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Abstract 

Background:  The coronavirus disease 2019 (COVID-19) pandemic has caused health concerns worldwide since 
December 2019. From the beginning of infection, patients will progress through different symptom stages, such as 
fever, dyspnea or even death. Identifying disease progression and predicting patient outcome at an early stage helps 
target treatment and resource allocation. However, there is no clear COVID-19 stage definition, and few studies have 
addressed characterizing COVID-19 progression, making the need for this study evident.

Methods:  We proposed a temporal deep learning method, based on a time-aware long short-term memory 
(T-LSTM) neural network and used an online open dataset, including blood samples of 485 patients from Wuhan, 
China, to train the model. Our method can grasp the dynamic relations in irregularly sampled time series, which is 
ignored by existing works. Specifically, our method predicted the outcome of COVID-19 patients by considering both 
the biomarkers and the irregular time intervals. Then, we used the patient representations, extracted from T-LSTM 
units, to subtype the patient stages and describe the disease progression of COVID-19.

Results:  Using our method, the accuracy of the outcome of prediction results was more than 90% at 12 days and 98, 
95 and 93% at 3, 6, and 9 days, respectively. Most importantly, we found 4 stages of COVID-19 progression with differ-
ent patient statuses and mortality risks. We ranked 40 biomarkers related to disease and gave the reference values of 
them for each stage. Top 5 is Lymph, LDH, hs-CRP, Indirect Bilirubin, Creatinine. Besides, we have found 3 complica-
tions - myocardial injury, liver function injury and renal function injury. Predicting which of the 4 stages the patient is 
currently in can help doctors better assess and cure the patient.

Conclusions:  To combat the COVID-19 epidemic, this paper aims to help clinicians better assess and treat infected 
patients, provide relevant researchers with potential disease progression patterns, and enable more effective use of 
medical resources. Our method predicted patient outcomes with high accuracy and identified a four-stage disease 
progression. We hope that the obtained results and patterns will aid in fighting the disease.

Keywords:  COVID-19, Disease progression, Outcome early prediction, Irregularly sampled time series, Time-aware 
long short-term memory
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Background
Coronavirus disease 2019 (COVID-19) outbreaks have 
caused health concerns worldwide since December 
2019; the disease was declared a pandemic by the World 
Health Organization (WHO) on 11 March 2020 [1]. Over 
seven million cases of COVID-19 have been reported 
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worldwide, including more than 400,000 deaths (as of 
15 June 2020) [2]. Even though the disease has been con-
trolled in certain countries, the WHO director warns the 
pandemic is still ‘Speeding Up’ [3]. Because of its sudden 
onset, many hospitals are still facing medical resource 
shortages. For example, news in [4] reported a lack of 
medical resources in New Delhi. In [5], Arizona has 
experienced record-high hospital capacity as coronavirus 
cases climb. A reasonable allocation of resources accord-
ing to patient condition is needed.

The solution to this problem involves determining the 
stages of disease progression by subtyping and predict-
ing the outcome of COVID-19 patients. Then, targeted 
treatment and medical resource allocation can be carried 
out for patients in different stages. Recent studies [6–11] 
have used statistical methods to analyze COVID-19 pro-
gress by inpatient symptoms. However, different statisti-
cal results were obtained by considering different patient 
groups and different symptoms. At present, there is no 
clear division of the stages of COVID-19 progression.

Longitudinal disease analysis is the key to under-
standing disease progression, designing prognoses and 
developing early diagnostic tools. The time dynam-
ics of disease can provide more information than static 
symptom observation [12]. Considering the complex 
patient states, the amount of interventions and the real-
time requirement, the data-driven machine learning 
approaches by learning from electronic health records 
are the desiderata to help clinicians [13].

Many existing works have used machine learning 
methods for COVID-19 prediction tasks. We have sum-
marized them in Table 1. For example, in most method 
of [27] and in [1, 14–19], authors used non-deep learning 
methods, such as k-NN, LR, Cox, SVM and DT to classify 
CT/X-ray images and predict the outcomes of COVID-19 
patients. However, in terms of prediction accuracy, non-
deep learning is not as good as deep learning methods. 
Deep learning methods can train the parameters with 
complex nonlinearity to learn the data structures and 
have achieved state-of-the-art in many medical predic-
tion tasks [28–30]. Thus, many current works apply deep 

learning methods for COVID-19 prediction tasks [17, 
19–26]. However, these methods either use the simple 
multi-layer perceptron for predicting or use the convolu-
tional structures for image classification. Both the above 
methods ignored the temporal development of patient’s 
status. In the real-world patient records, except for the 
basic information, vital signs, test values and diagnoses 
are both time series, especially for the blood samples of 
COVID-19 patients, the data we used in this paper.

Recently, a deep learning method, recurrent neu-
ral network (RNN) [31] can efficiently model temporal 
sequences. It uses recursion in the direction of sequence 
evolution to learning the relations among past, present 
and future. But the basic RNN has the long-term depend-
ency problems [32]. Meanwhile, RNN only process uni-
formly distributed longitudinal data while COVID-19 
patient blood samples are distributed nonuniformly with 
irregular time intervals between observations. Thus, 
a method that can model this irregular time series of 
COVID-19 patients is needed.

In this paper, we retrospectively analyzed the blood 
samples of 485 patients from the region of Wuhan, 
China. The medical records collected with standard case 
report forms, including epidemiological, demographic, 
clinical, laboratory and mortality outcome information, 
from an online open dataset under an MIT license. We 
applied a temporal deep learning method Time-aware 
Long Short-term Unit (T-LSTM) to model the irregular 
time series of COVID-19 patients. T-LSTM can predict 
the mortality with more than 98% accuracy before 3 days. 
Meanwhile, we have discovered four stages of COVID-19 
patients. According to the different stages, we gave the 
analysis of the patient’s state and found the related bio-
markers and complications.

