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Abstract: The interaction of nuclear receptors (NRs) with chemical compounds can cause dysregulation
of endocrine signaling pathways, leading to adverse health outcomes due to the disruption of natural
hormones. Thus, identifying possible ligands of NRs is a crucial task for understanding the adverse
outcome pathway (AOP) for human toxicity as well as the development of novel drugs. However,
the experimental assessment of novel ligands remains expensive and time-consuming. Therefore,
an in silico approach with a wide range of applications instead of experimental examination is
highly desirable. The recently developed novel molecular image-based deep learning (DL) method,
DeepSnap-DL, can produce multiple snapshots from three-dimensional (3D) chemical structures
and has achieved high performance in the prediction of chemicals for toxicological evaluation.
In this study, we used DeepSnap-DL to construct prediction models of 35 agonist and antagonist
allosteric modulators of NRs for chemicals derived from the Tox21 10K library. We demonstrate
the high performance of DeepSnap-DL in constructing prediction models. These findings may aid
in interpreting the key molecular events of toxicity and support the development of new fields
of machine learning to identify environmental chemicals with the potential to interact with NR
signaling pathways.
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1. Introduction

Many chemical substances have potential harmful effects, causing the perturbation of endocrine
homeostasis by interfering with various nuclear receptors (NRs) of hormones [1–5]. In the disruption
of hormone pathways, structurally diverse groups of chemicals are known to interact primarily with
ligand–NR bindings, which have the ability to substitute for natural ligands, ultimately resulting in
proliferative, reproductive, and metabolic disorders [6–12]. NRs are a superfamily of ligand-dependent
transcriptional factors containing n N-terminal transactivation domain, a flexible hinge region, and a
C-terminal ligand-binding domain (LBD) [6,8,13]. NRs are classified mainly into two types according
to their subcellular distribution in the absence of a ligand and their mechanisms: Type I steroid
receptors, including the estrogen receptor (ER), androgen receptor (AR), progesterone receptor (PR),
and glucocorticoid receptor (GR); and Type II nonsteroid receptors, including the thyroid receptor
(TR alpha and beta), retinoic acid receptor (RAR alpha, beta, and gamma), retinoid X receptor (RXR),
vitamin D receptor (VDR), peroxisome proliferator-activated receptor (PPAR alpha, beta, and gamma),
liver X receptor (LXR), farnesoid X receptor (FXR), and pregane X receptor (PXR), [6,14,15]. In the
absence of a ligand, the type I NR forms inactive complexes with chaperone proteins in the cytoplasm,
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whereas type II NR, regardless of the ligand-binding status, is located in the nucleus and binds to the
DNA response elements of its target genes along with corepressors [6,14,16]. For these types of NRs, a
number of allosteric modulators have been identified that can act as either agonist or antagonist by
occupying the active pocket of the NR and blocking the recruitment of coactivators or corepressors to
the transcriptional complex [11,17–20].

The perturbation of the NR signaling pathway due to the action of agonists or antagonists
of chemical compounds is associated with various adverse health outcomes [19,21]. Although
chemical hazard assessments have traditionally relied upon toxicity data from animal bioassays and
epidemiological studies, there are some drawbacks to this testing method, such as high cost, lengthy
test durations, and ethical concerns [5,22–27]. To resolve these issues, the in vitro high-throughput
screening (HTS) assay has been developed as an alternative approach and improved by the Toxicity
Forecaster (ToxCastTM) program run by the U.S. Environmental Protection Agency (EPA) [5,28–30] and
The Toxicology in the 21st Century program (Tox21), an interagency federal collaboration launched
by the consortium of the EPA, the U.S. Food and Drug Administration (FDA), the National Institutes
of Health (NIH), and the National Toxicology Program (NTP) [5,31]. However, the HTS assay is
not sufficient to screen all classes of chemicals, such as those still in molecular development and
optimization phase, and thus cannot provide an accurate evaluation of the potential toxicity of
chemicals in humans and the environment [5,32].

