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Simple Summary: The aim was to study the question of whether the texture of mollusk shells
changes with alteration in their elemental composition. Even though significant differences between
concentrations of elements among the stations were found, the crystallographic textures of mussel
shells from the studied bays showed insignificant dissimilarities. The observed differences in the
maximum values in the pole figures fell within the range of variability identified for the genus
Mytilus. Nevertheless, they appeared to correlate with the concentrations of Br, Mg, and Sr, which
merits further investigation using larger sample sizes and higher variabilities of the ecological state
of mussels.

Abstract: A both wild and farmed mussels in natural conditions, anthropogenic inputs are usually
reflected in the increase of the content of specific elements. To determine the possible effect of the
elemental patterns of farmed and wild mussels (Mytilus galloprovincialis) collected in the Saldanha
Bay area (South Africa) on the crystallographic texture of the shells, the content of 20 elements
in shells and 24 in the soft tissue of mussels was determined by neutron activation analysis. The
crystallographic texture of mussel shells was analyzed using time-of-flight neutron diffraction. The
wild mussels from open ocean site live in stressful natural conditions and contain higher amounts of
the majority of determined elements in comparison with mussels farmed in closed water areas with
anthropogenic loadings. The changes between the maximums of the same pole figures of the three
samples are in the range of variability identified for the genus Mytilus. The content of Cl, Sr, and I was
the highest in mussels from the open ocean site, which is reflected by the lowest mass/length ratio.
The determined crystallographic textures of mussels are relatively stable as shown in the analyzed
pole figures despite the concentrations of Na, Mg, Cl, Br, Sr, and I in shells, which significantly differ
for wild and farmed mussels. The stability of the crystallographic texture that we observed suggests
that it can be used as a reference model, where if a very different texture is determined, increased
attention to the ecological situation should be paid.

Keywords: neutron diffraction; crystallographic texture; pole figures; neutron activation analysis;
trace elements; bivalve mollusk shells

1. Introduction

Mytilus galloprovincialis, a cosmopolite mussel species, has a wide geographical dis-
tribution spanning from the Subtropics to the Arctic. In addition, among other species of
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mussel (including filum Mytilus), it tolerates changes of a wide range of environmental
parameters (temperature, salinity, and pH). The adaptation potential of Mytilus galloprovin-
cialis is reflected in the high ranges of micro- and macroelement concentrations relative to
the anthropogenic or natural inputs.

The number of works focused on the content of elements in shells of mussels is limited.
Usually, the relationships between potential elemental proxies by using specific ratios
(element/Ca or element/Na) or effect of environmental factors such as temperature [1],
salinity, pH [2,3], and seawater chemistry on elemental composition is investigated. Some
studies have focused on the analysis of micro or macroelements along transects of shells to
describe the temporal trends connected with change of the environmental parameters and
growth rates [1]. Several works are dedicated to the analysis of the interlinking of elements
in soft tissues and shells of mussels used as bioindicators of water pollution [4,5]. However,
in such studies, the number of determined elements is usually low (3–12 elements). They
are hindered by the limits of detection of the techniques and lack of reference data about
microelement concentrations.

Since bivalves are sensitive organisms, it is assumed that environmental changes could
affect the texture of their shells. The effect of salinity and pH treatments on the crystal
orientation in mussel shells was studied by Grenier [6]. They showed that biomineralization
processes are significantly affected by lower pH conditions than by lower salinity. It is
important to note that in real estuarine conditions, mussels are not exposed to such low
levels of salinity and pH to reveal the adaptation mechanism.

The present study aimed to determine the elemental patterns of farmed and wild
mussels collected in the Saldanha Bay area (South Africa) and to assess their possible
effect on the crystallographic texture of the shells. Neutron activation analysis (NAA)
was applied to determine the elemental composition of the samples. The technique is
used for an accurate determination of a large number of elements, including rare earth
elements, heavy elements such as Sb, Cs, Th, U, and nonmetals such as As, Se in samples
with different matrices [7].

Crystallographic texture studies are traditionally carried out using X-ray or electron
backscattered diffraction (EBSD). However, due to the small penetration depth into the
substance, it is impossible to obtain the necessary information for a complete description
of the texture using these methods. Information about texture is traditionally obtained
from pole figures. Complete pole figures can only be measured by thermal neutron
diffraction. Moreover, it should be noticed that the X-ray and EBSD techniques have special
requirements, in that a sample must be flat, whereas a sample for neutron measurements
does not require special preparation. It is known in material science that adding elements
can drastically change the crystallographic texture of alloys [8]. Therefore, it is of interest
to study the question of whether the texture of mollusk shells changes with alteration in
their elemental composition. Both techniques are non-destructive and characterized by
high sensitivity.

For this study, the Saldanha Bay zone was chosen for its water areas with farmed and
wild mussels. The Danger Bay is situated out of the Small bay and the Langebaan lagoon
and is influenced by open ocean waters. These three zones have been characterized by a
relatively uniform vertical structure of the water column based on temperature and salinity
changes [9]. The Saldanha Bay Harbor is a developing industrial area, which exports such
products as coal, lead, steel, titanium slag, zinc concentrate, and zircon [10]. These materials
could be sources of water pollution with chemical elements, which could accumulate in
marine bivalves growing in nearby zones. However, according to ecological state reports,
the concentrations of trace elements in mussels from the studied area decreased in the last
decade [9]. In mussels from the Saldanha area, the levels of elements were analyzed by
several authors [11,12], including our works [13–16].

Metal concentrations in mussels Mytilus galloprovincialis had been measured since
1985 as part of the Mussel Watch Programme [17]. which. provides some indication of
bioavailable metals in the coastal environment. The lack of data on metal concentrations in
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shells in addition to soft tissues and established limits of their dangerous or safe levels in
natural conditions increase the importance of such studies.

