717/peerj.8871/fig-3

supportive. Hierarchical clustering analysis (HCA) finds clusters of similar elements, while
Spearman correlation coefficient considers the weight and direction of the relationship
between two variables. It’s worth emphasizing the importance of the rank-based nature of
Spearman’s correlation. Spearman’s formula ranks the variables in order, thenmeasures and
records the difference in rank for each statement/variable. Thus, ‘‘...if the data are correlated,
[the] sum of the square of the difference between ranks will be small’’ (Gauthier, 2001),
which should be considered when interpreting the results. Interpretation of Spearman
correlation was as follows: Very High >0.9; High ≤ 0.9; Moderate ≤ 0.7; Low ≤ 0.5; and
Very Low ≤ 0.2 (Dunham, 2006; Raithel, 2008). All Spearman correlations are interpreted
based on hypothesis testing. To determine the importance of the results, p-values were
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Figure 4 Majority rule output for deciding optimal number of clusters (k) in the three surveys. (A)
Majority rule indicates three clusters for Survey 1. (B) Majority rule indicates two clusters for Survey 2,
though there is notable support for three clusters. (C) Majority rule indicates three clusters for Survey 3,
with notable support for two clusters.

Full-size DOI: 10.7717/peerj.8871/fig-4

generated as an indicator of the existence of correlation between certainty categories. Rank,
HCA and Spearman values were generated using the python libraries, seaborn and pandas.

Prior to PCA and cluster analyses, we first adjusted participant’s responses using
rank transformation from the Python package pandas. PCA is a widely used method for
attribute extraction to help interpret results. We used PCA to extract the essential features
of inter-rater agreement from the questionnaire data (Campbell et al., 2010; Narayanan et
al., 2014). We applied PCA using scikit-learn to the result-sets, and utilized K-means from
the same python package to identify cluster patterns within the PCA data. These cluster
patterns reflect groups of similar ‘‘human behaviors’’ in response to individual questions
under all three survey conditions. In the input each statement is represented by the profile
of annotations it received from all annotators. The optimal number of components was
selected using Horn’s parallel analysis, applied to certainty categories on the three different
surveys. Detailed output is provided in Figs. S1–S3 of the supplemental information.
Our decision to choose three components as the most robust number to capture relevant
features of our data is justified in the ‘Results’.

To determine the optimal K, (number of statements in each cluster, or cohesion of the
clusters), several indices were analyzed using the R package NbClust (Charrad et al., 2014).
NbClust provides 30 different indices (e.g., Gap statistic or Silhouette) for determining the
optimal number of clusters based on a ‘‘majority rule’’ approach (Fig. 4; Chouikhi, Charrad
& Ghazzali, 2015). Membership in these clusters was evaluated via Jaccard similarity
index comparing, pairwise, all three clusters from each of the three surveys to determine
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Table 2 Jaccard similarity clusters resulting from K-Means applied to questionnaire results. Jaccard
similarity index on k-means results from ranked questionnaire responses. The score is the result from
statements labels pairwise comparison. A dash indicates that it is not possible to compare due to differing
cluster size.

S1-S2 S1-S3 S2-S3

Cluster 1-1 0.923 0.923 0.917
Cluster 1-2 – – –
Cluster 1-3 – – –
Cluster 2-1 – – –
Cluster 2-2 0.583 0.833 0.714
Cluster 2-3 – – –
Cluster 3-1 – – –
Cluster 3-2 – – –
Cluster 3-3 0.800 0.600 0.684

which clusters were most alike (Table 2). This provides additional information regarding
the behavior of annotators between the three surveys; i.e., the homogeneity of the three
identified categories between the three distinct surveys. The princomp and paran functions
in R were utilized to execute PCA and Horn’s parallel analysis, respectively. The PCA and
KMeans functions from scikit-learn were employed to create the visualizations in Fig. 5
(Pedregosa et al., 2011).

Certainty classification and machine learning model
We addressed the creation of a machine-learning model by considering this task to be
similar to a sentiment analysis problem, where algorithms such as Recurrent Neural
Network (RNN) with Long Short Term Memory (LSTM) have been applied (Wang
et al., 2016; Baziotis, Pelekis & Doulkeridis, 2017; Ma, Peng & Cambria, 2018). A corpus
of new statements was extracted from MedScan (Novichkova et al., 2003). An initial
filter was applied using the keyword ’that’, since this is often indicative of hedging (e.g.,
‘‘This result suggests that. . . ’’, ‘‘It is thought that. . . ’’). A total of 3,221 statements were
manually categorized using the three levels of certainty, based on our familiarity with the
classification of the 45 statements in the prior study. A 5-layer neural network architecture
was employed to train and validate model performance. Validation was executed using
a 20-fold CV scheme, which is considered adequate for a corpus of this size (Crestan &
Pantel, 2010; Snow et al., 2008; Lewis, 2000). To design the neural network (NN) model,
the Python library Keras (Chollet, 2015) was utilized, with TensorFlow (Abadi et al., 2016)
as the backend. Precision, recall, F-score and overall accuracy were calculated as additional
supporting evidence for classifier performance from a confusion matrix (Light, Qiu &
Srinivasan, 2004;Malhotra et al., 2013; Zerva et al., 2017), comprised of the following terms
and formulas: True Positive (TP); True Negative (TN); False Positive (FP); False Negative
(FN); Precision= TP/(TP+FP); Recall= TP/(TP+FN); F-score= (Precision×Recall×2)/(
Precision + Recall); Overall accuracy= (TP+TN)/(TP+FP+FN+TN). Finally, we employed
Kappa as a commonly-used statistic to compare automated andmanual adjudication (Garg
et al., 2019). Kappa was calculated using the pycm python package.
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Figure 5 Principal component analysis of questionnaire responses in the three surveys. Bi-plot of cer-
tainty level distribution over results from k-means clustering (colors) for: Survey 1 (A), Survey 2 with
three clusters (B), Survey 2 with two clusters (C) and Survey 3 (D). Each dot represents a statement. Red
lines are the eigenvectors for each component.