Methods
In this section, we first introduce the COVID-19 dataset 
and the data preprocessing process. Then, we describe 
the methods for mortality prediction and disease pro-
gression in detail.

Table 1  The conclusion of machine learning methods used in COVID-19 prediction tasks

We use the abbreviations of methods and the full names are listed in Table 1

Non-deep learning methods Deep learning methods

Statistics Regression SVM Decision tree Basic NN CNNs RNNs

LDA [14]
NB [15]
k-NN [16]

LR [17, 18]
Cox [19]

[17] RF [17]
XGBoost [1]

BPNN [17, 19, 20],
GRNN [21],
RBFNN [21],
PNN [21]

Basic CNN [22],
Transfer CNN [23],
GDCNN [24],
COVID-Net [25],
COVNet [26]

/
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Dataset description
Blood index values can reflect a COVID-19 patient’s 
physical condition [10]. COVID-19 patients’ blood 
samples were collected between 10 January and 18 
February 2020 at Tongji Hospital of Tongji Medical 

College, Huazhong University of Science and Technol-
ogy, Wuhan, China [33]. The dataset contains 80 char-
acteristics from 375 patients with 6120 records as a 
training set and 110 patients with 757 records as a test 
set. A case of sample is shown in Fig. 1. It draws lines of 

Fig. 1  Examples and statistics of COVID-19 dataset. The first block is a line chart of an example in dataset - a 70-year-old female patient. It draws the 
time series of LHD, lymph and hs-CRP during hospitalization; The second block is the distributions of age, gender, LHD, lymph and hs-CRP of survival 
class (0) and death class (1); The third block is the statistics about dataset. It contains the counts of time series length, the statistics of overall missing 
rate and the statistics of each feature’s missing rate under different sampling rate
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the time series of LHD, lymph and hs-CRP of a 70-year-
old female patient during hospitalization. We can see 
the time intervals between two observations are irregu-
lar, which could be a few minutes or even days.

The detailed statistical information of demographic 
and 74 clinical laboratory test features is listed Table  2. 

For example, in the dataset, the average age of patients 
is 58.83, the survival rate is 53.6% and the ratio of male 
to female is about 1.5:1. We also list the range and mean 
value of each feature. In Fig.  1, we display the distribu-
tions of some features (age, gender, LHD, lymph and hs-
CRP) of survival class (0) and death class (1).

Table 2  Demographic, laboratory and outcome information of 375 samples in training dataset

a  Characteristics have three types - demographics (age and gender), outcomes (survival and mortality) and laboratory test (74 items)
b   Statistics is statistical data for corresponding characteristics, such as rate, mean value and range. The statistical methods are described in each column

Characteristicsa Statisticsb Characteristicsa Statisticsb

Demographics Outcomes

Age, mean (years) 58.83 Survival, count and rate 201, 53.6%

Gender Male 224; Female 151 Mortality, count and rate 174, 46.4%

Lab test mean (min, max) patient’s last measurements

  cTnI 747.76 (1.9, 43,905.19) glucose 8.37 (2.43, 32.37)

  Hemoglobin 124.89 (6.4, 178.0) neutrophils count 7.03 (0.85, 31.43)

  Serum chloride 102.73 (77.7, 138.2) Direct bilirubin 9.5 (1.7, 216.3)

  Prothrombin time 16.01 (11.69, 84.22) Mean platelet volume 10.89 (9.04, 14.0)

  procalcitonin 0.99 (0.02, 49.34) ferritin 1634.37 (26.8, 42,402.91)

  Eosinophils(%) 0.56 (0.0, 5.61) RBCW-SD 41.78 (32.5, 83.3)

  sIL-2R 961.52 (61.0, 5608.04) Thrombin time 18.17 (13.0, 133.67)

  Alkaline phosphatase 84.86 (37.18, 481.5) Lymphocyte(%) 16.45 (0.6, 54.83)

  albumin 33.06 (19.1, 45.07) Anti-HCV 0.13 (0.03, 1.85)

  basophil(%) 0.21 (0.0, 1.38) D-D dimer 6.2 (0.21, 29.82)

  Interleukin 10 12.5 (5.0, 500.0) Total cholesterol 3.66 (0.66, 6.11)

  Total bilirubin 16.28 (2.95, 276.0) AST 56.53 (8.0, 1858.0)

  Platelet count 187.78 (1.2, 472.5) Uric acid 297.47 (57.0, 1001.0)

  monocytes(%) 6.66 (0.62, 31.62) HCO3- 22.59 (6.3, 29.7)

  antithrombin 87.57 (20.0, 136.0) calcium 2.1 (1.35, 2.5)

  Interleukin 8 88.08 (5.0, 6385.85) NT-proBNP 3166.26 (5.57, 70,000.0)

  indirect bilirubin 6.85 (1.0, 79.3) LDH 492.12 (143.0, 1867.0)

  RDW 12.94 (10.91, 22.91) platelet large cell ratio 31.63 (16.48, 54.1)

  Neutrophils(%) 76.09 (15.9, 98.1) Interleukin 6 130.37 (1.5, 5000.0)

  Total protein 66.06 (36.7, 79.33) FDP 44.29 (4.0, 182.4)

  Anti-TP 0.17 (0.02, 8.74) monocytes count 0.54 (0.08, 22.75)

  Prothrombin activity 80.97 (16.3, 136.64) PLT distribution width 12.97 (8.42, 25.3)

  HBsAg 10.35 (0.0, 250.0) globulin 32.96 (13.8, 46.04)

  mean corpuscular volume 89.75 (62.3, 110.73) γ-GT 51.79 (10.6, 555.25)

  hematocrit 37.0 (19.9, 51.3) INR 1.3 (0.86, 10.51)