2. Materials and Methods
2.1. Sampling

The samples of mussels were collected from three stations in the Saldanha Bay from
April 16 to May 09, 2019, before the spawning period (Figure 1). The stations were chosen
as the most representative in terms of availability of mussels, stability of environmental
parameters, and differences in pollution level according to previous studies [13–16]:
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club, St. 3—Small bay.

St. 1. Danger Bay was chosen to represent the features of wild mussels, which grow in
a pristine tidal zone and are exposed to waves and sunlight.

St. 2. Mussels from Langebaan Yacht Club were grown under the jetty and were
always submerged in water. This site is close to the West Coast National Park, exposed to
pollution sources at the mouth of the lagoon.

St. 3. Mussels in Small bay were grown at the West Coast Aqua Culture farm.
From each site, 11–17 individuals of one typical size (50–70 mm) of Mytilus galloprovin-

cialis were chosen randomly and collected. The number of mussels was determined with
the following considerations: minimum number of individuals necessary per sampling site,
representativeness of the subsample, and minimization of the deviations within the group.
In addition, the collection of such number of mussels does not harm the natural population.

The length (maximum anterior-posterior axis), height (maximum dorsal-ventral axis),
and width (maximum lateral axis) of shells were measured according to Lauzon-Guay
et al. [18]. For biometric characterization, the means of the following ratios were calculated
and presented further: mass of soft tissue (mg/kg, dry weight)/length (mm); weight
(mm)/height (mm); and conditional index (mg/cm3) calculated as mass of soft tissue (dry
weight)/length × width × height, according to [19].

The samples were frozen and transported to the Joint Institute for Nuclear Research,
Dubna (Russian Federation) for further analysis.
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2.2. Characterization of the Environmental Parameters

The temperature and salinity were in the typical range for open ocean zones according
to the Saldanha bay state report [9]. They ranged from 13 to 20 ◦C and from 32 to 35 PSU,
respectively, independently of rain and tidal activities. Even rain and weather changes influ-
encing one of the sites more than the others, the salinity and temperature fluctuations were
not as great. This resulted in the adaptation of mussels to specific hydrophysical conditions.

Salinity remained constant within a narrow range for the studied period (34.6–34.9 PSU).
High or low salinity outliers were not detected during the monitoring program in the April-
May season [9].

In general, at all key sites of the bay during the monitoring study, the water profiles
were found to be consistent. Bottom water with lower salinity usually enters the Bay
during the upwelling season (summer), and high salinity surface waters are developed in
late summer/autumn (the study period).

The introduction of oceanic waters into Saldanha Bay could be identified based on
temperature and salinity measurements and it results in the reduction of the levels of
nitrate and chlorophyll concentrations. Rarely the fast intrusions in the bay (St. 2 and 3)
could change the relatively stable stratification in the upper layer. It tends to create stress
conditions for mussels which are expressed by increased rates of accumulation of the
majority of microelements in the soft tissue of the organisms. St. 1 is situated in a zone
constantly open to the influence of ocean waters and storm activities, so the mussels from
this station grow in more stress-related conditions than mussels from the other sites.

Usually, the dissolved oxygen in the bottom waters of the bay reaches low levels in
the summer and autumn due to storms and vertical mixing of the water column. The
alternate stratification and water column mixing associated with upwelling and relaxation
phases over 3–10 day periods are set in the autumn period [9]. The extremely low dissolved
oxygen values were recorded for a short period in May (1 to 2 mg/L) which were below the
tolerable levels for invertebrates and fish [9]. According to Clark, such low oxygen events
could be associated with an introduction of cold water from the adjacent coast where low
oxygen water is known to occur during autumn.

Turbidity in the Saldanha Bay usually increases under strong wind conditions (due to
the wind and wave action that suspends particulate matter in the water column) and the
Danger bay is highly exposed to this impact [9]. Langebaan Lagoon, however, typically
remains clear with low levels of turbidity even when the winds stay strong. This could
be explained by the coarse structure of the sediment in the lagoon compared to the finer
sediment in Saldanha Bay [9]. The water column turbidity data reflected the same general
trends, the turbidity in winter generally ranged from 5 to 12 NTU, and in other seasons it
typically falls within the interval between 5 and 8 NTU [20].

The influx of nutrient-rich upwelled water into Saldanha Bay is a critical factor for the
growth of natural mussel assemblages or mariculture.

The fact that the thermocline is shallower than 5 m depth means that the shallower
parts of Saldanha Bay, particularly the Langebaan Lagoon, are not exposed to nutrients
(mainly nitrate) from the Benguela upwelling system [9]. As a result, these shallow water
areas do not support large plankton blooms and are usually clear.

It is known that winds and upwellings tend to create stress conditions for the mussel
population. The stratification of the water column from spring to summer can be caused
by wind-driven upwelling, and during the winter the water column stays more or less
isothermal [9]. Earlier continuous monitoring of the temperature identified a three-week
break in the usual upwelling cycle in December 1999, with consequent gradual warming of
the bottom water. This event was associated with a decrease in phytoplankton production
due to reduced import of nutrients, which negatively affected local mussel mariculture [21].
Sampling for this study was performed in April-May, as relatively stable stratification
conditions were assumed based on the monitoring study by [21].
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2.3. Elemental Analysis

In the laboratory, mussels were rinsed with deionized water to remove mud, sed-
iments, and other particles. For NAA each mussel was dissected with a plastic knife,
separated into the shell and soft tissue batches, and weighed. The material of soft tissues
and shells was firstly lyophilized and then dried to constant weight at 105 ◦C.

To decrease the inter-individual variability, which was previously studied [14,16], the
soft tissues and shells of all mussels from each site were grouped into pooled samples
and homogenized.

The samples were homogenized to powder using a planetary mono mill with agate
milling balls (PULVERISETTE 6, Fritsch Laboratory Instruments GmbH, Germany) at
400 rpm. Three repeats for each station were created and analyzed independently. The 0.3 g
of sample were packed into polythene bags for the determination of short-lived isotopes
and aluminum cups for long-lived isotopes of elements.