Full-size DOI: 10.7717/peerj.8871/fig-5

All raw data and libraries used are available in the project GitHub, together with Jupyter
Notebooks (both R and Python 2.7 kernels) showing the analytical code and workflows
used to generate the graphs presented in this manuscript and the supplemental information
(Prieto, 2019a; Prieto, 2019b).

RESULTS
Survey participation
Survey 1 (S1) was answered by 101 participants of whom 75 completed the survey (average
of 13 responses per participant). Survey 2 (S2) had 215 participants with 150 completing
the survey (average of 16 responses per participant). 48 of 57 participants completed the
entirety of Survey 3 (S3) (average of 18 responses per participant). All responses provided
were used in the analysis. Coverage (the number of times a statement was presented for
evaluation) for each of the 45 statements in the corpus was an average of: 29 for S1, 77 for
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Table 3 Categorization consistency of statements (by statement number) for survey S1.

Agreement level High % of
corpus

Medium high % of
corpus

Medium low % of
corpus

Low % of
corpus

Almost Perfect [0.81–1.00] 29 2.2% 0 0% 0 0% 0 0%
Substantial [0.61–0.8] 25, 27, 30 6.6% 5 2.2% 0 0% 0 0%
Moderate [0.41–0.6] 4, 28, 42 6.6% 19, 35, 37,

40, 45
11.1% 21, 36, 44 6.6% 0 0%

Fair [0.21–0.4] 3, 15, 22, 38 8.9% 2, 8, 9, 16, 17,
20, 34, 39

17.7% 1, 6, 10, 11, 12,
14, 18, 26, 33

20.0% 0 0%

Poor [0.2] 13 2.2%
Double-Classified 41, 43 4.4% 7, 23, 24, 31,

32, 41, 43
15.5% 7, 23, 24,

31, 32,
11.1%

Table 4 Categorization consistency of statements (by statement number) for survey S2.

Agreement level Relatively high % of corpus Relatively low % of corpus

Almost perfect [0.81–1.00] 25, 27, 28, 29, 30, 41 13.3% 36, 44 4.4%
Substantial [0.61–0.8] 3, 15, 22, 38, 40, 42, 43 15.5% 0 0%
Moderate [0.41–0.6] 5, 6, 9, 6.6% 10, 11, 14, 18, 31, 33, 39 15.5%
Fair
[0.21–0.4]

4, 37, 45 6.6% 1, 12, 13, 16, 19, 21, 23, 24, 32, 34 22.2%

Poor [0.2] 2, 7, 8, 17, 20, 26, 35 15.5%
Double classified 0 0%

S2, and 23 for S3. The summary of the k-means clustering and Jaccard Similarity results
over all three surveys are shown in Fig. 3 and Table 2.

Survey 1
In S1, all statements except statement #13, scored at or above the minimum agreement
(G= 0.21; ‘‘Fair’’ degree of agreement on the (Landis, Richard Landis & Koch, 1977) scoring
system). Seven of 45 statements (16%) showed inter-annotator agreement achieving
statistically-significant scores in two certainty categories simultaneously. Table 3 shows
the distribution of statements among certainty categories and agreement levels. 11 of
45 statements (24%) were classified as High certainty; 14 of 45 statements (31%) were
Medium High; Medium Low was represented by 12 of 45 statements (27%); and the Low
certainty category did not produce inter-annotator agreement for any statement

Survey 2
Disposition of Certainty categories and agreement levels for S2 are shown in Table 4. Seven
of the 45 statements (16%) did not achieve significant agreement for any certainty level.
Relatively High was selected for 19 of 45 statements (42%). The remaining statements
(19/45; 42%) were selected as Relatively Low.

Survey 3
Table 5 summarizes the levels of agreement and certainty classifications observed in S3.
Categories were ranked numerically from 1 (the highest level of certainty) to 3 (the lowest
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Table 5 Categorization consistency of statements (by statement number) for survey S3.