  WBC 15.18 (0.8, 1726.6) basophil count(#) 0.02 (0.0, 0.12)

  Tumor necrosis factorα 12.07 (4.0, 168.0) 2019-nCoV nucleic acid −1.0 (−1.0, −1.0)

  MCHC 344.17 (286.0, 464.33) MCH 30.9 (20.8,47.67)

  fibrinogen 4.38 (0.5, 8.89) APTT 41.72 (25.59, 100.27)

  Interleukin 1β 6.56 (5.0, 79.44) hs-CRP 72.49 (0.2, 320.0)

  Urea 9.74 (2.17, 68.4) anti-HIV 0.1 (0.05, 0.26)

  lymphocyte count 1.06 (0.13, 35.53) serum sodium 141.06 (122.8, 171.4)

  PH value 6.47 (5.0, 7.54) thrombocytocrit 0.21 (0.05, 0.49)

  Red blood cell count 7.58 (0.1, 749.5) ESR 32.33 (2.0, 102.0)

  Eosinophil count 0.03 (0.0, 0.33) GPT 42.6 (5.0, 1508.0)

  Corrected calcium 2.34 (1.78, 2.67) eGFR 81.07 (2.0, 164.7)

  Serum potassium 4.45 (3.1, 9.86) creatinine 120.38 (39.25, 1497.0)
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This COVID-19 blood test data is publicly available at 
https​://githu​b.com/HAIRL​AB/Pre_Surv_COVID​_19.

Dataset preprocessing
First, we attempted to find a suitable time measurement 
granularity. In the raw dataset, the lengths of sequences 
are unequal and different sampling times result in miss-
ing data, with an 85% missing rate on average. The miss-
ing rate is expressed in Eq. 1. Nmissing means the number 
of time points with missing data in one time series. Nall 
means the number of time points in that time series. The 
presence of vacancies has a large impact on data quality, 
resulting in unstable predictions and other unpredictable 
effects [34]. We used 3 days as the basic sampling inter-
val, reducing the average mr below 30%. The time series 
length of raw data, the average missing rate and the miss-
ing rate for each feature are shown in Fig. 1.

(1)mr =
Nmissing

Nall

evolution, and all units are chained together. In basic 
RNN (the second structure in Fig.  2), the current state 
ht is affected by the previous state ht − 1 and the current 
input xt and is described as ht = σ(Wxt + Uht − 1 + b), 
where σ is an activation function, and W, U and b are 
learnable parameters. Long Short-Term Memory (LSTM) 
[32] (the third structure in Fig. 2) is a variant of RNN that 
is adept at solving long-term dependency problems. A 
standard LSTM unit consists of a forget gate ft, an input 
gate it, memory cells Ct, 

∼

Ct and an output gate ot.
However, RNNs only process uniformly distributed 

longitudinal data by assuming that the sequences have an 
equal distribution of time differences. COVID-19 patient 
blood samples are distributed nonuniformly. For exam-
ple, the time gap between two sequential records could 
be hours or days. Time-aware Long Short-Term Memory 
(T-LSTM) [35] (the fourth structure in Fig.  2) incorpo-
rates the elapsed time information into LSTM. It applies 
a memory discount to capture the irregular temporal 
dynamics. T-LSTM can be formulated as:

In Eq. 2, based on the basic LSTM, T-LSTM possesses 
some new designs. CS

t−1 component learns the short-term 
memory of sequence by learnable network parameters. 
CT
t−1 is the long-term memory calculated from the for-

mer memory cell Ct − 1 with getting rid of CS
t−1 . C

S
t−1 is 

adjusted to the discounted short-term memory ĈS
t−1 by 

the elapsed time function g(Δt). The previous memory 
C∗
t−1 is changed to the complement subspace of CT

t−1 
combined with ĈS

t−1.
We use a log calculation for the elapsed time function. 

Δt describes the time gap between two records at two 
sequential time steps t and t − 1. Tt is the actual time at 
time step t.

(2)

CS
t−1 = tanh (WdCt−1 + bd) Short-term memory

ĈS
t−1 = CS

t−1 ∗ g(�t) Discounted short-term memory

CT
t−1 = Ct−1 − CS

t−1 Long-term memory

C∗
t−1 = CT

t−1 − ĈS
t−1 Adjusted previous memory

ft = σ
(

Wf xt + Uf ht−1 + bf
)

Forget gate
it = σ(Wixt + Uiht−1 + bi) Input gate
∼

Ct = tanh (Wcxt + Ucht−1 + bo) Candidate memory

Ct = ft ∗ C
∗
t−1 + it ∗

∼

Ct Current memory
ot = σ(Woxt + Uoht−1 + bo) Output gate
ht = ot ∗ tanh (Ct) Current hidden state

(3)g(�t) =
1

log (e +�t)
, �t = Tt − Tt−1

Meanwhile, for feature selection, using all 74 laboratory 
test features is unrealistic. To address the high missing 
rate, repeated features and collection difficulties, we con-
sidered three key features: lactic dehydrogenase (LDH), 
lymphocytes (lymph) and high-sensitivity C-reactive pro-
tein (hs-CRP). These features contain specific research 
biomarkers of COVID-19 patients [33] and can be easily 
collected in any hospital. Considering that only three fea-
tures may not achieve high prediction accuracy, we also 
select 40 features (listed in Table 7) with missing rate less 
than 30% for comparative experiment.

T‑LSTM
Recurrent neural networks (RNNs) [31] (the first struc-
ture in Fig.  2) are deep network architectures designed 
to model temporal sequences. They take sequence data 
as input, recursion occurs in the direction of sequence 

https://github.com/HAIRLAB/Pre_Surv_COVID_19
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Analysis strategy
We first describe the two tasks in this study and then 
introduce the specific methods. The whole method pro-
cess is shown in Fig. 3.