Neutron activation analysis at the REGATA facility of the reactor IBR-2 (Dubna,
Russian Federation) was applied for the determination of 23 macro- and microelements in
soft tissues and 20 in shells for each pooled batch of mussels. This method fits well for the
determination of specific groups of elements considered as markers, key elements, which
allow for estimation of the significance of terrigenous and anthropogenic factors [16].

The instrumental neutron activation analysis was performed differently for 3 groups
of elements according to the following determination types [7,16]. For short-lived isotopes
(Mg, Al, S, Cl, Ca, Ti, V, Mn, I) the subsamples were irradiated at a neutron flux of
1.6 × 1012 n cm−2 s−1 for 3 min and immediately measured for 15 min. For long-lived
isotopes, the subsamples were irradiated with epithermal neutrons in a channel with a
cadmium shield at a neutron flux of 3.31 × 1011 n cm−2 s−1 for 3 days, after 3 and 20 days
of decay samples were measured for 30 min (for such elements as Na, K, As, Br, and U) and
90 min (for Sc, Cr, Fe, Co, Ni, Zn, Se, Rb, Sr, Sb, Cs, and Th), respectively. The spectra of
induced gamma activity were measured with HPGe detectors (Canberra) with a resolution
of 1.9 keV at 1332 keV total absorption peak of 60Co. The detector is calibrated using
standard spectrometric and certified reference materials [22].

Specialized software developed in FLNP JINR [21] was used to create a Group Stan-
dard Sample (GSS) from standard reference materials (SRMs) irradiated simultaneously
with the samples to calculate the content of elements with maximum accuracy. The GSS is
also used to test the quality of the analysis. This procedure, applied to SRMs, allowed to
compare the obtained and certified values and provided quality control of the analysis [7].

For quality control assurance (Table 1), standard reference materials (SRMs) of different
origin provided by the National Institute of Standards and Technology (NIST), Institute
of Nuclear Chemistry and Technology (INCT/ICHTJ) and Joint Research Centre (JRC),
Institute for Reference Materials and Measurements (IRMM) were used: JRC-IRMM-BCR-
063R (Skim milk powder), NIST1633c (Coal fly ash), NIST1549 (Non-fat milk powder),
NIST1632d (Trace elements in coal), NIST2710a (Montana Soil), NIST2711a (Montana soil),
INCT-CTA-FFA1 (Fine fly ash), JRC-IRMM-BCR-667 (Estuarine sediment), and NIST1566b
(Oyster tissue). For the majority of elements, the concentrations were in the range of 5%
deviation between determined and certified values. Since the standard material for oyster
tissue (1566b) contains only a limited number of certified values, the use of standards of
different matrices allowed to expand the number of determinable elements in the mussel
samples, [16]. Chemical matrix effects, known to be significant sources of error in other
types of instrumental chemical analysis, are insignificant in NAA. In the case of small
samples (size and weight), the use of reference materials with matrices different from the
analyzed sample is provided by the insignificant matrix effect in NAA [23].
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Table 1. Quality control for neutron activation analysis.

Elements
Standard Reference

Materials (SRMs)
Concentrations, ppm Uncertainties, %

Deviation, %Determined Certified Determined Certified

Na 2711a 11,900 12,000 8.8 0.01 0.5
Mg 063R 1320 1263 7.6 2 4.6
Al 1633c 129,900 132,800 6.9 4.6 2.2
Cl 1632d 1150 1142 7.8 1 0.3
K FFA1 23,420 22,000 11.3 30 6.4
Ca 2710a 9450 9640 18.9 4.7 1.9
Sc 667 13.6 13.7 5.3 5.1 0.4
V 1632d 23.8 23.7 5.7 0.4 0.1
Cr 2711a 53.2 52.3 11.5 6 1.7
Mn 1549 0.27 0.26 15 23.1 4.2
Fe 2711a 27,900 28,200 5.5 0.04 1.2
Co 2711a 10 9.9 5.6 2 1.1
Ni 667 126 128 10.3 7 1.4
Zn 667 177 175 4.5 7.4 0.9
As 2711a 102 107 6 5 4.8
Se FFA1 4.4 4.6 39.1 30 3.3
Br 667 82.8 99.7 4.4 2.5 16.9
Rb 2711a 126 120 16.6 3 4.7
Sr FFA1 252 250 11.3 5.2 0.8
Sb FFA1 18.4 17.6 7.6 14.2 4.6
I 1549 3.1 3.4 15.3 0.6 7.4

Cs 667 7.9 7.8 4.3 9 0.8
Th 667 10.2 10 4.7 5 2.1
U 667 2.31 2.26 3.3 6.6 2.1

2.4. Crystallographic Texture Analysis of Minerals of Shells

The pole figures presented in this work were measured at the Frank Laboratory of
Neutron Physics of the Joint Institute for Nuclear Research (Dubna, Russia). For that, the
SKAT spectrometer (Spectrometer for Quantitative Texture Analysis) located on channel
7A-2 of the IBR-2 pulsed nuclear reactor was used [24]. Time-of-flight neutron diffraction
was used to obtain diffraction reflections corresponding to the minerals that make up
the shells.

SKAT consists of a detector ring (2 m diameter), on which 19 detector-collimator
complexes are located at the same scattering angle 2θ = 90◦. The detector modules are
mounted on the circumference of the detector ring in such a way that the step on the pole
figure is 5◦. The long flight path of more than 100 m and the collimator system provide a
relatively high resolution of ∆d/d = 5 × 10−3 at d = 2.5 Å and 2θ as reported by Keppler
et al. [25]. This resolution allows having non-overlapped diffraction peaks for some of the
calcite and aragonite reflexes of which the shells are composed. Pole figures are extracted
from measured 19 × 72 = 1368 diffraction patterns that correspond to the 5◦ × 5◦. It should
be noted that thanks to the time-of-flight technique, pole figures from all minerals (phases)
presented in the sample are measured simultaneously, that is, they are extracted from the
same patterns. The cross-section of the neutron beam of 50 × 90 mm makes it possible to
measure large samples up to 100 cm3. It should be emphasized that each partial pattern
was measured under the same conditions, meaning that the pole figures obtained in this
way do not need correction. Furthermore, due to the large penetration depth of neutrons,
bulk samples of centimeter size can readily be investigated in transmission geometry.

