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Abstract

Background and Purpose: Double inversion recovery (DIR) imaging is used in multiple

sclerosis (MS) clinical protocols to improve the detection of cortical and juxtacortical

gray matter lesions by nulling confounding signals originating from the cerebrospinal

fluid and white matter. Achieving a high isotropic spatial resolution, to depict the neo-

cortex and its typically small lesions, is challenged by the reduced signal-to-noise ratio

(SNR) determined by multiple tissue signal nulling. Here, we evaluate both conventional

and optimized DIR implementations to improve tissue contrast (TC), SNR, and MS lesion

conspicuity.

Methods: DIR images were obtained from MS patients and healthy controls using both

conventional andprototype implementations featuring aT2-preparationmodule (T2P), to

improve SNR and TC, as well as an image reconstruction routine with iterative denoising

(ID).Weobtained quantitativemeasures of SNRandTC, and evaluated the visibility ofMS

cortical, cervical cord, and optic nerve lesions in the different DIR images.

Results:DIR implementations adopting T2P and ID enabled improving the SNR and TC of

conventional DIR. In MS patients, 34% of cortical, optic nerve, and cervical cord lesions

were visible only in DIR images acquired with T2P, and not in conventional DIR images. In

the studied cases, image reconstruction with ID did not improve lesion conspicuity.

Conclusions: DIR with T2P should be preferred to conventional DIR imaging in proto-

cols studying MS patients, as it improves SNR and TC and determines an improvement

in cortical, optic nerve, and cervical cord lesion conspicuity.
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INTRODUCTION

Inversion recovery is a well-established magnetic resonance imag-

ing (MRI) technique that allows the suppression of undesired signals

originating from a tissue of choice. This is achieved by playing the exci-
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tation pulse at an appropriate time after a π (180◦) inversion pulse:

for example, in neuroimaging studies, this strategy can enable suppres-

sion of fat, cerebrospinal fluid (CSF), white matter, and specific tissue

interfaces.1–5 Similarly, double inversion recovery (DIR) imaging uses

two inversion pulses with appropriate inversion times TI1 and TI2 to
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null the signal of two tissues of choice.6 DIR has several clinical appli-

cations in brain imaging,7 especially in the study of the cortical gray

matter (GM),whose signal can be isolated by nulling theMRsignal orig-

inating from the white matter (WM) and CSF.8 DIR has become the

technique of choice for the depiction of cortical GM lesions in mul-

tiple sclerosis (MS).9–11 In this scenario, it is necessary to achieve a

sufficiently high isotropic spatial resolution, to depict the thin, convo-

luted structure of the neocortex and its typically small lesions, which

is challenged by the reduced signal-to-noise ratio (SNR) determined

by multiple tissue signal nulling. These requirements of spatial resolu-

tion isotropy and SNR can be achieved with 3-dimensional acquisition

schemes,8 preferably taking advantage of MR scanners operating at

high static magnetic field.12,13

Being MS lesions best identified on the basis of their long T2 relax-

ation time,14 detrimental T1 weighting contamination in DIR image

contrast should be minimized. This operation becomes critical at high

field, where the T1 relaxation times are longer15; hence, for a given

time of repetition TR, undesired increased T1 weighting and a lesser

recovery of longitudinal magnetization of the tissues of interest ham-

per lesion conspicuity. One strategy to reduce unwanted T1 weighting

is to include a T2-preparation (T2P) module before inversion16: such

a module employs a π/2 (90◦) excitation pulse, followed by a series of

π refocusing pulses and one final –π/2 flip-back pulse. The duration of

the T2P module is determined by the interval between the π/2 and –

π/2 pulses, and is chosen such that the transversal magnetization of

GM and WM significantly decays during this time, while that of CSF

with long T2-time is virtually unaffected and flipped-back at the end

of themodule. This way, after the first DIR inversion pulse, the GM and

WM experience a saturation recovery as their magnetization is close

to zero, while the CSF experiences an inversion recovery as in conven-

tional DIR, in the absence T2Pmodule. As a result, a larger signal in the

tissues of interest is obtained, with lesser undesired T1weighting.3

Besides the amount of SNR increase that can be achieved with T2P

during acquisition, further SNR improvement can be obtained during

image reconstruction. In this respect, a promising iterative denoising

(ID) approach has been proposed, to enable the reduction of spa-

tially varying noise.17 This ID technique has recently been included in

the reconstruction pipeline of highly accelerated 3-dimensional fluid-

attenuated inversion recovery (FLAIR) imaging with otherwise dete-

riorated quality, and it enabled to recover the detail of unaccelerated

acquisitions.18

In this study, we evaluated an optimized 3-dimensional DIR proto-

type implementation featuring aT2Pmodule and image reconstruction

with ID, and assessed its performance in detecting cortical, optic nerve,

and cervical cordMS lesions.