Task 1 (Outcome prediction) A set of labeled patient 
data is represented as D = {(xi, ci) ∈ (X ,C)|i = 1, . . . , n}

. X is a time series set of patients, where 
xi =

{

xti |t = 1, . . . , tonset
}

 represents a patient’s records 
over t time steps; specifically, xti  is multivariate data, 

and each dimension is a clinical record represented by 
a numeric vector. C ∈ {0, 1} is the outcome, where class 0 
means death and class 1 means survival. The outcome 
prediction task aims to predict patient outcomes by the 
prediction function f : X → C

Task 2 (Temporal patient subtyping / Disease pro-
gression mining) The goal is to find patient groups 
G = {gi| i = 0, …, m} with similar feature representa-
tion R =

{

rti |i = 0, . . . , n; t = 0, . . . , tonset
}

 . rti  is the 

Fig. 2  Structures of the methods. The first block shows the structure of RNNs, including basic RNN, LSTM and our T-LSTM; The second block shows 
the structure that how to use T-LSTM to complete the outcome prediction task (lower grey area) and disease progressing task (upper grey area)
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representation of clinical record xti  at time t. Then, the 
patient groups G distributed over time are used to analyze 
the stages of disease progression

In COVID-19 patient outcome prediction task, 
T-LSTM is used to handle patient record sequences and 
then make the prediction. The process is displayed in the 
proposed method of Fig. 2, in the lower gray area.

For a patient i, the input of T-LSTM at time 
step t is a three-dimensional feature vector 
xti =

[

vLDH , vlymphocytes, vhs−CRP ,
]

 with time gap Δt. The 
output is the state representation si at the last time step. We 
apply this outcome prediction task as a binary classification 
task, with two classes: death and survival.

The cross-entropy [36] is mainly used to measure the 
difference between two probability distributions. We 
expect our predicted distribution of patient outcomes 
to be closer to the true distribution. Thus, we use the 
cross-entropy loss function in Eq. 4. Besides, when using 
sigmoid active function, this loss can avoid the reduced 
learning rate causing by traditional mean square error 
loss when gradient decreases.

p(x) is the prior probability (true label vector) and q(x) is 
the prediction probability (predicted results vector). Cor-
respondingly, Ĉ is the real class of input data, and C rep-
resents the prediction class.

In COVID-19 patient disease progression task, temporal 
patient subtyping can uncover the dynamic characteristics 
of diseases by significantly nuanced subtyping, which leads 
to the potential stages of disease progression. We addressed 
the issue by building a time stage reference and providing a 
low-dimensional representation of each subject, encoding 
his or her position with respect to this reference.

The method structure is displayed in the upper gray 
area of proposed method in Fig.  2. It has 4 steps: 1) 
Acquisition of patient representation rt. We used the hid-
den state ht, extracted from every T-LSTM unit, as the 
patient’s representation rt at time step t. 2) Dimension 
reduction of rt. For better demonstration, we used the 
t-distributed Stochastic Neighbor Embedding (t-SNE) 
[37] method to reduce these high-dimensional vectors rt 

(4)

L = LCE

(

C , Ĉ
)

= −
∑

x
p(x)logq(x)

= −
∑n

i=1
ĉilogci +

(

1− ĉi
)

log(1− ci)

into two dimensions. 3) Obtaining the patient group set 
G. As prior information about the patient groups was 
not available, we acquired patient groups by applying an 
unsupervised clustering method, the Density-Based Spa-
tial Clustering of Applications with Noise (DBSCAN) 
[38], on rt. 4) Analysis of G and stages of disease progres-
sion. The mortality rate MR, and the average time dis-
tance TD were calculated as the analysis criteria.

Equation  5 expresses the mortality rate. Ndeath is the 
number of patients with the death outcome and Npatient is 
the total number of patients. Eq. 6 expresses the average 
time distance. Tt means the current prediction time and 
Ttonset means the time of outcome. ∣gk∣ is the number of 
patients in group gk.

Evaluation metrics
The prediction results were evaluated by assessing the 
area under the curve of the Receiver Operating Charac-
teristic (AUC-ROC). The ROC is a curve of the True Pos-
itive Rate (TPR) and the False Positive Rate (FPR). TN, 
TP, FP and FN represent true positives, true negatives, 
false positives and false negatives, respectively.

The patient groups obtained by unsupervised cluster-
ing were evaluated by the Calinski-Harabaz Index (CH), 
which measures the covariance of data within a class 
and between classes. A larger CH value indicates a bet-
ter clustering performance. In Eq. 9, m is the number of 
data and k is the number of groups. Bk and Wk respec-
tively represent the covariance matrices between groups 
and within groups.

(5)MR =
Ndeath

Npatient

(6)TD =
1

| gk |

∑

xti∈gk

(

Ttonset − Tt

)

(7)TPR =
TP

TP + FN

(8)FPR =
FP

TN + FP

(See figure on next page.)
Fig. 3  The results of outcome prediction. The first line’s charts are the AUC-ROC of mortality prediction results using baselines; The second line’s 
chart is the changes of accuracy and loss during training T-LSTM; The third line’s charts are the dimension experiments. They show the accuracy of 
mortality prediction by using different representation dimensions and the effect of representation dimension reduction; The fourth line’s charts are 
the effect when using DBSCAN
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When we get the stages of COVID-19 patients, we used 
Kullback-Leibler Divergence (KL divergence) to analyze 
patient characteristics through each laboratory test fea-
ture. KL divergence can measure the degree of difference 
between two probability distributions. For each feature, 
we first establish the Gaussian distribution N

(

µ, σ 2
)

 with 
expected value μ and variance σ2 at each stage. Then, we 
calculate the average KL divergence of the distribution of 
adjacent stages. If the average KL divergence of a feature 
is large, it more likely is a biomarker to distinguish differ-
ent stages. The basic KL divergence of distribution p(X) 
and q(X) and the KL divergence of two univariate Gauss-
ian distributions are in Eq. 10 and 11.