The most intense isolated diffraction reflections in each of the recorded patterns were
analyzed using the Pole Figure Extractor program [26] to determine the nature of the
distribution of the corresponding crystallographic planes in the valves. The intensity of
one reflection corresponding to the crystallographic plane with certain Miller indices gives
one point on the pole figure indicated by these indices. The conventional approach to
extract pole figures from the measured diffraction patterns was used. The way to assign
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integrated intensity and background value to the corresponding pole figure point could be
summarized by formulas:

I I(
→
y ) = (tmax − tmin)

i=tmax

∑
i=tmin

I(ti), Bkg(
→
y ) =

1
(tmax − tmin)

i=tmax

∑
i=tmin

I(ti). (1)

In this case, a part of the measured pattern containing the diffraction reflex is divided
into three regions. The side regions are used for background estimation whereas the central
region is for intensity estimation.

The intensity on the pole figure is:

Phi
(
→
y ) = I I(

→
y )−

Bkgle f t(
→
y ) + Bkgright(

→
y )

2
. (2)

The approach for PF extraction based on a summation of the intensities was selected
because the peak/noise ratio for both calcite and aragonite phases was not very high. It
was revealed that the accuracy of pole figures extraction depends on peak/noise ratio [27].
All extracted pole figures were normalized and smoothed with the same parameter [28].

The more ordered the mineral crystals the higher the intensity on the pole figure (pole
density), expressed in units of isotropic distribution (multiple random distribution, MRD).
An increase of pole figure intensity is interpreted as texture strengthening. A pole density
value equal to unity means that the corresponding crystallographic planes are uniformly
distributed in all directions in the sample.

For the study, valve sizes of at least 30 mm in length and a mass of at least 10 g were
selected. The 3–4 valves were connected using a two-component adhesive. This was carried
out to collect a volume of material sufficient for measurements. Then the sample prepared
in this way was attached to a glass pin and fixed in the goniometer of the setup (Figure 2).
The measurement time for each sample was 22 h.
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Either only the left or only the right valves were used. They were studied as a whole,
and not as valves surface fragments as is the case of backscattered electron diffraction or
X-ray texture analysis.
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The shells consist of two mineral phases which are calcite and aragonite. The most
intense diffraction reflections corresponding to crystallographic planes with Miller indices
(0006) and (10–14) for calcite and (012)/(121) and (102)/(200) for aragonite were analyzed.
The neutron diffraction pattern for one of the samples is presented in Figure 2, and it is the
sum of 1368 partial patterns measured for different directions.

2.5. Statistics

The obtained data were checked and analyzed by STATISTICA 12 software. For
descriptive statistics, the means and standard deviations, excluding the outliers were
used. For an indication of the precision of concentrations, we were used the coefficients
of variations (CV = SD/mean) in %. For assessment of the significance of differences
between the levels of mean concentrations among stations, the Kruskal-Wallis test [29]
was performed for the following reasons: the small number of observations (sample
size), normality of the data is nonessential (a non-parametric test), each observation is
independent of others.

3. Results and Discussion
3.1. Elemental Content of Shells and Soft Tissues and Allometry

Concentrations of 20 elements determined in shells and 24 elements—in soft tissues
of mussels from 3 stations are presented in Table 2. According to obtained data, the shells
of Mytilus galloprovincialis, as well as the soft tissues, were good accumulators of elements
such as Na, Mg, Al, Cl, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, Br, Sb, I, Cs, Th and U. However, the
low levels of concentrations for majority of analyzed elements decrease the abilities to use
shells in biomonitoring studies. It is worth to note that levels of such elements as Sc, Sb, I,
Cs, and Th were found in shells close to those in soft tissues, which means that shells could
be used as biomonitors for such elements.

For comparative assessment, the mean levels of elements among stations and literature
data are presented for shells in Table 3 and soft tissues in Table 4.

The significant differences between stations were found for the following elements:
In shells:
The concentrations of Cl, Sr, I in mussels from st. 1 were significantly higher (Kruskal-

Wallis test, p < 0.003, p < 0.02, and p < 0.05, respectively) than in mussels from St. 2 and 3.
The highest concentrations of Na and Mg were found at St. 2 (Langebaan) and they
significantly differ (Kruskal-Wallis test, p < 0.01 and p < 0.02, respectively) from St. 1
and St. 3. The highest concentrations of Br were found at St. 3 and it significantly differ
(Kruskal-Wallis test, p < 0.03) from St. 2 and St. 3.

In soft tissues:
The highest concentrations of Na, Mg, Cl, Cr, Fe, Co, Ni, Zn, As, Br, Sr, Sb, I, and

U were determined at St. 1 and they significantly differ (Kruskal-Wallis test, p < 0.002
to p < 0.03) from St. 2 and 3. The highest concentrations of As, Se, Rb, Cs, and Th at
St. 2 significantly differ (Kruskal-Wallis test, p < 0.004 to p < 0.03) from St. 1 and 3. The
majority of elements (except Zn, As, Se, and Rb) were significantly lower (Kruskal-Wallis
test, p < 0.01 to p < 0.004) at St. 3 than at St. 1 and 2.