Recent technological advances have focused on in silico approaches, such as quantitative
structure–activity relationship (QSAR), based on the assumption that similar structures are associated
with similar biological activities, taking advantage of their ability to accurately predict the toxicologically
discrete values of the chemical or biological properties of molecules [5,33–37]. However, the QSAR
approach has the following disadvantages: (i) required skills and knowledge for feature extraction
and selection, (ii) paucity of model interpretability, and (iii) low prediction performance due to the
dependence on the choice of molecular descriptors and the prediction modeling algorithms [36,38–40].
To address these issues, a novel deep learning (DL)-based QSAR method, called DeepSnap-DL [41],
was developed using molecular image files generated from the steric conformation of three-dimensional
(3D) chemical structures, leveraging the increasing evidence of successful classification by convolutional
neural networks (CNNs) through DL in toxicological fields [40,42,43]. This method has the following
advantages. First, the feature(s) in the molecular images can be automatically extracted by CNNs.
Second, high prediction performance can be expected as more detailed information of the chemical
structure can be captured from different viewing directions along the x-, y-, and z-axes [41,44–47].
Third, determination and visualization of the conformer that is docked in the LBD of the receptor
protein may reveal the critical conformation of the chemicals and domain of the receptor protein related
to the adverse outcome.

In this study, using the DeepSnap-DL method, prediction models of 35 agonists and antagonists
of NRs were constructed by 3D molecular structure representations using information of chemical
compounds from the Tox21 10K library. The results obtained by the DeepSnap-DL method outperformed
those of the methods that won the Tox21 data challenge. Therefore, our approach can be practically
applied to build prediction models using a CNN for a large number of chemicals to determine their
potential toxicity.

2. Results and Discussion

To build the prediction models of the agonists and antagonists of NRs, we downloaded the
information of 35 NRs for the chemical structures and their activity scores from the Tox21 10K
library. The mean number of chemicals was 7262 ± 267, and the highest and lowest numbers of the
chemicals were respectively 7671 (progesterone receptor agonist: PR_ago, AID: 1347036), and 6735
(estrogen-related receptor agonist: ERR_ago, AID: 1259404) (Figure 1). Furthermore, we classified the
datasets of these chemical compounds into two groups based on their activity scores—active chemicals
were those with an activity score ≥ 40 and inactive chemicals had an activity score < 40. The mean
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number of active chemicals in the total chemicals was 0.0372 ± 0.0376, and the highest and lowest
numbers of active chemicals were, respectively, 0.2052 (pregane X receptor agonist: PXR_ago, AID:
1347033) and 0.0022 (vitamin D receptor agonist: VDR_ago, AID: 743241) (Figure 1). These results
indicate that the datasets are highly class imbalanced.
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Figure 1. Activity distribution of the Tox21 10K library against 35 NR agonists and antagonists used in
the DeepSnap-deep learning (DL) approach. (a) Number of chemical compounds used in the modeling
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Next, the datasets were divided into Tra:Val:Test groups with a 4:4:1 ratio. The mean numbers of
active and inactive chemicals were, respectively, 120.9 ± 124.1 and 3107.1 ± 153.1 in Tra, 120.8 ± 124.3
and 3106.8 ± 153.3 in Val, and 30.1 ± 30.9 and 271.8 ± 279.2 in Test (Table S1, Supplementary Materials).
In addition, the highest and lowest numbers of the active chemicals were, respectively, 683 and 2 in
Tra, 684 and 6 in Val, and 170 and 2 in Test (Table S1). The molecular images derived from the 3D
chemical structures were generated using the DeepSnap approach at different angles along the x-, y-,
and z-axes, i.e., (176◦, 176◦, 176◦). A total of 27 images for one chemical compound was captured
(Figure 2, Figure S1).