METHODS

Twenty-one subjects participated to this study: 18 patients with MS

(age: 40.2 ± 3.7 years; 11 with relapsing-remitting MS, 1 with primary

progressiveMS, 6 with secondary progressiveMS; 13 females; disease

duration: 8.2 ± 2.5 years) and 3 healthy controls. Data were acquired

TABLE 1 MPRAGE sequence parameters

Geometry Sagittal, Phase encoding A>> P

Time of repetition 2300ms

Time of echo 2.96ms

Flip angle 8 degrees

Time of inversion 919ms

Receiver bandwidth 240Hz/pixel

Parallel imaging 2, GRAPPA

Coverage 256mm (I>> S)×

240mm (A>> P)×

208mm (R>> L)

Acquisitionmatrix 256× 240× 208

Spatial resolution 1× 1× 1mm3

Number of averages 1

Time of acquisition (minutes) 5:09

Abbreviations: A >> P, anterior-to-posterior direction; I >> S, inferior-

to-superior direction; R >> L, right-to-left direction; GRAPPA, GeneRal-

ized Autocalibrating Partial Parallel Acquisition; MPRAGE, 3-dimensional

magnetization-prepared rapid acquisition with gradient echo.

on a 3T MAGNETOM Prisma scanner (Siemens Healthcare, Erlangen,

Germany) equipped with a 64-channel head-and-neck coil. The imag-

ing protocol included one T1-weighted 3-dimensional magnetization-

prepared rapid acquisition with gradient echo (MPRAGE)19 with

imaging parameters summarized in Table 1, and two types of DIR

acquisitions, both based on a prototype 3-dimensional turbo spin echo

sequence using variable refocusing pulses20: one with T2P3,16 and one

without, with parameters shown in Table 2. Each acquired dataset

was reconstructed twice: with and without an ID algorithm17 inte-

grated directly in the scanner reconstruction pipeline.18 Therefore, the

following four DIR images were obtained:

∙ DIR, that is, the conventional DIR implementation without T2P and

no ID;

∙ DIR+ID, that is, conventional DIR acquisition followed by image

reconstruction using ID;

∙ T2PDIR, that is, DIR acquired with T2Pmodule;

∙ T2PDIR+ID, that is, DIR acquired with T2P module, reconstructed

with ID.

The datasets above were acquired twice in three healthy controls,

with identical parameters, for SNR assessment, as described in detail

below. In healthy controls, binary masks representing the GM, WM,

and CSF were obtained from the MPRAGE images by using FAST—

FMRIB’s Automated Segmentation Tool21 and were co-registered to

the 3-dimensional DIR imageswith FLIRT—FMRIB’s Linear Image Reg-

istration Tool22; SNR values in the relevant nonsuppressed tissue (ie, in

the GM) were obtained for each type of DIR images and each subject,

as follows23,24:

SNRGM =

mean (S1 + S2)|GM√
2 std (S1 − S2)|GM

, (1)
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TABLE 2 Double inversion recovery (DIR) sequence parameters

Imaging parameters, common to all DIR acquisitions:

Geometry Sagittal, Phase encoding A>> P

Time of repetition 5500ms

Time of echo 270ms

Turbo factor 173

Times of inversion 2500 and 450ms

Receiver bandwidth 668Hz/pixel

Parallel imaging 3× 2, CAIPIRINHA

Coverage 230mm (I>> S)×

240mm (A>> P)×

173mm (R>> L)

Acquisitionmatrix 192× 200× 144

Spatial resolution 1.2× 1.2× 1.2mm3

Number of averages 2

Time of acquisition (minutes) 4:41

T2-preparationmodule parameters:

T2-preparation duration 125ms

Number of refocusing pulses 4

Abbreviations: A >> P, anterior-to-posterior direction; CAIPIRINHA, Con-

trolled Aliasing in Parallel Imaging Results in Higher Acceleration; I >> S,

inferior-to-superior direction; R>> L, right-to-left direction.

where S1 and S2 represent the voxel signal intensities in the two

repeated acquisitions, and mean()|GM and std()|GM indicate the calcu-

lations of signal mean and standard deviation, respectively, within the

GM mask in each subject. The relative tissue contrast (TC) between

GM and WM was also calculated for each type of DIR images in each

subject, according to the following formula:

TC =
SGM − SWM
SGM+SWM

2

, (2)

where SGM and SWM represent the mean image intensities in the GM

andWMmasks, respectively.