(9)CH =
tr(Bk)

tr(Wk)

m− k

k − 1

(10)KL
(

p(X) | |q(X)) =
∑

xiǫX

p(xi)log
p(xi)

q(xi)

(11)KL
(

N

(

µ1, σ
2
1

)∥

∥

∥
N

(

µ2, σ
2
2

))

= log
σ2

σ1
+

σ 2
1 + (µ1 − µ2)

2

2σ 2
2

−
1

2

For measure and evaluate each feature, we use the aver-
age KL divergence (Average KL) between neighbor stages 
gi, gi + 1. m is the number of groups.

Results
We used the records of 375 patients as a training set; the 
ratio of the training set to the verification set was 0.8:0.2. 
The records of 110 patients made up the test set. This 
experiment was conducted on 5-fold cross-validation. 
The code implementation is publicly available at https​://
githu​b.com/scxhh​h/COVID​-19.

Baselines
We use the related works summarized in Table 1 as com-
parison methods. Related works are divided into non-
deep learning methods and deep learning methods. We 

(12)Average KL =
1

m

m−1
∑

i=0

KLgi ,gi+1

Table 3  AUC-ROC of COVID-19 mortality prediction results by using baselines

a   n days early: The models make prediction n days before the final death/survival time. They use sequence data from day 0 to n days before the last time to predict
b   Cox: Cox’s proportional hazards regression model is semi parametric regression model. It can analyze the influence of many factors on outcomes. It is used in [19]
c   k-NN: k-Nearest Neighbors method makes prediction based on the information of nearest k samples in training set. In this mortality prediction task, the most 
accurate results appeared when k = 3
d   SVM: Support Vector Machines classify by solving the separation hyperplane which can divide the training data correctly and has the largest geometric interval
e   DT: Decision tree is a simple classifier consisting of sequences of hierarchically organized binary decisions. It is used in [33]
f   BPNN: Back Propagation Neuron Network makes the signal and the error propagate forward and backward separately. It is used in [20]
g   PNN: Probabilistic Neural Network is a forward propagation network and does not need back propagation to optimize parameters by using Bayesian decision-
making. It is used in [21]
h   RNN: Recurrent Neural Network have been introduced in the ‘T-LSTM’ section
i   LSTM: Long Short-Term Memory which we have introduced in the ‘T-LSTM’ section. Here, the hyperparameter setting is same as T-LSTM
j   T-LSTM: Time-aware LSTM is the model used in this paper. Its inputs are the three-dimensional vectors and the time intervals. The values for each dimension are the 
values of LDH, lymphocyte and hs-CRP in patients’ blood tests. Its output is the binary result 0/1. Here, 0 indicates survival and 1 indicates death. The hidden states in 
its units are 64 dimensional, and the fully connected layer has 32 dimensions

0 days earlya 3 days earlya 6 days early 9 days early 12 days early

Coxb 0.955 ± 0.06 0.992 ± 0.02 0.870 ±0.01 0.85 ±0.01 0.810 ±0.01

k-NNc 0.950 ± 0.02 0.909 ± 0.01 0.890 ±0.02 0.840 ±0.02 0.816 ±0.01

SVMd 0.969 ± 0.04 0.954 ± 0.02 0.930 ± 0.03 0.895 ±0.04 0.857 ±0.02

DTe 0.974 ±0.01 0.959 ± 0.03 0.924 ±0.00 0.897 ±0.01 0.869 ±0.03

BPNNf 0.980 ±0.02 0.954 ±0.05 0.933 ±0.0 1 0.894 ±0.02 0.878 ±0.03

PNNg 0.985 ±0.01 0.961 ±0.02 0.940 ±0.0 2 0.889 ±0.02 0.889 ±0.02

RNNh 0.985 ±0.01 0.960 ±0.01 0.931 ±0.00 0.910 ±0.02 0.871 ±0.01

LSTMi 0.990 ±0.01 0.961 ±0.02 0.937 ±0.02 0.920 ±0.03 0.897 ±0.03

T-LSTMj 0.997 ± 0.00 0.969 ± 0.01 0.947 ±0.03 0.921 ±0.03 0.914 ±0.02

https://github.com/scxhhh/COVID-19
https://github.com/scxhhh/COVID-19
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use Cox [19], k-NN [16], SVM [17], DT [1], BPNN [20], 
PNN [21], RNN, LSTM and T-LSTM for COVID-19 
mortality prediction. T-LSTM is our method.

Outcome prediction results
Table 3 shows the results of COVID-19 mortality predic-
tion using baselines. The AUC-ROC is evaluated at 0, 3, 6, 
9, 12, 15, and 18 days early. Here, the results are obtained 
when the patient’s representations are 64 dimensional. 
The results indicate that our method T-LSTM performed 
better than all of baselines no matter how early before the 
onset times of patients. More precisely, using T-LSTM, 
the outcome prediction accuracy is above 90% at 12 days 
early and is approximately 97% accurate when predicting 
3 days before the disease outcome. More detailed results 
of train, validation and test sets using T-LSTM are listed 
in Table 4.

The first four figures in Fig. 3 are the visualizes of pre-
diction results. The first two figures are the AUC-ROC of 
prediction results of baselines and T-LSTM in different 
earliness. The third figure is the changes of prediction 
accuracy and cross-entropy loss when training the model. 
The fourth figure represents the relation of patient repre-
sentation dimension and AUC-ROC of prediction using 
T-LSTM. Too few dimensions lead to incomplete feature 

learning, while too many dimensions lead to redundant 
calculations and easy over-fitting. Considering result 
accuracy, computational complexity and ease of repre-
sentation use in the following task, we decided to use 64 
dimensional vectors to represent patients.