Using these molecular images as input data into the DL, the prediction models of 35 NR agonists
and antagonists were constructed using Tra, and validated with Val. The values of mean Loss (Val)
and Acc (Val) were 0.0748 ± 0.0035 and 97.56 ± 0.09, respectively (Figure 3, Figure S4a, Supplementary
Materials). In addition, the highest prediction performance on the Val dataset was observed in
the thyroid-stimulating hormone receptor agonist (TSHR2_ago, AID: 1259393), for which the mean
Loss (Val) and Acc (Val) were 0.0017 ± 0.0008 and 99.93 ± 0.02, respectively (Figure 3, Figure S4a).
The prediction performance of these models was evaluated using Test based on five metrics, namely
AUC, BAC, F, Acc (Test), and MCC. The results showed that the mean AUC, BAC, F, Acc (Test),
and MCC were 0.8842 ± 0.0165, 0.8471 ± 0.0168, 0.3085 ± 0.0411, 82.73 ± 3.92, and 0.3536 ± 0.0377,
respectively (Figures 4 and 5, Figure S4a,b). In addition, the highest prediction performance on Test
was observed in the thyroid-stimulating hormone receptor agonist (TSHR2_ago, AID: 1259393), with
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the mean AUC, BAC, F, Acc (Test), and MCC being 0.9994 ± 0.0006, 0.9997 ± 0.0003, 0.9286 ± 0.0714,
99.94 ± 0.06, and 0.9327 ± 0.0673, respectively (Figures 4 and 5, Figure S4a,b).
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The Tox21 Data Challenge 2014 was designed to understand the interference of the chemical
compounds derived from the Tox21 10K compound library in the biological pathway via crowdsourced
data analysis by independent researchers. It used data generated from seven NR signaling pathway
assays to construct prediction models for QSARs [48]. The BAC values of the three models constructed
by the proposed DeepSnap-DL were 0.8361, 0.8204, and 0.8494, respectively, outperforming the Data
Challenge models where the BACs of three models, namely AID:743053 (Arfull_ago), AID:743077
(Erlbd_ago), and AID:743140 (PPARg_ago), were 0.6500, 0.7147, and 0.7852, respectively. However,
the best prediction model of AID:743122 (AhR_ago) had a BAC value of 0.8528 in the Data Challenge,
whose BAC outperformed that in the DeepSnap-DL method (0.7785). Up to now, conflicting
observations have been reported regarding whether DL performs better than conventional shallow
machine learning (ML) methods, such as random forest, support vector machine, and gradient boosting
decision tree [40,43,49–53]. Although some reports suggest that DL outperforms conventional ML
methods owing to various improvements, the performance of DL in terms of QSAR may be affected
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by many factors, such as molecular descriptors, assay targets, chemical space, hyper-parameter
optimization, DL architectures, input data size, and quality [40].
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Furthermore, the DeepSnap-DL approach has the black box problem, that is, it lacks explainability
and interpretability of the prediction models because the convolutional area on the image picture by
CNN is not defined. This issue has been extensively studied, especially in the field of image recognition.
These studies try to resolve the issue by calculating the gradient of the input image with respect to the
output label and highlighting the target pixel as a recognition target when a slight change in a specific
input pixel causes a large change in the output label. However, a simple calculation of the gradient
generates a noisy highlight, so some improved methods have been proposed for sharpening [54–59].
In addition, in the DeepSnap-DL approach, the performance improves as data size increases, and
performance deterioration is observed with insufficient data size or the presence of noise. However,
simply increasing the sample size causes problems such as overfitting and increased calculation costs.
To resolve the issues of the DeepSnap-DL approach, critical factors include specifying the image area
and type required for effective feature extraction to reduce the input data volume, and clarification of
the functional relationship of chemical substances with biological activity in vivo. Future applications
may include screening of target molecules in specific pathological reactions.