The levels of elements in shells from the Saldanha zone are in agreement with similar
data for mussels from the Adriatic area (Table 3). However, the concentrations determined
by Fatoki et al. [4] in mussels collected in Cape Town were higher than in mussels from Sal-
danha bay according to our study. They analyzed large mussels of Mytilus galloprovincialis
(50–70 mm), using two different techniques: EDXRF and ICP-MS methods. The high con-
centrations are probably connected with the contribution of terrigenous and anthropogenic
components expressed by the high levels of such elements as Al, V, Cr, Mn, Fe, Co, Ni, Zn.
The concentrations of these elements in [4] were greater than in mussels from Saldanha
bay by one order of magnitude. On the other hand, our data revealed higher levels of Ca
and Sr.
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Table 2. The ranges of concentrations of elements in shells and soft tissues of Mytilus galloprovincialis in the Saldanha zone.

Elements Shells Soft Tissues

St. 1 St. 2 St. 3 St. 1 St. 2 St. 3

Min-Max CV Min-Max CV Min-Max CV Min-Max CV Min-Max CV Min-Max CV

Na 0.4–0.46 7 0.46–0.50 4 0.38–0.40 3 5.1–5.4 3 3.8–3.9 1 1.96–2.01 1
Mg 770–840 5 1040–1150 5 860–960 6 7000–7600 4 5500–6500 8 2860–3270 7
Al 39–52 15 33–46 17 15–23 26 159–203 13 444–480 4 63–71 6
Cl 790–850 3.7 720–820 7.3 530–560 2.8 81,000–86,000 3 61,000–62,000 1 29,700–33,100 6
K <DL <DL <DL 7400–8500 7 6700–10,400 22 8700–10,400 10

Ca, % 3.-37 2.8 33–38 7.1 37–39 2.6 1.02–1.16 7 1.15–1.22 3 0.69–0.79 7
Sc 0.04–0.07 39 0.03–0.04 11 0.04–0.07 28 0.037–0.061 25 0.12–0.13 7 0.018–0.033 32
V 0.2–0.3 18 0.2–0.3 20 0.3–0.3 7 1.25–1.41 6 0.62–1.46 49 0.66–0.9 16
Cr 1.2–1.9 23 0.9–1.6 28 1.5–1.7 7 3.2–3.8 9 2.4–2.6 5 1.1–2.6 45
Mn 1.57–2.2 17 1.74–2.16 11 1.37–1.5 5 3.76–5.7 25 5–6.6 16 3.42–5.4 26
Fe 112–207 31 78–119 21 84–146 27 421–470 6 390–420 4 99–136 17
Co 0.09–0.14 28 0.06–0.12 33 0.04–0.11 48 0.46–0.52 7 0.225–0.26 9 0.128–0.136 3
Ni 0.4–0.6 24 0.1–0.6 78 0.2–0.6 50 3.1–4.7 24 0.83–1.51 30 0.75–0.82 4
Zn 4–4.3 4 3–3.9 13 2.62–3.77 18 230–232 0.4 105–108 1.6 121–124 1.2
As <DL <DL <DL 8.3–8.6 2 5.3–5.8 5 5.7–6.2 4
Se <DL <DL <DL 4.9–5.2 3 7–7.2 1 5–5.3 3
Br 64–68 4 88–89 1 111–113 1 463–467 0.4 289–291 0.3 163–165 0.6
Rb 3.5–3.8 5 4.9–5.2 3 3.9–4.2 4
Sr 1500–1550 2 1090–1100 1 1030–1050 1 133–136 1 98–99 1 52–53 1
Sb 0.02–0.04 32 0.01–0.03 39 0.03–0.06 34 0.042–0.057 15 0.021–0.033 24 0.0145–0.0206 19
I 12–13 3 5–5 2 6–7 12 56–57 1 12.3–13.7 5 4.8–5.7 9

Cs 0.05–0.08 29 0.04–0.05 13 0.05–0.12 39 0.031–0.037 9 0.081–0.091 6 0.024–0.038 24
Th 0.05–0.09 26 0.05–0.06 12 0.05–0.1 33 0.05–0.05 0.1 0.106–0.109 1.6 0.024–0.094 28
U 0.11–0.17 25 0.04–0.06 29 0.04–0.17 58 0.68–0.97 19 0.19–0.36 31 0.27–0.31 7

CV, %—coefficient of variation in percentages; <DL—below detection limit.
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Table 3. Elements’ concentrations in shells of mussels (ppm, dry weight).

Elements Saldanha Zone [4] [5]

Danger Bay Langebaan Small Bay Cape Town Adriatic

Mean ± SD Mean ± SD Mean ± SD Mean ± SE Range

Na 4300 ± 300 4767 ± 210 3933 ± 120 - 2500–4000
Mg 797 ± 38 1100 ± 56 913 ± 50 - 800–1400
Al 45 ± 6.6 39 ± 6.6 18 ± 0.1 3730 ± 960 2.5–27
Cl 823 ± 30 757 ± 60 543 ± 20 - -

Ca, % 36 ± 1 35.3 ± 2.5 38 ± 1 12.6 ± 1.2 35–37
Sc 0.05 ± 0.002 0.03 ± 0.004 0.06 ± 0.002 - -
V 0.3 ± 0.04 0.2 ± 0.05 0.3 ± 0.02 3.9 ± 0.2 -
Cr 1.6 ± 0.4 1.3 ± 0.4 1.6 ± 0.1 8.4 ± 0.1 -
Mn 1.9 ± 0.3 2 ± 0.2 1.4 ± 0.1 27.7 ± 1.3 2–155
Fe 155 ± 25 98 ± 21 116 ± 31 1360 ± 140 15–550
Co 0.1 ± 0.03 0.09 ± 0.03 0.09 ± 0.04 0.72 ± 0.01 -
Ni 0.5 ± 0.12 0.3 ± 0.23 0.4 ± 0.21 3.56 ± 0.04 7–33
Zn 4 ± 0.2 3 ± 0.5 3 ± 0.6 142 ± 13 2.5–15
Br 67 ± 2 89 ± 1 112 ± 1 - -
Sr 1523 ± 25 1093 ± 6 1043 ± 12 365 ± 7 500–800
Sb 0.03 ± 0.009 0.02 ± 0.008 0.04 ± 0.015 - -
I 13 ± 0.4 5 ± 0.1 6 ± 0.8 - -

Cs 0.06 ± 0.02 0.04 ± 0.01 0.1 ± 0.04 - -
Th 0.07 ± 0.02 0.06 ± 0.01 0.08 ± 0.03 - -
U 0.13 ± 0.03 0.05 ± 0.01 0.12 ± 0.07 - -

SD—standard deviation; SE—standard error.