Based on prediction results, we found: 1) Deep learning 
approaches (T-LSTM, RNN, PNN and BPNN) has higher 
COVID-19 outcome prediction accuracy than non-deep 
learning approaches (Cox, k-NN, SVM and DT) as they 
have completed the highly nonlinear feature transforma-
tion by neural junction structures. 2) RNN-based models 
(T-LSTM and RNN) performance better on time series 
data as they contain state connections for reproducing 
time delays and output feedback connections for forming 
a loop. 3) Time-aware model (T-LSTM) has the best per-
formance as it can model the time series with irregular 
time intervals, which is a prominent feature of COVID-
19 blood sample dataset.

Further, we also select 40 features (listed in Table 7) as 
the input of T-LSTM for comparative experiment. The 
results in Table  5 indicate that learning a large number 
of patient characteristics does not necessarily contrib-
ute to COVID-19 patient mortality prediction task. The 
three biomarkers, LDH, lymph and hs-CRP can make the 
results better. The AUC-ROC of using 3 features is 3% 
higher than using 40 features on average. This is because 
too many features will introduce redundant and irrel-
evant dependencies leading by redundant features.

Disease progression results
By implementing the four steps of disease progression 
mining, we obtained the 4 stages in both the death class 
(critical) and the survival class (general), shown in Fig. 4.

For better visualization, we reduced the dimension 
of the patient’s representation vector, the fifth figure 
in Fig.  3 is the dimension reduction effect. We chose 2 
dimensions due to low representation loss and clear 
observation. Besides, the DBSCAN clustering effect 
evaluated by the CH index is shown in the sixth and sev-
enth figures in Fig. 3. Different clustering effects can be 
obtained by changing the cluster radius parameter ε. The 
best CH index values for the death class and the survival 
class are 680.07 and 44.24, respectively.

Table 4  AUC-ROC of COVID-19 mortality prediction results 
by using T-LSTM on different sets at different timestamps

a  n days early: The model makes a prediction n days before the final death/
survival time. It uses sequence data from day 0 to n days before the last time to 
predict
b  We use the records of 375 patients as the training set; the ratio of training set 
to verification set is 0.8:0.2. The records of 110 patients make up the test set. This 
experiment is conducted on 5-fold cross-validation

Trainingb Validationb Testb

0 days earlya 0.996 ± 0.01 0.997 ± 0.01 0.997 ± 0.00

3 days early 0.989 ± 0.00 0.987 ± 0.01 0.969 ± 0.01

6 days early 0.960 ±0.01 0.957 ±0.0 2 0.947 ±0.03

9 days early 0.944 ±0.00 0.935 ± 0.01 0.921 ±0.03

12 days early 0.926 ± 0.01 0.924 ±0.0 2 0.914 ±0.02

15 days early 0.891 ± 0.01 0.883 ± 0.01 0.863 ±0.01

18 days early 0.852 ± 0.01 0.834 ±0.0 2 0.819 ±0.0 2

Table 5  AUC-ROC of COVID-19 mortality prediction results by using T-LSTM with 40 or 3 laboratory testsb

a   n days early: The model makes prediction n days before the final death/survival time. It uses sequence data from day 0 to n days before the last time to predict
b   The inputs of T-LSTM are time series of 48 laboratory tests or 3 laboratory tests (LDH, lymph and hs-CRP)

0 days earlya 3 days earlya 6 days early 9 days early 12 days early

40 features 0.949 ± 0.01 0.920 ± 0.03 0.915 ± 0.01 0.910 ± 0.01 0.903 ± 0.01

3 features 0.997 ± 0.00 0.969 ± 0.01 0.947 ±0.03 0.921 ±0.03 0.914 ±0.02
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Fig. 4  The result of COVID-19 progression. This figure shows the four stages of COVID-19 patients by using T-LSTM. The upper clusters are the 
original clustering of data. The lower are the patient subtyping by using T-LSTM. We can find there are four clusters with distinct boundaries both in 
death/critical class (red) and survival/general class (blue)
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In this case, both classes have four groups. Four stages 
of COVID-19 patients are shown in Fig.  4. For each 
stage, we calculate the mortality rate MR and the aver-
age time distance TD. For the death class, MR increases 
over stages and is 100% at stage 4. For the survival class, 
MR decreases over stages and is 0% in stage 4. TD in 
both classes decreases, meaning that the 4 stages are dis-
tributed over time. Meanwhile, as the CH index of the 
survival class is higher than that of the death class, the 
survival class stages are relatively loosely distributed.

In Fig.  4, the first clustering is obtained by using bio-
markers directly and shows that reasonable stages could 
not be found. In the first clustering, no stage is clustered 
in the death class and the 2 stages in the survival class 
have similar mortality rates and no time difference, as 
the shade of blue indicates. However, using our method, 
different stages have obvious differences, such as the 
data point color deepening with the stages. Meanwhile, 
as shown in the two insets, the class boundary is clearer 
based on our method.

The division of stages contains the potential charac-
teristics of COVID-19. Here, we present three findings. 
First, at the time of initial diagnosis, the COVID-19 
infected patients’ physical conditions are similar, regard-
less of final survival or death. In Fig.  4, the distance 
between stage 1 for the death class and the survival class 
is small, and the two even overlap. This indicates that 
outcome prediction is likely not accurate at the time of 
infection. Second, the physical condition of patients who 
eventually die changes less than that of those who even-
tually survive. We conclude this from CH index values, 
where the CH value of the survival class is larger than 
that for the death class. Third, mortality rate varies by 
stage. For example, if the patient is classified into the 
death class and is at stage 1, there is still hope of survival, 
as shown by the green triangle sample in Fig. 4. However, 
if the patient is in stage 3 or 4, he or she is very likely to 
die. Based on estimating the current stage of a patient, 
doctors will be given a reference, which can help them 
assess a patient’s current situation. Based on that, doctors 
can carry out targeted treatment and reasonable resource 
allocation more easily. Thus, the ultimate goal of this 
study, helping improve the quality of medical care, can be 
achieved.