To investigate whether the in vitro bioassays for agonist and antagonist mode in the Tox21 program
affect the prediction performance of NRs, we compared prediction performances among four in vitro
assays, namely, luciferase, beta-lactamase, cAMP, and intracellular calcium assays, using the results
of 35 NR agonist and antagonist prediction models. In the Val dataset, the loss and accuracy values
in the luciferase assay were significantly higher and lower, respectively, compared with that of the
beta-lactamase assay (Figure 6a,b, p < 0.05 for both Loss (Val) and Acc (Val)).
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In addition, F and MCC in Test of the cAMP assay significantly increased compared with those of
the beta-lactamase assay (Figure 6c,d, p < 0.05 for both F-measure and MCC). The BAC value in the Test
dataset of the cAMP assay showed a moderate increase compared with that of the beta-lactamase assay
(Figure S5c, Supplementary Materials, p < 0.09). These results indicate that the prediction performance
of the NR agonists and antagonists in the Tox21 10K library may be affected by the choice of the
in vitro assay method. There are several conflicting reports regarding the in vitro receptor-mediated
activity. Chemicals such as bisphenol A (BSA) and its halogenated analogs (tetrabromo-BSA and
tetrachloro-BSA) show weak TR antagonist activity but have a potential agonist-like effect at lower
concentrations [60,61]. Thus, competitive agonists and antagonists of the steroids have long been
known [62–64]. Among them, ligands exhibiting agonist and antagonist activity, called selective
steroid receptor modulators (SSRMs), are known to show specificity on tissue or cell type [62,65–69].
In addition, a competitive antagonist, known as the passive antagonist, hinders the binding but
induces the inactive state of NRs by modifying interaction with their corepressor and interfering
with their nuclear translocation or DNA binding at saturated concentrations [62,70]. These reports
suggest that the ligand of the steroid NRs can serve not only as competitive agonists and antagonists
that affect binding to the NRs, but also as a unique allosteric modulator for subsequent molecular
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interactions. Therefore, classification of the chemicals in the Tox21 10K library may require more
detailed insights of the molecular mechanisms of the NRs with chemical compounds and the conditions
of in vitro bioassays.
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(b) accuracy in the Val dataset, (c) accuracy in the Test dataset. n = 14, 17, 3, and 1 for luciferase,
beta-lactamase, cAMP, and intracellular calcium assays, respectively. Each bar indicates the average of
the performance metric of the four in vitro assays with standard error. * p < 0.05 by Tukey–Kramer’s
honestly significant difference test.

3. Conclusions

In this study, we built prediction models of 35 NR agonists and antagonists using the DeepSnap-DL
approach with information of the chemical structure and activity from the Tox21 10K library.
Three prediction models outperformed the best performing models in the Tox21 Data Challenge
2014. These results suggest that the 3D chemical structure representation in the DeepSnap-DL approach
may be useful for molecular image-based QSAR analysis, and the improvements to the DeepSnap-DL
method may aid in achieving high-performing prediction models.
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4. Materials and Methods

4.1. Data

In this study, the original datasets related to chemical structures and the corresponding agonist and
antagonist scores were downloaded as reported previously [44–47], in the simplified molecular input
line entry system (SMILES) format from the PubChem database. We used a keyword of the database
search, namely “Tox21 bioassays”, and selected bioassays of the 35 from the NR signaling pathway
for the identification of agonists/antagonists (Table 1). These bioassay data consisted of quantitative
HTS (qHTS) data derived from two cell-based reporter gene assays, including beta-lactamase or
luciferase reporter genes. The activity of these reporter genes is controlled by the binding of
transcriptional factors induced or suppressed by an agonist/antagonist with response elements (REs)
for ARs, ER-alpha, ER-beta, estrogen-related receptors (ERR), FXR, PPAR−gamma, PRs, retinoid-related
orphan receptor gamma (ROR−gamma), RXR−alpha, RARs, GRs, TRs, thyroid-stimulating hormone
receptors (TSHRs), aryl hydrocarbon receptors (AhRs), VDRs, constitutive androstane receptors (CARs),
and PXRs. These receptors are stably integrated into cell lines, including human embryonic kidney
293 cells(HEK293 (AR, ER−alpha, ER−beta, ERR, and TSHR), HEK293H (PPAR−gamma, PPAR−delta,
and HEK293T (ER−beta, FXR, PR, RXR−alpha, and VDR)), human breast cancer cells (MDA−MB
(AR)), ovarian carcinoma cells (BG1 (ER−alpha)), Chinese hamster ovary cells CHO (ROR−gamma)),
human cervical cancer cells (HeLa (GR)), rat pituitary tumor cells (GH3 (TR)), human hepatocellular
carcinoma cells (HepG2 (AhR, CAR, PXR)), and C3H mouse embryo cells (C3RL4 (RXR−alpha)). Then,
we can measure the ability to induce or inhibit RE-dependent transcription.