Agreement level Category 1 % of corpus Category 2 % of corpus Category 3 % of corpus

Almost Perfect [0.81–1.00] 3, 15 4.4% 0 0% 0 0%
Substantial [0.61–0.8] 27, 28, 29, 38, 42 11.1% 0 0% 0 0%
Moderate [0.41–0.6] 4, 25, 30, 41, 43 11.1% 2, 16, 17, 23, 26,

33, 34, 35, 37, 40
22.2% 0 0%

Fair
[0.21–0.4]

22 2.2% 1, 6, 8, 9, 10, 11, 12,
13, 18, 19, 20, 31, 32, 45

31.1% 21, 24, 36, 44 8.8%

Poor [0.2] 5, 7, 14, 39 8.8%
Double classified 0 0%

level of certainty). Minimum agreement (G= 0.21) or superior was observed in 41 of
45 statements (91%) with no doubly-classified statements, indicating little evidence of
annotator-perceived overlap between the presented categories. Four of 45 statements (9%)
did not obtain agreement for any certainty category. Category 1 was selected for 13 of 45
statements (29%). 24 of the total of 45 (53%) were chosen with level of Category 2. Finally,
Category 3 was selected for four out of 45 statements (9%).

Clustering
As shown in Fig. 3, HCA and Spearman correlation revealed three primary clusters when
executed over the three surveys combined. Considering only the horizontal axis, the
leftmost cluster includes S3-Category1, S1-High and S2-Relatively High. Numbers inside
the squares of this cluster show significant Spearman correlation (S1-High/S2-Relatively
High: r = 0.81, p-value < 0.001; S1-High/S3-1: r = 0.72, p-value < 0.001; S2-Relatively
High/S3-1: r = 0.79, p-value < 0.001).The second branch of the HCA is split into twomain
sub-trees, including the center and right regions of Fig. 3. The cluster in the center side
of the figure, differentiated by excellent Spearman correlation, contains S1-Medium Low,
S2-Relatively Low and S3-Category3 (S1-Medium Low/S3-3: r = 0.78, p-value < 0.001;
S2-Relatively Low/S3-3: r = 0.81, p-value < 0.001; S1-Medium Low/S2-Relatively Low:
r = 0.83, p-value < 0.001). Finally, the smaller cluster identified by HCA on the right side of
Fig. 3 comprises S1-Medium High and S3-Category2 with moderate Spearman correlation
(r = 0.55, p-value < 0.001), confirming that a third certainty category has sufficiently
strong support.

Supporting the previous cluster tests, using the majority rule approach, based on the
indices that were available in NbClust, the results (Fig. 4) indicate that:

• 11 indices proposed 3 as the optimal number of clusters for the results of S1 (Fig. 4A)
• 9 indices proposed 2 as the optimal number of clusters for the results of S2 (Fig. 4B)
• 7 indices proposed 3 as the optimal number of clusters for the results of S2 (Fig. 4B)
• 11 indices proposed 3 as the optimal number of clusters for the results of S3 (Fig. 4C).

Note that, surprisingly, the second-most optimal number of clusters for Survey 2 was
three (Fig. 4B), despite S2 having only two possible responses. This will be discussed further
in the ‘Discussion’ section.
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Table 6 Analysis of Principal Components of survey S1.

Principal Components: Comp.1 Comp.2 Comp.3 Comp.4

High 0.597 0.200 0.336 0.700
Medium High −0.126 −0.885 0.418 0.161
Medium Low −0.610 0.033 −0.382 0.694
Low −0.505 0.418 0.753 −0.050
Component variances 2.276 1.137 0.386 0.200
Proportion of Variance 0.569 0.284 0.097 0.050
Cumulative Proportion 0.569 0.853 0.950 1.000

Component Variances (row 6), Proportion of Variance (row 7) and Cumulative
Proportion (row 8) are summarized in Table 6 for S1, for each principal component.
Table 6 additionally supplies the information to explain each component and its relative
weighting, requisite to understanding all components. Horn’s parallel analysis on S1 and S3
retained optimally two factors, though three factors was also within acceptable boundaries.
S2 also retained two factors. Given the results of the cluster analysis (Fig. 4), and given the
more robust separation of, and cohesion within categories in the third survey, we believe
that the optimal number of components to retain is three. Detailed output is provided in Fig.
S1–S3. The first three components explain 95% of the variance of the data. Figure 5A shows
the graph resulting from a principal component analysis (PCA) of responses to statements
from S1, clustered by K-Means (colored dots). Red lines represent the eigenvectors of
each variable (here the certainty categories) for PC1 against PC2. A coefficient close to 1
or -1 indicates that variable strongly influences that component. Thus, the High category
has a strong influence on PC1 (0.59), Medium High negatively influences PC2 (−0.88),
and Medium Low and Low have a notably strong negative relationship with PC1 (−0.61
and −0.50, respectively). Additionally, Low strongly influences PC3 in a positive manner
(0.75). The same approach was followed for S2 and S3, with the results shown in Fig. 5B,
C, and D. For survey S2, we show the K-Means clustering results for both a three-cluster
solution (Fig. 5B), and a two-cluster solution (Fig. 5C).