Meanwhile, we calculated the mean values of 40 labo-
ratory test features in each stage, the feature values vary 
with stages. Table  6 lists 10 of these features - Lymph, 
LDH, hs-CRP, Indirect Bilirubin, Creatinine, INR, 
Serum Sodium, eGFR, Serum Chlorine and Albumin. 
The changes of values through 4 stages are visualized in 
Fig. 5. Under different classes, the trends of features are 
different.

Further, we calculated the average KL divergence 
between adjoint stages of each features in 40 clinical lab-
oratory tests data. We ranked the average KL values. The 
higher the ranking, the better the biomarkers can be used 
to distinguish different stages. By ranking 40 biomark-
ers according to the degree of correlation with COVID-
19 (Table  7), we have found the biomarkers which are 
more relevant to COVID-19. The top 10 are: Lymph, 
LDH, hs-CRP, Indirect Bilirubin, Creatinine, INR, Serum 
Sodium, eGFR, Serum Chlorine and Albumin. For each 
marker, we gave its reference value in each stage, shown 
in Table 6. Different markers have unique trends in dif-
ferent stages.

Combining the correlation analysis with the refer-
ence value analysis, we found that the critical COVID-19 
patients are usually accompanied by low values of lymph, 
eGFR, albumin and Serum Sodium, high values of LDH, 
hs-CRP, indirect bilirubin, creatinine and INR. For exam-
ple, in the critical stage 4, the average lymph (%) is just 
4 and the average LDH (U/l) is up to 499. Besides, there 

Table 6  Feature statistics of  patients in  different stages 
of COVID-19 disease progression

Survival class (general)

  Mean value Stage 1 Stage 2 Stage 3 Stage 4

  Mortality rate (%) 7.57 0 1.91 0

  Time distance (days) 22.65 14.08 7.98 2.75

  Lymph (%) 16 18 21 31

  LDH (U/l) 328 301 245 199

  hs-CRP (mg/l) 43 39 21 3

  Indirect Bilirubin (μmol/l) 7 6 4 3

  Creatinine (μmoI/l) 98 75 89 76

  INR 2 1 1 1

  Serum Sodium (mmol/l) 138 139 140 137

  eGFR (ml/min) 79 109 112 111

  Serum Chlorine (mmol/l) 97 99 103 102

  Albumin (g/l) 41 39 38 40

Death class (critical)

  Mean value Stage 1 Stage 2 Stage 3 Stage 4

  Mortality rate (%) 76.32 88.76 91.28 100

  Time distance (days) 26.96 18.76 9.32 2.05

  Lymph (%) 15 10 9 4

  LDH (U/l) 338 364 375 499

  hs-CRP (mg/l) 48 55 69 84

  Indirect Bilirubin (μmol/l) 8 9 14 23

  Creatinine (μmoI/l) 104 106 120 125

  INR 2 2 3 2

  Serum Sodium (mmol/l) 140 140 135 129

  eGFR (ml/min) 75 71 70 57

  Serum Chloride (mmol/l) 96 103 104 105

  Albumin (g/l) 40 32 33 32
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are three major complications of COVID-19 patients - 
myocardial injury, liver function injury and renal func-
tion injury. We got the conclusions separately through 
the value of 1) LDH, 2) albumin and indirect bilirubin, 3) 
serum sodium, serum chlorine and creatinine in different 
stages.

Discussion
In recent years, deep learning (DL) technology has been 
widely used because of its superior performance in vari-
ous medical applications [28, 29], such as medical image 
recognition [39] and medication recommendations 
[40]. In the past year, the spread of COVID-19 has had 
a peripheral effect on the global economy and health. 

Therefore, we expect to combine DL methods to study 
and fight COVID-19.

The states of COVID-19 patients in hospital are 
dynamic time sequence processes. In addition to the 
basic information of patients, the vital signs, diagno-
ses and other lab tests are all time series. Existing many 
works [14–27, 41, 42] have achieved good results for 
COVID-19 prediction tasks. But they paid little atten-
tion to analyze and model the characteristics of COVID-
19 patients’ time series. Dynamic time series modeling 
can grasp the relationship between historical observa-
tions and current observations, and learn the potential 
development mode of sequence, which is conducive to 
more accurate prediction and representation. Besides, 
we have found that the time series of COVID-19 patients 

Fig. 5  Changes of features in different stages. This figure shows the changes of features (Mortality rate, Lymph, LDH, hs-CRP, Indirect Bilirubin, 
Creatinine, INR, Serum Sodium, eGFR, Serum Chlorine and Albumin) through 4 stages. Under different classes, the trends of features are different
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is irregularly sampled - Different time intervals exist in 
adjacent observations. Every possible test is not regularly 
measured during an admission. When a certain symptom 
worsens, corresponding variables are examined more 
frequently; when the symptom disappears, the corre-
sponding variables are no longer examined. These time 
intervals will add a time sparsity factor when the intervals 
between observations are large [13]. Therefore, it is nec-
essary not only to deal with time series, but also to deal 
with irregular time series according to the characteristics 
of COVID-19 patients. In this paper, we use time-aware 
LSTM model solved this problem.