The chemicals were derived from the Tox21 10K library, which contains approximately 8900 unique
compounds gathered from commercial sources, such as pesticides, industrial and environmental
chemicals, natural dietary supplement products, food additives, and drugs, by the NTP, the National
Center for Advancing Translational Sciences (NCATS), and the EPA (Table 1) [71–82]. These compounds
were dissolved in dimethyl sulfoxide (DMSO) as stock solutions, and compound plates with the
different concentrations were prepared in the 1536-well plate format [71–73,80,83]. These cell lines
of beta-lactamase reporter gene assay constitutively co-express a fusion protein comprised of the
LBDs of the human NRs coupled to the DNA-binding domain (DBD) of the yeast transcription
factor GAL4 [72,73,75,80]. When activated, these fusion proteins stimulate beta-lactamase reporter
gene expression.

The cells were dispensed at 1500 to 5000 cells/5 (for antagonist mode) or 6 (for agonist mode)
microL/well in 1536-well black wall/clear bottom plates [72,73,75,78–80]. After the cells were incubated
at 37 ◦C for 5 to 6 h depending on the particular NR cell line to allow for cell attachment, 23 nL of
the compounds at different concentrations were transferred to the assay plates. For the antagonist
mode assay, the known agonist for each NR was added into the assay plates. For the agonist and
antagonist mode assays, positive control compounds were dispensed into each other’s wells on the
plates (Table 1) [72,73,75,78–80]. The plates were incubated for 16 to 18 h at 37 ◦C depending on the
particular NR cell line. Then, a LiveBLAzerTM B/G FRET substrate (Invitrogen, Carlsbad, CA, USA)
detection mix was added, and the plates were incubated at room temperature for 1.5 to 2 h. The
fluorescence intensity (405 nm excitation, 460 and 530 nm emission) was measured using an Envision
plate reader (PerkinElmer, Shelton, CT, USA). Data were expressed as the ratio of 460/530 nm emission
values. To measure the luciferase reporter gene activity, 4 microL of ONE-GloTM Luciferase Assay
reagent (Promega, Madison, WI, USA) were added to each plate, and the luminescence intensity was
quantified by a ViewLux plate reader (PerkinElmer) after 30 min of incubation at room temperature.
Data were expressed as relative luminescence units.
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Table 1. Nuclear receptors (NRs) and their bioassays used in this study.

PubChem
AID Model Names NRs Activity Reporter Gene

Assay Cell Lines Agonist/Antagonist Positive Control

720719 GR_ago glucocorticoid receptor agonist beta-lactamase HeLa Dexamethasone
720725 GR_ant glucocorticoid receptor antagonist beta-lactamase HeLa Dexamethasone Mifeprostone
743053 Arfull_ago androgen receptor agonist beta-lactamase HEK293 R1881
743054 ARfull_ant androgen receptor antagonist luciferase MDA-MB R1881 Nilutamide
743063 Arlbd_ant androgen receptor antagonist beta-lactamase HEK293 R1881 Cyproterone acetate
743067 TR_ant thyroid receptor antagonist luciferase GH3 T3 NA
743077 Erlbd_ago estrogen receptor alpha agonist beta-lactamase HEK293 17beta-estradiol
743078 ERlbd_ant estrogen receptor alpha antagonist beta-lactamase HEK293 17beta-estradiol 4-Hydroxy tamoxifen
743091 ERfull_ant estrogen receptor alpha antagonist luciferase BG1 17beta-estradiol 4-Hydroxy tamoxifen
743122 AhR_ago aryl hydrocarbon receptor agonist luciferase HepG2 Omeprazole

743140 PPARg_ago peroxisome proliferator-activated receptor
gamma agonist beta-lactamase HEK293H Rosiglitazone

743226 PPARd_ant peroxisome proliferator-activated receptor delta antagonist beta-lactamase HEK293H L-165041 MK886
743227 PPARd_ago peroxisome proliferator-activated receptor delta agonist beta-lactamase HEK293H L-165041
743239 FXR_ago farnesoid-X-receptor agonist beta-lactamase HEK293T Chenodeoxycholic acid
743240 FXR_ant farnesoid-X-receptor antagonist beta-lactamase HEK293T Chenodeoxycholic acid Guggulsterone