The images obtained from theMS patients were inspected by three

raters with different levels of experience: one senior neuroradiolo-

gist (Rater 1, LR) with 15 years of experience, one neurologist (Rater

2, CL) with 5 years of experience in MS, and one resident neurolo-

gist (Rater 3, NB) with 2 years training in MS lesion identification.

The images were randomly presented to the raters, who received no

information regarding the type of DIR image being examined. The

raters identified and counted, by consensus, the MS cortical (intracor-

tical, leukocortical, and subpial), cervical cord, and optic nerve lesions

in each of the four series, for each patient. Each lesion was given

a score between 1 and 3 (1 = possible lesion; 2 = probable lesion;

3= obvious lesion). The average score across lesionswas computed for

each of the four types of DIR images. In this computation, undetected

lesions that were visible in at least another DIR image were assigned a

score of 0.

To assess the reliability of assigned scores, Rater 2 performed a sec-

ond reading in a scoring session that tookplacemore than70days after

F IGURE 1 Signal-to-noise ratio (SNR) (top panel) and tissue
contrast (bottom panel) in three healthy controls (HC) in conventional
double inversion recovery (DIR), DIR reconstructed with iterative
denoising (DIR+ID), DIRwith T2-preparationmodule (T2PDIR), and
T2PDIRwith iterative denoising reconstruction (T2PDIR+ID). GM,
graymatter;WM, white matter

the first one. The agreement between the two scoring sessions was

measured by the Cohen’s κ.25

RESULTS

Figure 1 depicts the SNR in the GM and the GM-WM TC in the four

types of DIR images being investigated.

By using T2P, the SNR was improved by 23.3% in the GM on aver-

age across subjects, with respect to the conventional DIR acquisition

without T2P. ID improved the SNRof conventional DIR by 15.9%,while

it did not improve the SNR of T2PDIR: indeed, it reduced it by 1.1%.

The joint use of T2P and ID improved the SNR of conventional DIR by

21.9%.

By using T2P, TC was improved by 8.4% on average across sub-

jects, with respect to the conventional DIR acquisition without T2P. ID

improved the TC of conventional DIR by 8.9%, while it improved the

TC of T2PDIR by 6.6%. The joint use of T2P and ID improved the TC of

conventional DIR by 15.5%.
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TABLE 3 List of all detected cortical, optic nerve, and cervical cordmultiple sclerosis lesions

Patient

Maximum

number of

detected lesions Lesion

Lesion type

and location Score DIR

Score

DIR+ID

Score

T2PDIR

Score

T2PDIR+ID

1 4 1 IC F RH 2 2 3 3

2 LC F LH 2 2 2 2

3 CS 3 3 3 3

4 CS 1 1 3 1

2 8 5 IC T LH 3 3 3 3

6 LC P LH 1 1 3 3

7 LC T LH 3 3

8 LC F RH 2 2

9 ON 3 3

10 CS 2 2 3 3

11 CS 1 1 3 3

12 CS 1

3 1 13 IC F LH 2 1

4 2 14 LC T LH 1 1 1 1

15 CS 2 2 2 3

5 0

6 9 16 ICO LH 2 2 3 3

17 IC T LH 3 3

18 LC T LH 3 3

19 LC F RH 3 3

20 ON 2 2

21 CS 1 1 3 3

22 CS 1 1 3 3

23 CS 3 3

24 CS 3 3

7 6 25 IC F RH 1 1 3 3

26 IC P LH 3 2

27 LC T LH 2 2

28 ON 2 2 3 3

29 CS 2 3 3 3

30 CS 2 2

8 3 31 LC F RH 3 3 3 3

32 IC F RH 1 1 2 2

33 IC T RH 1 1 2 3

9 3 34 IC F LH 2 2 2 2

35 LC T RH 1 1 2 2

36 CS 3 3 3 3

10 2 37 ON 2 2 3 3

38 CS 3 3 3 3

11 1 39 CS 1 1 1 1

12 7 40 IC P LH 2 2 2 2

41 IC F RH 1 1 1 1

(Continues)
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TABLE 3 (Continued)