Table 4. Concentrations of elements in the soft tissue of Mytilus galloprovincialis (dry weight, ppm).

Elements
Out Study,

Saldanha Zone [30]
Min-Max

[31]
Min-Max

[32]
Min-Max

[16]
Mean ± SD

[33]
Min-Max

[4]
Mean ± SE

Min-Max

Na 19,600–54,000 29,550 ± 5350
Mg 2860–7600 6960 ± 1040
Al 63–480 134 ± 53 39–877
Cl 29,700–86,000 6660 ± 1920 4330 ± 180
K 6700–10,400 3.69 ± 0.05

Ca, % 0.69–1.22 1.02 ± 0.70
Sc 0.02–0.13 0.035 ± 0.014 2.3–12.5 3.3 ± 0.3
V 0.6–1.5 11–59 0.63 ± 0.24 0.19–2.17 5.9 ± 0.2
Cr 1.1–3.8 0.9–4.7 12–25 1.7 ± 0.4 3.4–20.6 23.2 ± 1.5
Mn 3.4–6.6 125–144 3.92 ± 0.99 66–656 1150 ± 150
Fe 99–470 98–685 52–215 171 ± 51 0.37–1.37 0.70 ± 0.02
Co 0.1–0.5 3–158 0.21 ± 0.03 0.71–3.39 1.78 ± 0.02
Ni 0.8–4.7 0.2–1.5 20–39 1.1 ± 0.24 35–224 204 ± 15
Zn 105–232 117–423 85–284 23–265 309 ± 105 17–46 9.2 ± 0.1
As 5.3–8.6 1.3–15.6 7.7 ± 1.6 1.5–4.3
Se 4.9–7.2 2.7 ± 0.3
Br 163–467 91–460 350 ± 58
Rb 3.5–5.2 3.1 ± 0.52 209 ± 5
Sr 52–136 18–67 77 ± 50 0.007–0.028
Sb 0.01–0.06 0.02 ± 0.005
I 4.8–57 46.7 ± 8.2

Cs 0.02–0.09 0.024 ± 0.009
Th 0.02–0.11 0.034 ± 0.012
U 0.2–1.0 0.4 ± 0.07

CV (%)—coefficients of variations (min-max among studied sites); SD—standard deviation; SE—standard error.
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The data from the Mediterranean, Cape Town, and other sites in the Saldanha Bay area
were used for the comparison of levels of elements in soft tissues of mussels [4,16,30–33]
(Table 4) by using a review study of Yap et al. [34]. Our data were in agreement with
the ranges of selected elements in Mytilus galloprovincialis from Spain [31], and the
Mediterrainean water area [30,32]. The exception corresponded to mussels from the
impacted area in the study of Signa et al. [32]. The individuals from Strandloper, which
is situated in the greywater outlet in the Saldanha zone, contained elements at similar
or slightly lower levels than those of St. 1 (Danger Bay). It could be explained by an
established tolerance of mussels from St. 1 (Danger bay) to stress events and the regulation
of levels of elements in soft tissues during the process of adaptation at this station. However,
for the majority of elements in mussels, the levels from the polluted zone of Cape Town, as
presented by Fatoki et al. [4], and the maximal levels in a study by Richir et al. [33] were
higher than those obtained in the present study.

The levels of elements in soft tissues could be compared with maximum permissible
levels established for seafood products (MPL) in wet weight (ww) [16,35,36]. For this
purpose, the obtained concentrations of elements were transformed from dry to wet weight
by a conversion factor (wet weight/dry weight = 0.32), which was calculated for the
Saldanha zone previously [16].

The average levels of MPLs for Cr, Ni, Zn, As, and Se were set as 1, 80, 200, 3, and
1.2 µg/g, respectively (according to [35,36]). The mean concentrations of Cr (1.1 µg/g, ww)
in the soft tissue of the studied mussels from St. 1 (Danger Bay) exceeded the average
MPL probably due to the presence of suspended material with high content of Cr. This is
also in agreement with a higher concentration of Cr in shells from St. 1 in respect to other
stations. The average MPL for Se (1.2 ppm, ww) exceeded the set point value in soft tissues
of mussels from all studied stations (1.6–2.3 ppm, ww). The values for Mn, Ni, Zn, and As,
which are known to indicate pollution features, were below the average MPLs in mussels
from all stations. Such levels of elements reveal the non-polluted state of mussels collected
in the autumn of 2019.

Shells undergo erosion depending on the weather, the position of individuals within
the mussel bed and on a substrate, etc. Thus, all of these parameters can hypothetically
affect the structure of the shell.

The width/height (W/H) ratio could be used as an indicator of both the relative age
and growth rate for the mussels [19]. A high width/height ratio indicates individuals with
decreasing growth rate and increased relative physiological age. Moreover, this ratio is
an important factor usually associated with high element concentrations [19]. For young
fast-growing mussels, the W/H ratio at all sites was 0.6–0.8 while for older mussels of any
length it was in the range of 1.0–1.1. The W/H ratio was the highest at St. 1 (0.94, Table 5),
and the lowest at St. 2 (0.69).

Table 5. Morphometry ratios in mussel samples from 3 stations of Saldanha Bay.

Parameters St. 1
Danger Bay

St. 2
Langebaan

St. 3
Small Bay

Mass/Length 0.03 0.05 0.09
Width/Height 0.96 0.69 0.84

CI 17.7 16.6 22.1

CI—condition index (mg/cm3) calculated as [Mass (g) × 106]/[Length (mm) ×Width (mm) × Height (mm)] [19].
The standard deviation for calculated ratios (n = 5) were less than 10% for each station.