Machine learning
The corpus of 3,221 author-annotated statements was used to train a 5-layer NN model.
This was validated using 20-fold CV due to the size of the dataset, with the result indicating
that it achieved 89.26% accuracy with a standard deviation of 2.14% between folds. A test of
its performance relative to the highest-scoring dataset (Survey 3, majority rule classification
of the publicly-annotated 45 statements) showed 82.2% accuracy (see Table 7, right). A
further test was done to validate the author-categorized corpus compared to the publicly
annotated dataset (see Table 7, left). Majority rule vs. the author’s classification gave a
kappa value of 0.649 (substantial), while comparison with the model’s classification gave a
kappa of 0.512 (moderate).
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Table 7 Performance of the neural network model on the 45 publicly-annotated statements.

S3 Majority Rule vs. Author’s Classification S3Majority Rule vs. Model’s Classification

Precision Recall F-Score Overall accuracy Precision Recall F-Score Overall accuracy

Category 1 0.857 0.923 0.889 0.933 0.786 0.786 0,786 0.867
Category 2 0.692 0.947 0.800 0.800 0.778 0.808 0,792 0.756
Category 3 1.000 0.385 0,555 0.822 0.250 0.200 0,222 0.844
Average 0.849 0.751 0.748 0.851 0.604 0.598 0,600 0.822
Confusion Matrix

1
Table 7: Performance of the neural network model on the 45 publicly-annotated statements

S3 Majority Rule vs. Author’s Classification S3 Majority Rule vs. Model’s Classification

Precision Recall F-Score
Overall 

accuracy
Precision Recall F-Score

Overall 

accuracy

Category 1 0.857 0.923 0.889 0.933 0.786 0.786 0,786 0.867

Category 2 0.692 0.947 0.800 0.800 0.778 0.808 0,792 0.756

Category 3 1.000 0.385 0,555 0.822 0.250 0.200 0,222 0.844

Average 0.849 0.751 0.748 0.851 0.604 0.598 0,600 0.822

Confusion 

Matrix 

1 2 3

1 12 1 1

2 1 18 7

3 0 0 5

1 2 3

1 11 3 0

2 2 21 3

3 1 3 1

Kappa 0.649 0.512

2

PeerJ reviewing PDF | (2019:03:35547:4:0:NEW 21 Feb 2020)

Manuscript to be reviewed

1
Table 7: Performance of the neural network model on the 45 publicly-annotated statements

S3 Majority Rule vs. Author’s Classification S3 Majority Rule vs. Model’s Classification

Precision Recall F-Score
Overall 

accuracy
Precision Recall F-Score

Overall 

accuracy

Category 1 0.857 0.923 0.889 0.933 0.786 0.786 0,786 0.867

Category 2 0.692 0.947 0.800 0.800 0.778 0.808 0,792 0.756

Category 3 1.000 0.385 0,555 0.822 0.250 0.200 0,222 0.844

Average 0.849 0.751 0.748 0.851 0.604 0.598 0,600 0.822

Confusion 

Matrix 

1 2 3

1 12 1 1

2 1 18 7

3 0 0 5

1 2 3

1 11 3 0

2 2 21 3

3 1 3 1

Kappa 0.649 0.512

2

PeerJ reviewing PDF | (2019:03:35547:4:0:NEW 21 Feb 2020)

Manuscript to be reviewed

Kappa 0.649 0.512

DISCUSSION
Evidence to support three levels of certainty in scholarly statements
In S1, we began with a four-category classification system, since this is the highest number
presumed in earlier studies (Zerva et al. used a 5-point numerical scale, but we do not
believe they were proposing this as a categorization system). In the absence of any agreed-
upon set of labels between these prior studies, and for the purposes of asking untrained
annotators to categorize scholarly statements, we labelled these categories High, Medium
High, Medium Low and Low. The results of this survey revealed statistically significant
categorization agreement for 37 of the 45 statements (82% of total), with seven statements
being doubly-classified and one statement showing poor inter-annotator agreement, for a
total of eight ‘ambiguous’ classifications. The G index (Holley & Guilford, 1964) with only
four categories is small, and the statistical probability of chance-agreement in the case of
ambiguity is therefore high, whichmay account for the high proportion of doubly-classified
statements. Interestingly, the category Lowwas almost never selected by the readers.Wewill
discuss that observation in isolation later in this discussion; nevertheless, for the remainder
of this discussion we will assume that the Low category does not exist in our corpus of
∼3,200 author-annotated statements, and will justify that in later detailed arguments.

With respect to the categories themselves, the category of High had robust support
using the G index statistic, indicating that it represents a valid category of certainty based
on agreement between the annotators on the use of that labelled category. Support for
the other two, medium-level, categories was less robust. This could be interpreted in two
ways - one possibility is that these two categories are not distinct from one another, and
that readers are selecting one or the other ‘‘arbitrarily’’. This would suggest that there
are only two certainty categories used in scholarly writing. The other option is that the
labels assigned to these two non-high categories do not accurately reflect the perception of
the reader, and thus that the categorizations themselves are flawed, leading to annotator
confusion.