Deep learning methods have outstanding performance 
in prediction tasks. If a doctor predicts survival or death 
only by observing the biomarkers and using a threshold, 
the accuracy is at or below 80% for early predictions. 
However, the clinical reference value of inaccurate results 
is very low [43, 44]. The DL method has better perfor-
mance, and the time-aware aspect enables higher accu-
racy, as shown in Table 3.

However, there are some concerns about the use of DL 
methods in the high-risk tasks of healthcare.

First, it may be risky to apply predictive methods 
directly to clinical practice [45]. DL methods may be 
assistive tools for doctors but not used to make deci-
sions directly. It is challenging for doctors to make 
optimal decisions, a data-driven and high-accuracy pre-
diction method could help. In this paper, we can predict 

patient outcomes with higher accuracy than baselines. 
The method can effectively predict whether the infected 
patient will die or survive 12 days prior to disease out-
come with over 90% accuracy. The prediction accuracies 
at 3-, 6-, and 9-days prior are 98, 95 and 93%, respectively.

Second, the DL method is the black-box models which 
are troubled by poor interpretability [46, 47], but clini-
cal settings prefer interpretable models. For example, 
finding the appropriate prediction-related biomarkers 
is important. Currently, certain studies have identified 
suitable predictive biomarkers, such as the 3 biomarkers 
in [33], which are regarded to have a significant impact 
on patient mortality. For interpretability, our method 
identified four disease stages distributed over time. This 
interesting finding cannot be distinguished simply by 
the value of biomarkers, as shown as the comparison of 
two clustering results in Fig. 4. The discovered stages are 
closely related to mortality and time of illness and can 
help analyze the status of infected patients. This shows 
that the DL method can explore new patterns in mul-
tidimensional space that cannot be demonstrated by a 
simple variable value [48]. We also ranked 40 biomark-
ers according to the degree of correlation with COVID-
19 progression, which can provide interpretable results to 
help doctors better understand the model.

This study has three basic contributions. 1) we can 
predict patient outcomes with higher accuracy than 
all baselines. 2) We identified four stages of COVID-19 

Table 7  Ranking of average KL divergence values of top 40 features

Ranking Feature Average KL Ranking Feature Average KL

1 Lymph 0.0421 21 Total Cholesterol 0.0041

2 LDH 0.0392 22 Interleukin 6 0.0032

3 hs-CRP 0.0376 23 I sIL-2R 0.0031

4 Indirect Bilirubin 0.0324 24 cTnI 0.0030

5 Creatinine 0.0302 25 RBCW-SD 0.0024

6 INR 0.0235 26 Uric Acid 0.0023

7 Serum Sodium 0.0232 27 Corrected Calcium 0.0022

8 eGFR 0.0225 28 Interleukin 8 0.0019

9 Serum Chloride 0.0224 29 Prothrombin Time 0.0018

10 Albumin 0.0193 30 Serum Potassium 0.0017

11 Globulin 0.0177 31 Interleukin 1β 0.0017

12 Hematocrit 0.0122 32 D-D dimer 0.0016

13 Hemoglobin 0.0091 33 FDP 0.0016

14 Fibrinogen 0.0079 34 Antithrombin 0.0015

15 γ-GT 0.0079 35 Procalcitonin 0.0010

16 ESR 0.0078 36 Platelet Count 0.0009

17 NT-proBNP 0.0074 37 WBC 0.0006

18 APTT 0.0053 38 Ferritin 0.0005

19 Eosinophils 0.0051 39 Interleukin 10 0.0004

20 basophil 0.0049 40 PLT 0.0004
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progression. The stages are closely related to mortal-
ity and time of illness and can help analyze the status of 
infected patients. 3) We give the ranking of 40 biomark-
ers according to the degree of correlation with COVID-
19. Based on this, we found three major complications 
of COVID-19 patients - myocardial injury, liver function 
injury and renal function injury.

Further, there is room for further improvement. First, 
because of the data limitations, our method may face risk 
of bias, because data-driven methods are easily influenced 
by different source of data. For example, the results may 
vary when using different datasets [45]. Second, our cur-
rent interpretation is based on results, such as the degree 
of association between biomarkers and disease. We hope 
to give more explanations about the complex DL black-
box model, such as telling more specific effect of each 
part of the model on the result. Meanwhile, we hope to 
enlighten the relevant researchers to further study these 
4 stages and present more clinical explanations. In par-
ticular, we expect to be able to give specific treatments 
for different stages. Targeted treatment is significant for 
both patient rehabilitation and the reasonable allocation 
of medical resources.

Conclusions
The sudden outbreak and epidemic of COVID-19 has 
led to worldwide suffering and shortages of medical 
resources. In this paper, we propose T-LSTM to predict 
patient outcomes with high accuracy - 98, 95 and 93% 
at 3, 6, and 9 days, which will enable reasonable alloca-
tion of medical resources. T-LSTM can effectively model 
the irregular sampled time series in blood test sam-
ples of COVID-19 patients and predict more accurately 
than existing baselines. Meanwhile, we identified four 
COVID-19 stages. We ranked 40 biomarkers according 
to correlations to the outcomes of patients, gave the ref-
erence values of top 10 biomarkers for each stage. The 
top 10 biomarkers are: Lymph, LDH, hs-CRP, Indirect 
Bilirubin, Creatinine, INR, Serum Sodium, eGFR, Serum 
Chlorine and Albumin. We also found 3 complications of 
COVID-19, which are myocardial injury, liver function 
injury and renal function injury. By analyzing patients’ 
life conditions at different stages, doctors can choose spe-
cific, targeted treatments. Future work will focus more 
on the study of pathological characteristics of different 
stages. Aiming at four stages, targeted treatments are 
expected to be designed. Meanwhile, more real clinical 
data are expected to be available for model validation and 
the model will be used to mine the inherent hidden fea-
tures of other diseases.
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