In addition to indicating the differences in features of growth, the width/height
ratio is an important factor associated with element concentrations. It has been reposted
that increased element concentrations are associated with decreased growth rate [19].
For mussels from St. 1 (Danger bay) having a higher width/height ratio and a lower
mass/length ratio, the highest levels of the majority of micro and macroelements were
obtained. However, the condition index was at the level of mussels from St. 2 with
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lower levels of elements. This could be explained by the action of the stress factors at the
Langebaan yacht club (St. 2) such as coastal pollution and ship traffic.

The maximum length of mussels varies from site to site and is generally associated
with nutritional factors (e.g., mussels on the upper shore are much smaller than subtidal
mussels) but also with stress (e.g., wave action, pollution). The mass/length ratio could
reflect the processes of degradation of individuals expressed in decreasing the mass of soft
tissues and increasing the length and width of shells [19]. The mass of soft tissue could
fluctuate and may even decline with senescence [19] that agreed with W/H ratios and
growth features.

According to the low values of the mass/length ratio, mussels from Danger Bay have
the lowest weight of soft tissue per shell size. They are exposed to the open ocean, so rapid
and continuous changes in wave activity can cause stress to these organisms. This process
affects allometry parameters and, according to our data, is reflected in high concentrations
of such elements such as Na, Mg, Cl, V, Cr, Fe, Co, Ni, Zn, As, Br, Sr, Sb, I, and U in soft
tissues and Al, Cl, Cr, Fe, Ni, Zn, Sr, and I in shells.

However, the conditional index calculated from allometry parameters of shells and
mass of soft tissues showed that the mussels from St. 1 grow in better or the same conditions
as at St. 2 (Langebaan). That could be explained by the adaptation of individuals to stress
conditions at St. 1 On the other hand, the mussels from St. 2 can be are exposed to stress
associated with suspended particles of terrigenous origin, which is expressed in high
concentrations of elements such as Al, Sc, Rb, Cs, Th (markers of a terrigenous component)
in soft tissues. The mussels from St. 3 (Small bay) revealed the highest conditional
index according to their morphometry parameters. It is in agreement with the lowest
concentrations for the majority of elements in soft tissues determined at this site.

3.2. Environmental Features Based on Element/Na and Element/Ca Ratios

The highest levels of the majority of elements (except Al, Cl, Zn, Sr, and I) in soft
tissues of mussels were determined in samples from St. 1 (Danger Bay). This revealed the
specific state of mussels from this zone, exposed to the storms, tidal activities, and impact
of open ocean waters. Consequently, they accumulated elements such as Na, Mg, Br are in
concentrations significantly higher (Kruskal-Wallis test, p < 0.03) than at the other stations,
which can be explained by the higher concentrations of elements in the water at St. 1. In
addition, this could be connected with the high growth rates of farmed mussels (at St. 3)
in comparison with wild offshore mussels [10]. Another possible explanation is the early
spawn period in mussels at St. 1 because the trace metal accumulation rates have been
linked to the gametogenic cycle [12]. Our previous studies also revealed higher levels of
the majority of elements in soft tissues of mussels at this station [13,15]. The specific state
of the mussels is expressed also in the lower weight of the soft tissue and greater length of
the shells (described further). It is interesting to note that the levels of elements in shells
from this station were lower than from other places. Thus, the soft tissues accumulate
high levels of micro and macroelements and subsequently release them into surrounding
waters, and do not incorporate them into their shells, except for Al, Cl, Zn, Sr, and I, which
probably correspond to with their concentration in water.

Sodium was used as a salinity proxy for the determination of elements that may
originate from marine waters. Salinity was reflected in the soft tissue of mussels in the
following manner: the ratios Element/Na for K, Ca, Mn, Se, Rb were in the increasing order:
at St. 1 (Danger Bay), St. 2 (Langebaan), St. 3 (Small Bay). In shells, the ratio of Br/Na is
distributed in a similar order (St. 1, St. 2, St. 3). However, the ratios Element/Na for the
rest of the determined elements revealed that the shells of mussels from St. 2 (Langebaan)
contain lower levels than in mussels from St. 1 (Danger bay), yet higher than mussels from
St. 3 (Small bay).

Calcium as a matrix element in shells is present in the form of calcite or aragonite
minerals. The ratios Element/Ca reveal elemental impurities in the shell structure. The
high content of elements such as Al, Cl, Cr, Fe, etc. in shells of mussels from St. 1 resulted
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in high values of the Element/Ca ratios. However, these elements are not considered
anthropogenic, since the station is situated in a pristine area.

Mg/Ca is considered as a temperature proxy in shells of mussels (Mytilus edulis and
Mytilus trossulus) [1]. The values of the Mg/Ca ratio in mussels from St. 2 (Langebaan)
were higher than from St. 1 and 3, which agrees with the higher temperature of waters,
which is characteristic of the Langebaan lagoon.

In mussels from St. 3 (Small bay) the Mn/Ca ratios reached lower levels than in
mussels from St. 1 and St. 2, which can be associated with relatively low levels of nutrients
and microalgae. It is known that high Mn/Ca levels could be associated with phytoplank-
ton blooms [37]. The Mn/Ca ratio in many cases indicates chlorophyll in surrounding
waters and is associated with the growth of phytoplankton assemblages, on which mussels
feed [38].

3.3. Crystallographic Texture Results

Crystallographic texture is the preferred orientation of the crystallites composing a
polycrystal. The information about the crystallographic texture is presented using pole
figures [39]. A pole figure of polycrystalline material is the projection of the normals to
a given atomic plane constructed for all crystals of the sample. The pole figure function

P→
h
(
→
y ) gives the volume fraction of the sample for which the lattice plane normal

→
h falls in

various sample directions y. If the sample is isotropic (no texture), then the outlets of the
plane normals uniformly cover the sphere. In a textured sample, the distribution of normals
to the plane is irregular and is represented by lines of constant intensity (isolines). If such a
distribution is projected onto the equatorial plane of the sphere, then this stereographic
projection will be a pole figure.