In Survey 2, with only two categories (Relatively High and Relatively Low), statistical
support for these two categories was evident, but deeper examination of the results suggests
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that these categories may still not accurately reflect the reader’s perception. For example,
seven of the 45 statements (16%) showed no inter-annotator agreement. Of the remainder,
Table 4 shows a clear pattern of association between the strength of certainty perceived by
the reader, and the degree to which the readers agreed with one another. Effectively, there
was greater agreement on the categorization of high-certainty statements than low-certainty
statements. Thismirrors the observations from Survey 1, where the categoryHigh generated
the highest levels of agreement among annotators. Since this binary categorization system
lacks an intermediate category, the Pc index in this survey is 0.5, meaning that agreement
by chance is high. It appears that statements that would have been categorized into a
middle class from Survey 1 became distributed between the two Survey 2 categories, rather
than being categorized uniformly into the lower category. This would indicate that the
two-category explanation for Survey 1 is not well-supported, and possibly, that the labelling
of the categories themselves in both Survey 1 and Survey 2 confounds the analysis and
does not reflect the perception of the reader. In other words, the category High/Relatively
High seems to match a perception that exists in the minds of the readers, but the categories
Medium High (S1), Medium Low (S1) and Relatively Low (S2) might not correspond to
the perception of the readers for the lower certainty statements, which is why they are less
consistent in the selection of these categories.

To reveal patterns of annotator behavior within and between surveys we utilized a
variety of clustering approaches (Figs. 3 and 4). That there are three, rather than two or
four, categories is supported by the hierarchical clustering of all three surveys and amajority
rule approach, shown in Fig. 3 (see clusters along the top edge) and Fig. 4. Figure 3 reveals
three primary clusters in the data, where high is strongly differentiated from non-high
categories. The output from NbClust’s ‘‘majority rule’’ approach to selecting the optimal
number of clusters based on the number of statements was executed on individual surveys.
The results for S1 and S2 are shown in Fig. 4A and Fig. 4B. The majority rule indicates
that there were three discernable clusters in S1. Survey 2 was assessed by the 30 NbClust
indices (Charrad et al., 2014) (Fig. 4B). Surprisingly, we found that, while nine indices
recommended only two clusters, seven indices suggested that there were three clusters.
Since a cluster represents a pattern of categorization-behavior among all evaluators, we
take these results as further indication that there are three discernable annotator responses
when faced with a certainty categorization task.

To further explore themeaning of these clusters, we executed a feature reduction analysis
using Principal Components. The PCA of Survey 1 revealed three primary components
accounting for ∼95% of the variability. The main component, accounting for more than
half (∼57%) of the variation, is characterized by a strong positive influence from the
category labelled High, and a negative influence from the categories labelled Medium Low
and Low. This lends support to our earlier interpretation that there is little ambiguity among
annotators about what statements are classified as highly certain, andmoreover, when faced
with a high-certainty statement annotators will almost never select one of the low categories.
The second and third components (accounting for∼28% and∼10% respectively) aremore
difficult to interpret. Component 2 is characterized by a strong negative influence from
the category Medium High; Component 3’s ‘‘signature’’ is distinguished by a positive
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influence from the category Low, though as stated earlier, this category was rarely selected
and showed no significant agreement among annotators, making this difficult to interpret.
The lack of clarity regarding the interpretation of these second and third components
may reflect ambiguity arising from the labelling of the non-high certainty categories in
the questionnaire; effectively, the words used for the labels may be confusing the readers,
and/or not aligning with their impressions of the statements.

In an attempt to gain additional evidence for a three-category classification system, we
undertook a third survey (S3) in which the reader was offered three categories, ordered
from higher to lower, but with numerical labels (1, 2, or 3). The rationale for this was
twofold. First, we could not think of three suitable labels that would not inherently bias
the results (for example, ‘high’, ‘medium’, and ‘low’ would not be suitable because we have
already determined that the category ‘low’ is almost never selected). In addition, we wished
to know if category labels were a potential source of bias, and therefore more semantically
neutral labels might lead to a stronger correspondence between the annotators. Indeed,
Survey 3 generated the most consistent agreement of the 3 questionnaires, where only four
of the 45 statements did not meet the cutoff level for annotator agreement, and none were
doubly-classified. It is not possible to disambiguate if this enhanced agreement is due to
the annotators being presented with a ‘‘correct’’ number of categories, or if it supports the
suggestion that the presentation of meaningful (but non-representative) category labels
caused annotators to behave inconsistently in S1 and S2, or perhaps a combination of both.
As with S1, NbClust’s ‘‘majority rule’’ proposes three clusters for S3 (Fig. 4C).

In Fig. 3 we present the correlation matrix to show how the categories relate to one
another between the three surveys, using Spearman Correlation. High (S1) is clearly
correlated with Relatively High (S2) and Category 1 (S3). Medium Low (S1), Relatively Low
(S2) and Category 3 (S3), are also highly correlated. Low (S1) only hasmoderate correlation
with Medium Low (S1), Relatively Low (S2) and Category 3 (S3). The intermediate values
Medium High (S1) and Category 2 (S3) are found on the negative side of Principal
Component 1 (Figs. 5A & 5D), which supports the interpretation that a High certainty
category is strongly supported, and strongly distinct from other categories. The non-high
categories appear as distinct blocks within the correlation matrix, but with more ambiguity
or inconsistency, though the Jaccard similarity index was sufficient to support the existence
of these two lower-certainty categories. Additionally, the clusters identified by the Spearman
analysis (3 clusters) are supported by the results of the HCA analysis (3 branches).