743241 VDR_ago vitamin D receptor agonist beta-lactamase HEK293T 1alpha, 25-Dihydroxy
Vitamin D3

743242 VDR_ant vitamin D receptor antagonist beta-lactamase HEK293T 1alpha, 25-Dihydroxy
Vitamin D3 NA

1159523 ROR_ant retinoid-related orphan receptor gamma antagonist luciferase CHO Doxycycline Hyclate TO-901317
1159531 RXR_ago retinoid X nuclear receptor alpha agonist beta-lactamase HEK293T 9-cis retinoic acid
1159555 RAR_ant retinoic acid receptor antagonist luciferase C3RL4 Retinol ER50891
1224893 CAR_ant constitutive androstane receptor antagonist luciferase HepG2 CITCO PK11195
1224895 TSHR_ago thyroid stimulating hormone receptor agonist cAMP assay HEK293 Ro20-1724 thyroid stimulating hormone
1259247 ARfull2_ant androgen receptor antagonist luciferase MDA-MB R1881 Nilutamide
1259248 ERfull_estra_ant estrogen receptor alpha antagonist luciferase BG1 17beta-estradiol 4-Hydroxy tamoxifen
1259387 ARant_ago androgen receptor agonist luciferase MDA-MB Nilutamide R1881
1259391 ERaant_ago estrogen receptor alpha agonist luciferase BG1 ICI-182,780 17beta-Estradiol
1259393 TSHR2_ago thyroid stimulating hormone receptor agonist cAMP assay HEK293 Ro20-1724 thyroid stimulating hormone
1259394 ERb_ago estrogen receptor beta agonist beta-lactamase HEK293T 17beta-Estradiol

1259395 TSHR_ant thyroid stimulating hormone receptor antagonist cAMP assay HEK293 thyroid stimulating
hormone Ro20-1724

1259396 ERb2_ant estrogen receptor beta antagonist beta-lactamase HEK293T 17beta-Estradiol 4-Hydroxy tamoxifen
1259403 ERR_ant estrogen related receptor antagonist luciferase HEK293 XTC790
1259404 ERR_ago estrogen related receptor agonist luciferase HEK293 Genistein
1347033 PXR_ago pregnane X receptor agonist luciferase HepG2 Rifampicin
1347036 PR_ago progesterone receptor agonist beta-lactamase HEK293T R5020

1347038 TRHR_ant thyrotropin-releasing hormone receptor antagonist intracellular
calcium assay HEK293 thyrotropin-releasing

hormone midazolam

NA: not analyzed.
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4.2. qHTS Data Analysis

The Tox21 10k library can be grouped into clusters with similar activity that share similar annotated
models of action according to PubChem activity scores. In the qHTS of the Tox21 program, to identify
the chemical compounds in both potential agonist and antagonist modes, the PubChem activity
scores were determined from 0% to 100% by normalizing each titration point relative to the positive
control compound (agonist mode: 100%, antagonist mode: 0%) and DMSO-only wells (agonist mode:
0%, antagonist mode: -100%) according to the following equation: % Activity = [(Vcompound −
Vdmso)/(Vpos − Vdmso)] × 100, where Vcompound, Vdmso, and Vpos denote the compound well
values, the median values of the DMSO-only wells, and the median value of the positive control
well, respectively.

The datasets were then corrected using compound-free control plates, i.e., DMSO-only plates,
at the beginning and end of the compound plate measurement [72,73,75,78–80]. The half maximum
inhibition values (IC50) and the maximum response values for each compound were calculated by
fitting the concentration–response curves of each compound to a four-parameter Hill equation [84,85].

The PubCem activity scores of the agonists and antagonists were grouped into three classes,
namely (1) 0, (2) 1–39, and (3) 40–100, which represent inactive, inconclusive, and active compounds,
respectively. In this study, compounds with activity scores of 40–100 or 0–39 were defined as active
or inactive, respectively. The dataset includes some similar chemical compounds, but with different
activity scores for different ID (identification) numbers due to the presence of possible stereoisomers or
salts. Therefore, chemical compounds with indefinite activity criteria, nonorganic compounds, and/or
inaccurate SMILES were eliminated.