The pole figures of the calcite and aragonite phases for samples collected from the
three stations are presented in Figure 3a–c.
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Figure 3. (a) The pole figures of calcite and aragonite phases for mussel shells from station 1 (Danger
Bay). (b) The pole figures of calcite and aragonite phases for mussel shells from station 2 (Langebaan).
(c) The pole figures of calcite and aragonite phases for mussel shells from station 3 (Small Bay).

The calcite phase for all three samples has a very sharp texture, in contrast to the
relatively weak texture of aragonite. Indeed, the maxima of pole density for the (0006)
calcite pole figure is in the range of 10.35–12.94 MRD for these samples, whereas the ones
for the (012) + (121) aragonite pole figure is in the range of 2.7–3.4 MRD. We analyzed
the aragonite pole figures for two reflexes jointly because they are overlapped in the
diffraction pattern. A similar crystallographic texture for calcite and aragonite phases
for Mytilus galloprovincialis shells from Black and Azov seas was observed in previous
investigations [24].
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When comparing the pole figures of all three samples, it can be seen that the distribu-
tion of the texture components for both phases is practically the same. Nevertheless, quan-
titative changes in the pole density are noticeable. From a comparison of the maximums in
the calcite sharpest pole figure (0006), it can be seen that the first sample with a maximum
at 12.94 MRD is closer to the second one (11.5 MRD) than to the third (10.35 MRD). The
fact that such a trend is not observed for the second calcite pole figure (10–14) and both
aragonite pole figures can be explained by measurement errors, that, at the pole density
maximum, are approximately 0.2 MRD. Furthermore, the changes between the maximums
of the same pole figures of the three samples are in the range of variability identified for
the genus Mytilus [24].

It should be mentioned that in quantitative texture analysis, the RP value is commonly
used to characterize the similarities of the pole figures [40],

RPi =
J

∑
j=1

100%Θ[ε, P→
h i
(
→
y j)]rij/

J

∑
j=1

Θ[ε, P→
h i
(
→
y j)] (3)

where,

rij =

∣∣∣∣P1
→
h i

(
→
y j)− P2

→
h i

(
→
y j)

∣∣∣∣/P1
→
h i

(
→
y j),

Θ(ε, x) =
{

0, x < E
1, x ≥ E

The results of the poll figures comparison between the samples using the RP values
are presented in Table 6.

Table 6. RP (%) values for calcite and aragonite pole figures for the samples of M. galloprovincialis shells.

Pole Figures
(PF) Calcite (0006) Calcite (10–14) Aragonite (012)

+ (121)
Aragonite (102)

+ (200)

Station 2 3 2 3 2 3 2 3

1 32.7 38.3 9.1 14.7 7.2 14.4 5.0 2.9

As can be seen from Table 6, the RP values between samples 1 and 3 are higher than
between samples 1 and 2 for both calcite pole figures and one of the aragonite pole figures.
However, this trend is not the same for the second aragonite pole figure. This implies no
significant difference between the pole figures of the samples collected at the three stations.

An attempt was made to quantitatively study the texture sharpness with the concen-
tration of various elements in the mussel shells. The correlation coefficients between the
maximum values of the pole figures for different phases and the concentrations of the
elements in shells are the following (Figure 4):

• Calcite (0006) correlated with Al, Cl, Zn, Sr, I (r > 0.75, p < 0.02) and inversely correlated
with Br (r < −0.8, p < 0.001).

• Calcite (10–14) correlated with Mg, Br (r > 0.75, p < 0.03) and inversely correlated with
Zn, Sr, I (r < −0.7, p < 0.3).

• Aragonite (012) + (121) correlated with Sb, Cs (r > 0.7, p < 0.02) and inversely correlated
with Na, Al, Cl, Mn (r < −07, p < 0.01).

• Aragonite (102) + (200) correlated with Mg (r > 0.9, p < 0.001) and inversely correlated
with Sr, I (r < −0.8, p < 0.002).

The small data set does not allow us to draw conclusions based on these results and
further investigations are necessary for clarification of these trends.
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4. Conclusions

The mussels are organisms suitable for long-term biomonitoring, they accumulate
elements in typical ranges proportionate to the presence of elements in the surrounding
waters. Thus, extremely short-term changes in the hydrophysical parameters such as
temperature, salinity, or dissolved oxygen cannot be investigated following a period of
stabilization. On other hand, coastal runoff and repeated long-time introductions of open
ocean waters into coastal areas could affect the elemental and crystallographic structure
of mussels. In this study, the determined ranges of concentrations of elements showed
that mussels from the three studied areas were growing in non-polluted or natural stress
conditions, which was ascertained by comparisons with data from polluted sites and
maximum permissible levels for elements in seafood products (soft tissues).

The mussels from station 1 (Danger Bay) differ from mussels from another two sites in
their concentrations of the majority of elements (in soft tissues and shells) and also in mor-
phometry parameters. As wild organisms, mussels were adapted to the stress influences of
the open ocean waters by increased width/height and decreased mass/length ratios.

Even though significant differences between concentrations of elements among the
stations were found, the crystallographic textures of mussel shells from the studied bays
showed insignificant dissimilarities. The observed differences in the maximum values
in the pole figures fell within in the range of variability identified for the genus Mytilus.
Nevertheless, they appeared to correlate with the concentrations of Br, Mg, and Sr, which
merits further investigation using larger sample sizes.

For future investigations, we propose to determine the content of elements such as Na,
Mg, Cl, Br, Sr, and I in mussel shells and Na, Mg, Al, S, Cl, Sc, Cr, Fe, Co, Ni, Zn, As, Se, Br,
Rb, Sr, Ag, Sb, I, Cs, Th, and U in soft tissues. The results could be used to establish possible
hydrochemical parameters for controlled environments in which mussels are grown.
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