One general source of inconsistency we noted in the data could be described as a
‘‘tendency towards the middle’’. When a category is removed, statements from that
category tend to distribute to adjacent categories. We presume this reflects some form of
‘‘central tendency bias’’, a behavioral phenomenon earmarked as a preference for selecting
a middle option. (Hollingworth, 1910; Huttenlocher, Hedges & Vevea, 2000; Duffy et al.,
2010). Nevertheless, this did not appear to be sufficiently strong in this investigation to
mask the detection of distinct clusters of categorization behavior.

In summary, the results suggest that there are three categories of certainty in the minds
of the readers of scholarly assertions. One category is clearly distinguished as representing
high-certainty statements. The other two categories, representing non-high certainty
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statements, are also well distinct from one another in the minds of the annotators, however,
seem to not be reflected well by the labels ‘‘moderately/relatively + high/low’’. Nevertheless,
they do appear to represent a higher-to-lower spectrum, since the replacement of textual
labels with a numerical range resulted in stronger annotator agreement about these two
lower categories.

The absence of a Low certainty category
Several studies that preceded this one (Friedman et al., 1994; Wilbur, Rzhetsky & Shatkay,
2006;De Waard & Schneider, 2012) suggested four categories of certainty, with one of those
being a category that would represent the lowest certainty. In this study, we identify only
three. The category that seems to be absent from our data is this lowest category - generally
described as ‘‘no knowledge’’ in these three precedent studies. We examined our corpus
and, given the grammatical cues suggested by De Waard & Maat (2012) we identified two
statements in our corpus that, by those metrics, should have scored in the Low category.
Those are Statement 3, ‘‘However, this was not sufficient for full blown transformation of
primary human cells, which also required the collaborative inhibition of pRb, together with
the expression of hTERT, RASV12.’’, and Statement 4, ‘‘Hence, the extent to which miRNAs
were capable of specifically regulating metastasis has remained unresolved.’’ Looking at the
results in Tables 3–5, these two statements were annotated with considerable agreement
as high-certainty statements - the opposite of what would have been predicted. One
explanation for this is that the statements are making a negative claim, with high certainty,
and thus are being categorized as high-certainty assertions by our annotators. If that is the
case, then the category of ‘‘no knowledge’’ may not be a category that lies anywhere on
the spectrum of certainty, and may reflect a distinct feature of scholarly communication
discourse, or (more likely) a combination of the meta-knowledge facets of certainty and
polarity.

Application of this categorization system
As indicated in the Introduction, a primary motivation for this study is its application to
the automated capture of metadata related to the certainty being expressed in text-mined
scholarly assertions, or to identify or monitor ‘hedging erosion’. To demonstrate how
the outcomes of this study can be applied, we have used the data described here to
generate, by machine-learning, an automated certainty classifier capable of assigning new
scholarly statements into one of the three certainty categories. Two exemplar outputs
from this classification system are shown in Figs. 6 and 7. Figure 6 shows three sets of
statements, color-coded by the category of certainty detected by our classifier - green
(Category A, associated with High certainty), orange (Category B, non-high/moderate),
and red, (Category C non-high/low). Two citation chains relate to the accumulation of
beta-APP in muscle fibers of Alzheimer’s Disease patients (Figs. 6A & 6B), while Fig. 6C
shows a longer citation chain identified by Greenberg as being problematic with respect
to ‘citation-distortion’ (Greenberg, 2009). The panels reveal that the degree of certainty
can change through citation, becoming higher (Figs. 6A & 6B). Figure 6C reveals a similar
trend toward increasing certainty, with the exception of one author who used a clearly
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A “We have previously demonstrated that accumulation of AβPP epitopes precedes other abnormalities in 
IBM muscle fibers” (Askanas et al., 2000b) 

“βAPP accumulation is considered to play a major role in the pathogenesis of IBM and AD and is thought 
to precede other changes in both diseases”(Askanas et al., 1996) 

“Those muscle fibers, widely prevalent in our one case of hereditary IBM, may represent early changes of 
IBM and therefore be analogous to the finding in AD brains where PAP accumulations in the "diffuse" 
Congored-negative plaques seem to represent early changes”(Askanas, Engel & Alvarez, 1992) 

B “We have previously demonstrated that accumulation of AβPP epitopes precedes other abnormalities in 
IBM muscle fibers” (Askanas et al., 2000b) 

“Increased βAPP-mRNA and increased accumulation of βAPP epitopes appear to precede other 
abnormalities in IBM muscle fiber”  (Askanas et al., 1997a) 

“One possibility is that one protein is accumulated first, due to excessive synthesis, e.g., excessive 
transcription of mRNA in the IBMs is known for beta APP”(Askanas & Engel, 1995) 

 

C Recently it was reported that s-IBM vacuolated muscle fibers, and those in some other vacuolar myopathies, 
contain a marker of autophagosomes, but only in s-IBM is it colocalized with AβPP[18]. (Askanas and 
Engel 2007) 