4.3. DeepSnap

We then applied a 3D conformational import from the SMILES format using molecular operating
environment (MOE) 2018 software (MOLSIS Inc., Tokyo, Japan) to generate the chemical database.
Here, the neutralization of the protonation state and the coordinating washed species were used by the
external program, CORINA classic software (Figure S1, Supplementary Materials) [86]. The resulting
3D structures were then saved in an SDF file format. Using the SDF files prepared by the MOE
application, the 3D chemical structures were depicted as 3D ball-and-stick models with different
colors corresponding to different atoms by Jmol, an open-source Java viewer software (version
number, manufacturer, city, state abbreviation, country) for 3D molecular modeling of chemical
structures [44–47]. These 3D chemical structures produce different images depending on the direction.
The 3D chemical models were captured automatically as snapshots with user-defined angle increments
with respect to the x-, y-, and z-axes. In this study, one angle increment was used, i.e., (176◦, 176◦, 176◦).
Other parameters for the DeepSnap depiction process were set based on previous studies as follows:
image pixel size: 256 × 256; molecule number per SDF file to split into: 100; zoom factor (%): 100; atom
size for van der Waals radius (%): 23; bond radius (mÅ): 14.5; minimum bond distance: 0.4; and bond
tolerance: 0.8 [44–47]. The snapshots saved as 256 × 256 pixel resolution PNG files (RGB) were divided
into three types of datasets: training (Tra), validation (Val), and test (Test) (Figure S1, Figure 2).

4.4. Preparation of Dataset

Three groups of datasets were prepared by dividing the data into Tra, Val, and Test groups.
The data were first split into 11 groups, and the two dataset groups (4:4:1_01 and 4:4:1_02) were then
built in accordance with the ratio of Tra:Val:Test = 4:4:1. A prediction model was created using the Tra
and Val datasets. Then, the prediction performance was evaluated using the Test dataset (4:4:1_01)
(Figure S2, Supplementary Materials). For a subsequent analysis, the remaining Test dataset was
selected from the group not used in the first analysis. The model was then built, and its probability
calculation was examined in the same manner (4:4:1_02). Finally, two tests were performed and the
average was calculated (Figure S2).
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4.5. Deep Learning

All the two-dimensional (2D) PNG images produced by DeepSnap were resized by utilizing the
NVIDIA DL GPU Training System (DIGITS) version 4.0.0 software (NVIDIA, Santa Clara, CA, USA),
on four-GPU systems, Tesla-V100-PCIE (31.7 GB), with a resolution of 256 × 256 pixels as input data,
as previously reported [44–47]. The prediction model was pre-trained as transfer learning [44–47] by
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012 dataset [87], which includes
1000 classes, such as animal (40%), device (12%), container (9%), consumer goods (6%), and equipment
(4%). The ILSVRC 2012 dataset was divided as 1.2 million Tra, 50,000 Val, and 1 million Test datasets
extracted from ImageNet [88]. To rapidly train and fine-tune the highly accurate CNNs using the
input Tra and Val datasets based on the image classification and building the pre-trained prediction
model, we used a pre-trained open-source DL model, Caffe, and the open-source software on the
CentOS Linux distribution 7.3.1611. In this study, the deep CNN architecture was GoogLeNet, which
is a complex network inspired by LeNet and implemented with a novel module called “Inception”,
which facilitates batch normalization, image distortions, and RMSprop; concatenates different filter
sizes and dimensions into a single new filter; and introduces sparsity and multiscale information in
one block (Figure S3, Supplementary Materials). The network is a 22-layer deep CNN, comprising
two convolutional layers, two types of pooling layers (four max pools and one avg pool), and nine
Inception modules, each module having six convolution layers and one pooling layer, with 4 million
parameters (Figure S3) [89–91].

In the DeepSnap-DL method, the prediction models were constructed by training datasets using
30 epochs with 1 snapshot interval in each epoch, 1 validation interval in each epoch, 1 random seed, a
stochastic gradient descent-type solver, a learning rate of 0.006, and a batch size of 108 in DL. Among
the epochs, the lowest Loss value in the Val dataset (Loss (Val)), which is the error rate between the
results obtained from the validation data and the corresponding labeled dataset, was selected for
subsequent examination of prediction using the Test dataset.