Patient

Maximum

number of

detected lesions Lesion

Lesion type

and location Score DIR

Score

DIR+ID

Score

T2PDIR

Score

T2PDIR+ID

42 ON 2 2 3 3

43 CS 2 2 3 3

44 CS 2 2 3 3

45 CS 2 2 3 3

46 CS 3 3

13 6 47 LC F LH 2 2 3 3

48 IC T LH 3 3

49 LC T RH 3 3

50 IC T RH 2 2

51 ON 1 1 3 3

52 CS 1 2 3 3

14 2 53 LC F RH 1 2 2

54 ON 3 3

15 4 55 IC T RH 3 3 3 3

56 LC T RH 2 2 2 3

57 LC T LH 1 1 1 3

58 CS 1 2 2 3

16 1 59 ON 1 2

17 2 60 CS 3 3

61 CS 3 3

18 6 62 ON 1 1 3 3

63 ON 1 1 3 3

64 CS 3 3 3 3

65 CS 1 1 3 3

66 CS 1 1 3 3

67 CS 1 1 3 3

Average score: 1.13 1.19 2.62 2.68

Note: For each lesion, the table indicates if it is an intracortical (IC), leukocortical (LC), optic nerve (ON), or cervical spine (CS) lesion. For cortical lesions,

the lobe (F: frontal; P: parietal; T: temporal; O: occipital) and hemisphere (RH: right hemisphere; LH: left hemisphere) are indicated. For all lesions, the four

rightmost columns indicate the scores (1: possible lesion; 2: probable lesion; 3: obvious lesion) assigned in the four types of double inversion recovery (DIR)

images: conventionalDIR,DIR reconstructedwith iterativedenoising (DIR+ID),DIRwithT2-preparationmodule (T2PDIR), andT2PDIRwith iterativedenois-

ing reconstruction (T2PDIR+ID). In the computation of the average scores indicated in the last row of the table, a score of 0 has been assigned to undetected

lesions.

In the patients with MS, 15 leukocortical lesions, 15 intracortical

lesions, 10 optic nerve lesions, and 27 cervical cord lesions were

detected with different levels of confidence, as reported in detail

in Table 3. No subpial lesions were detected. Of the 30 cortical

lesions, 13 lesions (43%: seven leukocortical and six intracortical

lesions) were visible only in DIR images acquired with T2P. Similarly,

four out of 10 optic nerve lesions (40%) and six out of 27 cervical

cord lesions (22%) were visible only in DIR images acquired with

T2P. Only one possible/probable intracortical lesion (Lesion #13

in Table 3) and one possible cervical cord lesion (Lesion #12) were

detected only in conventional DIR acquisitions without T2P, and not

in DIR acquisitions with T2P (2/67; 3%). Pie charts representing the

improved lesion detection achieved with T2P are shown in Figure 2.

The clear improvement in lesion detection obtained with T2P is

reflected in the large increase in average scores, indicated at the

bottom of Table 3. The average score obtained with T2PDIR (2.62)

was 1.49 points higher than that obtained with conventional DIR

(1.13). Instead, in the studied cases, image reconstruction with ID did

not improve lesion conspicuity. The average scores obtained after ID

were only 0.06 points higher than those obtained without ID, both in

the comparison between DIR and DIR+ID, and between T2PDIR and

T2PDIR+ID.

The total number of cortical, optic nerve, and cervical cord lesions

detected in a second, control scoring session was 67, that is, the same
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F IGURE 2 Pie charts indicating the number of lesions detected in
the cortical graymatter, optic nerve, and cervical cord, showing in gray
the number of lesions detected with both conventional double
inversion recovery (DIR) andDIRwith T2-preparationmodule
(T2PDIR), in dark gray the lesions visible only in T2PDIR acquisitions,
and in white the lesions detected only in conventional DIR acquisition

as in the first session. Intersession scoring reliability was very good, as

measured by Cohen’s κ= .97.

Figure 3 depicts representative lesions in the different types of DIR

images.

DISCUSSION

The visualization of cortical GM lesions, optic nerve lesions, and cer-

vical cord lesions is typically challenging with conventional T2 and

T2-FLAIR imaging.11 The aim of this study was to assess the improve-

ment obtained by the use of a T2-preparation module and an ID

reconstruction routine, applied to a 3-dimensional DIR imaging proto-

col for detecting small MS lesions, namely, cortical GM lesions, optic

nerve lesions, and cervical cord lesions. Our study shows that both T2P

and ID improve SNR and TC, and their joint use outperforms the SNR

and TC of conventional DIR imaging. From a lesion detection stand-

point, a major improvement is achieved by T2P, while ID has a minor

impact, at least in the patients studied here. The importance of T2P

in improving SNR and TC in the brain was previously demonstrated in

studies conducted onMRI scanners operating at ultrahigh field (7T),26

where the lengthening of GM and WM T1 relaxation time introduces

undesired T1 contrast and causes SNR reduction. Our study demon-

strated that T2P in 3-dimensional DIR is important not only at 7T, but

also at 3T, as it improves SNR and TC and, most importantly, it deter-

mines an improvement in cortical, optic nerve, and cervical cord lesion

conspicuity with respect to conventional DIR.