Overexpression of amyloid precursor protein (APP) and subsequent accumulation of cleaved fragments 
including β-amyloid in vacuolated muscle fibers is considered a central mechanism in the pathogenesis of 
s-IBM.[2] (Lünemann et al. 2007) 

it is now established that Aβ/AβPP is also abnormally accumulated in muscle fibers of s-IBM patients, 
where they are considered to play an important pathogenetic role[4,5,6,7] (Askanas and Engel 2006) 

A possibility that excessive accumulation of AβPP/Aβ induces inflammation has been proposed by us and 
by others.[1-3,7,10] (Askanas and Engel 2003) 

Deposition of the Aβ fragment of the amyloid precursor protein is a feature of affected muscle in IBM (see 
below) and it has been shown that muscle cells can secrete Aβ.[10] Interaction of Aβ with muscle cells in 
turn can stimulate IL-6 production by these cells [19]… (Mastaglia et al. 2003) 

However, in some abnormal muscle fibers in IBM, the accumulation of βAPP appears to extend outside the 
muscle fiber boundary. This may have been attributable to a fragility of the fiber’s surface membrane, 
which could have been transiently broken.[25] (Baron et al. 2001) 

 

Figure 6 Automated classification of scholarly assertions related to the accumulation of beta-APP
protein in muscle fibres, color coded as green (Category A: highest certainty), orange (Category B:
medium certainty) and red (Category C: lowest certainty). (A and B) Two citation chains showing that
the degree of certainty expressed in the most recent statement is higher than that in the cited text. (C) A
selection of statements identified by Greenberg (2009), as being potentially indicative of ‘citation distor-
tion’. In this panel, there is a general trend to higher certainty over time, with the exception of an early
high-certainty statement by Mastaglia in 2003 (second row from the bottom).

Full-size DOI: 10.7717/peerj.8871/fig-6

high-certainty assertion four years before others in the community expressed the same idea
with certainty.

Figure 7 demonstrates how this certainty classification could be used to enhance
the quality of machine-extracted information. The figure shows a block of machine-
readable information following the NanoPublication model for scholarly publishing.
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@prefix this: <http://w3id.org/nanopub_mario/CertID_3ab55c9c-2321-11ea-b65c-fc4dd447acf2> . 
@prefix sub: <http://w3id.org/nanopub_mario/CertID_3ab55c9c-2321-11ea-b65c-fc4dd447acf2#> . 
@prefix void: <http://rdfs.org/ns/void#> . 
@prefix dcterms: <http://purl.org/dc/terms/> . 
@prefix dcelem: <http://purl.org/dc/elements/1.1/> . 
@prefix np: <http://www.nanopub.org/nschema#> . 
@prefix pav: <http://swan.mindinformatics.org/ontologies/1.2/pav/> . 
@prefix prov: <http://www.w3.org/ns/prov#> . 
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> . 
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . 
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 
@prefix dcat: <http://www.w3.org/ns/dcat#> . 
@prefix schema: <https://schema.org/> . 
@prefix thispub: <https://dx.doi.org/10.1371/journal.pone.0073940#> . 
@prefix orca-x: <http://w3id.org/orca-x#> . 
 
sub:Head { 
        this: np:hasAssertion sub:assertion ; 
        np:hasProvenance sub:provenance ; 
        np:hasPublicationInfo sub:pubinfo ; 
        a np:Nanopublication . 
} 
 
sub:assertion { 
        orca-x:asserts-3ab55c9c-2321-11ea-b65c-fc4dd447acf2 rdf:singletonPropertyOf orca-x:asserts . 
        thispub: orca-x:asserts-3ab55c9c-2321-11ea-b65c-fc4dd447acf2 "Consequently miRNAs have 
been demonstrated to act either as oncogenes (e.g., miR-155, miR-175p and miR-21) [15,16] or 
tumor suppressors (e.g., miR-34, miR-15a, miR-161 and let-7)" . 
        orca-x:asserts-3ab55c9c-2321-11ea-b65c-fc4dd447acf2 orca-x:hasConfidenceLevel orca-
x:CategoryA . 
} 
 
sub:provenance {    
        sub:assertion dcterms:author "Certainty Classifier" ; 
        dcterms:title "Automated Certainty Classification of Statement from 
https:dx.doi.org/10.1371/journal.pone.0073940" ; 
        dcterms:license <https://creativecommons.org/publicdomain/zero/1.0/> ; 
        schema:identifier this: ; 
        dcat:distribution sub:assertion ; 
        prov:wasDerivedFrom sub:_1 . 
 
        sub:_1   dcelem:format "application/pdf" ; 
        a void:Dataset , dcat:Distribution ; 
        dcat:downloadURL <https://dx.doi.org/10.1371/journal.pone.0073940> . 
 