4.6. Evaluation of the Predictive Model

Through two tests conducted on the Test datasets for the experiments, with Tra:Val:Test = 4:4:1
in the DL prediction model, we analyzed the probability of the prediction results with the lowest
minimum Loss (Val) value among 30 examined epochs. We calculated the probabilities for each image
of one molecule captured at different angles with respect to the x-, y-, and z-axes using DeepSnap-DL.
The medians of each of these predicted values were used as the representative values for target
molecules as previously reported [44–47]. The performance of each model in predicting the NR
agonists and antagonists was evaluated in terms of the following metrics: area under the curve of
receiver operating characteristic curve (ROC_AUC); balanced accuracy (BAC); accuracy (Acc), which is
the percentage of correct answers based on the results obtained from the validation dataset and the
corresponding labeled dataset; F-measure; and Matthews correlation coefficient (MCC) calculated using
JMP Pro 14, which is a statistical discovery software (SAS Institute Inc., Cary, NC, USA), as previously
reported [44–47]. These performance metrics are defined as follows:

BAC = (sensitivity + specificity)/2, where

Sensitivity = ΣTPs / (ΣTPs + ΣFNs),

Specificity = ΣTNs / (ΣTNs + ΣFPs),

Accuracy = (TP + TN) / (TP + FP + TN + FN),

F-measure = 2 × Recall × Precision / (Recall + Precision), where

Precision = TP / (TP + FP),
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Recall = TP / (TP + FN),

MCC = (TP× TN− FP× FN)/
√
(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN),

where TP, FN, TN, and FP denote true positive, false negative, true negative, and false positive,
respectively. To determine the optimal cutoff point for the definition of TP, FN, TN, and FP, the method
of maximizing sensitivity (1–specificity), which is called the Youden index [92,93], was adopted using
JMP Pro software. The index has a value ranging from 0 to 1, where 1 represents maximum effectiveness
and 0 represents minimum effectiveness.

4.7. Statistical Analysis

Differences in prediction performance of in vitro assays in terms of loss (Val), Acc (Val), and Acc
(Test), were analyzed by Tukey–Kramer’s honestly significant difference test with JMP Pro 14 [94].
Results with p < 0.05 were considered statistically significant.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/25/12/2764/s1,
Figure S1. DeepSnap-DL procedure, Figure S2. Schematic illustrating how preparation of Tra/Val/Test datasets.
Figure S3. Schematic view of GoogeLeNet archirecture. (a) Total layers used in this study. (b) Inception model
within the GoogLeNet. Figure S4a. Average Accuracy values in Val and Test datasets in models of 35 NRs
agonist/antagonist by the DeepSnap-DL. N = 2. Figure S4b. Average F and BAC values in Test dataset in models
of 35 NRs agonist/antagonist by the DeepSnap-DL. N = 2. Figure S5. Comparison of prediction performances
among four in vitro assays. (a) Loss in the Val dataset, (b) accuracy in the Val dataset, (c) accuracy in the Test
dataset. Table S1: NRs and chemical compounds used in this study.
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Acc (Test) accuracy in the test dataset
AhR aryl hydrocarbon receptor
AOP adverse outcome pathway
AR androgen receptor
AUC area under the curve
Acc (Val) accuracy in the validation dataset
BAC balanced accuracy
BSA bisphenol A
CAR constitutive androstane receptor
CNN convolutional neural network
DBD DNA-binding domain
DIGITS deep learning GPU training system
DL deep learning
DMSO dimethyl sulfoxide
ER estrogen receptor
ERR estrogen-related receptor
F F-measure
FN false negative
FP false positive
FXR farnesoid X receptor
GR glucocorticoid receptor
LBD ligand-binding domain
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Loss (Val) loss in the validation dataset
LXR liver X receptor
MCC Matthews correlation coefficient
ML machine learning
MOE molecular operating environment
NR nuclear receptor
PPAR peroxisome proliferator-activated receptor
PR progesterone receptor
PXR pregane X receptor
qHTS quantitative high-throughput screening
QSAR quantitative structure–activity relationship
RAR retinoic acid receptor
RE response element
RXR retinoid X receptor
ROC receiver operating characteristic
SE standard error
SMILES simplified molecular input line entry system
SSRM selective steroid receptor modulator
TN true negative
Tox21 Toxicology in the 21st Century
TP true positive
TR thyroid receptor
TSHR thyroid-stimulating hormone receptor
VDR vitamin D receptor
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