Improving the capability of DIR sequences in revealing cortical

lesions, besides providing amore reliable and time-saving approach for

neuroimaging examinations, may deeply impact on the MS diagnostic

process, as cortical and juxtacortical areas have been already indi-

cated in the current diagnostic criteria to meet dissemination in space

(DIS).27,28 Previous studies demonstrated that the accrual of cortical

lesions in patients with MS, especially if treated, is generally very slow

over time, also in the progressive forms of the disease.29,30 Therefore,

optimized DIR imaging may reduce the risk of underestimating the

cortical lesion burden throughout the course of the disease. Further-

more, it has been demonstrated that the presence of cortical lesions

largely contributes to explain disability accrual over time,31 thus

influencing therapeutic choices since the earliest stages of the disease.

In the detection of optic nerve lesions, one major confounder is

perineural CSF, whose signal may produce partial volume effects that

impair the detection of pathological findings.32 DIR has been used

to study optic nerve pathology,33–37 with a better representation of

lesions than other MR techniques.7,38 Here, we demonstrated the

utility of the T2P module, which further improved optic nerve lesion

conspicuity with respect to the conventional DIR implementation,

at no cost in terms of additional scanning time. The importance of

these findings shall be considered in the light of the fact that optic

neuritis is the typical first presentation of the disease (although its

inclusion in the DIS criteria for MS is still under debate)27 and the

development of asymptomatic optic nerve lesions is not a rare event

inMS.39

In the study of spinal cordMS lesions, DIR is not commonly included

in MR protocols,40–42 even though the current guidelines28 underline

the importance of spinal cord examination at disease onset and dur-

ing monitoring. While, on the one hand, it has been shown that DIR

allows better detection of lesions of the cervical segment in compari-

sonwith conventional turbo spin echo sequences,43 on the other hand,

proton density-weighted fast spin echo and short tau inversion recov-

ery can detect more lesions compared to DIR.44 Our results, despite

being obtained only in the cervical segment of the spine, demonstrated

a clearly better detection of MS lesions by using T2P, which encour-

ages further studies to assess whether T2PDIR, either with or without

ID, may be considered for future inclusion inMRI protocols addressing

spinal cord lesions inMS.

It isworth noticing two limitations of this study. The first,mentioned

previously, is that the evaluation on patients with MS is based on a

relatively small number of subjects. However, this number of subjects

appears sufficient for the purpose, as it allowed to assess 67 among

intracortical, leukocortical, optic nerve, and cervical cord lesions, with

at least 10 representative lesions per lesion type. The second limita-

tion is that the results shown here obviously depend on the acquisition

parameters adopted in this study. However, the choice of all acqui-

sition parameters was based on well-established criteria3 and was

supported by the published literature on DIR with and without T2P

module.33,37,43
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F IGURE 3 Examples of cortical, optic nerve, and spinal cord lesions, detected with different confidence levels, in conventional double
inversion recovery (DIR), DIR reconstructed with iterative denoising (DIR+ID), DIRwith T2-preparationmodule (T2PDIR), and T2PDIRwith
iterative denoising reconstruction (T2PDIR+ID). Dotted arrows indicate possible lesions (score= 1); thin arrows indicate probable lesions (score
= 2); thick arrows indicate obvious lesions (score= 3).

In conclusion, this study demonstrated the clear improvement

provided by T2-preparation in 3-dimensional DIR acquisition in the

detection of cortical, optic nerve, and cervical cord MS lesions in a

clinical 3T MR setting. Therefore, T2PDIR should be preferred to

conventional DIR acquisitions in MRI clinical protocols studying MS

patients. DIR image reconstruction with ID deserves future investiga-

tion: while it has recently been shown that this technique is capable

of restoring the quality of highly accelerated acquisitions with other-

wise low SNR,18 ID did not provide obvious further improvements in

MS lesion detection in our case of high-quality input images. Further

studies shall assess whether ID applied to highly accelerated T2PDIR

could enable similar lesion detection performance in a shorter time. In

the current state of the art, reconstructing the acquired T2PDIR data

both with and without ID appears to be a reasonable approach, which

provides two datasets with possibly complementary information.
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