} 
 
sub:pubinfo { 
        this: dcterms:created '2019-12-20'^^xsd:date ; 
        dcterms:rights <https://creativecommons.org/publicdomain/zero/1.0> ; 
        dcterms:rightsHolder <https://orcid.org/0000-0002-9416-6743> ; 
        pav:authoredBy "Mario Prieto" , <https://orcid.org/0000-0002-9416-6743> ; 
        pav:versionNumber "1" ; 
        prov:wasGeneratedBy "Mario Prieto's Certainty Classifier" . 
} 

 

Figure 7 An exemplar prototype NanoPublication including certainty annotations. The figure shows
how certainty classifications could be used as additional, and important metadata when added to text-
mining pipelines. A NanoPublication is a machine-readable representation of a scholarly assertion, carry-
ing with it all of its provenance. In this exemplar (hypothetical) NanoPublication for statement #29 in this
study, the concept being asserted (that microRNA mir-155 has (continued on next page. . . )

Full-size DOI: 10.7717/peerj.8871/fig-7
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Figure 7 (. . .continued)
the function of a Tumor Suppressor) is captured using ontologically-based concepts in the ‘‘assertion’’
block of the NanoPublication (red text), together with the proposed annotation of that statement’s cer-
tainty category (blue text) being ORCA-X Category A. This could be used, for example, to filter assertions
based on the degree of certainty they express. The final block, pubinfo, contains authorship, license, and
citation information for the NanoPublication itself, expressing the terms of usage of this metadata, and
who to cite (green text). This entire structure can be interpreted by automated agents, and fully complies
with the FAIR Data Principles.

The sentence which has been extracted in this exemplar is from the article with DOI
‘10.1371/journal.pone.0073940’, and the specific sentence ‘‘Consequently miRNAs have
been demonstrated to act either as oncogenes (e.g., miR-155,miR-17 −5p and miR-21) or
tumor suppressors (e.g., miR-34,miR-15a,miR-16 −1 and let-7)’’. Following the rules of
NanoPublications, a single scholarly assertion is captured - in this case, that ‘‘miR-34 has
the function of tumor suppressor’’ (red text). The provenance block contains information
showing the degree of certainty being expressed (Category A, which maps to the highest
certainty category in our classifier; blue text). Finally, there is a block of citation information
regarding the NanoPublication itself, such that the author of the certainty classification
can be properly cited (green text).

Tools for researchers, authors, reviewers, and data miners
As discussed in the introduction, researchers may lack the knowledge required to assess the
legitimacy of claims that are not directly in their domain, or may be unaware of the history
of a claim if they have not followed a citation chain to its roots. Similarly, when acting as
peer reviewers, there is little tooling to assist them in evaluating the validity of assertions
in the submitted manuscript or funding proposal. In parallel with research into automated
identification of reference-spans (Saggion, AbuRa’ed & Ronzano, 2016), the availability of
a certainty classifier would make it possible to automate the creation of annotated citation
chains such as shown in Fig. 6. Reviewers could then use these to determine if a claim was
being made with unusually high (or low) certainty—like the Magstalia statement from
2003, shown in Fig. 6C—and thus enhance the confidence of their reviews. Similarly,
such tools could become an important part of the scholarly planning process. During the
preparation of a paper or proposal, researchers could be made aware of dubious assertions,
and avoid relying on these as the bases for their hypothesis. In the context of automated
data mining, assuming that incremental steps towards certainty should be associated with
the existence of supporting data, the automated detection of ‘‘certainty inflection points’’
could be used by data mining algorithms to identify the specific dataset containing data
supporting (or refuting) a given claim. Together with the use of certainty classification in
the context of text-mining discussed above, the use of such a classification system may
become an important part of the scholarly publishing lifecycle.

Future investigations to elucidate perceptions of certainty
A variety of future studies could provide additional insight into how researchers
communicate and perceive certainty. The results presented here seem to suggest that
words like ‘‘medium’’ and ‘‘low’’ do not align well with the perception held by researchers
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as they read statements that fall into non-high certainty categories. Future studies could
extract additional information in the questionnaire, such as questions related to the basis
upon which an assertion was made (e.g., speculation, direct or indirect observation, etc.),
as it may be that the distinction between the non-high certainty categories is being made
based on other kinds of implicit information, rather than being specifically ‘‘medium’’
or ‘‘low’’ expressions of certainty. It would also be interesting to capture demographic
information, to determine if perception of certainty changes as a researcher becomes more
experienced, if it differs between different linguistic groups, or if it is associated with other
demographic variables

CONCLUSIONS
This study attempted to derive a data-driven certainty classification system, using
statements from scholarly literature in the biological sciences. We found support for
three categories of certainty within the dataset of 45 scholarly statements we selected.
These consisted of one well-defined High Certainty category, and two non-high certainty
categories that were seemingly not well-described using textual labels, but were clearly
distinguishable from one another using statistical algorithms. We suggest that a fourth
category described in previous studies—best described as ‘‘lack of information’’—likely
does not belong in the same categorization system, and is likely a measure of a different
discourse feature than ‘‘certainty’’. Finally, we show how this categorization system could
be used to capture key contextual information within text-mining pipelines, to improve
the quality of automated information capture. Work on the machine-learning models
leading to such an automated classifier are well underway, and we demonstrate that they
are already showing a high degree of accuracy, indicating that machines may be capable of
detecting and distinguishing the subtle linguistic cues of certainty that we have observed
in this study. While this study was limited to biomedical statements, and thus may be
applicable only in this domain, it nevertheless seems likely that the results will be more
generalizable, at least within the sciences where these kinds of grammatical structures are
commonly used.
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