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Radiotherapy (RT) is a major modality of postoperative treat-
ment in breast cancer. The maximal standardized value (SUV-
max) is 18FDG-PET/CT derived parameter that reported to be
a valuable prognostic factor in cancer patients. Herein, we aimed
to identify a prognostic gene signature associated with glucose
uptake for breast cancer patients after RT by leveraging the
mRNA expression profiling on public datasets. The glucose up-
take signature was constructed using the single sample gene set
enrichment analysis (ssGSEA) algorithm and evaluated in
GSE21217 where SUVmax value was measured by PET-CT
directly. The prognostic value was validated in three post-RT
breast cancer cohorts (GSE103744, NKI, and FUSCCdatabases).
The patients were stratified into glucose uptake signature score-
high and low groups. Patients with a higher score had worse sur-
vival than those with a lower score. Mechanistically, the glucose
uptake signature was calculated in each cell type of a single-cell
RNA-seq database from five breast cancer patients. Glucose up-
take signature score was significantly elevated in the malignant
epithelial cells compared with normal ones. The immunosup-
pression markers including PDCD1, TIGIT, LAG3, and
HAVCR2 were significantly upregulated in the T cells bearing
a high glucose uptake signature score. Collectively, our results
demonstrated the potential prognostic value of a glucose uptake
signature in the post-RT breast cancer patients.

INTRODUCTION
Breast cancer is the most frequently diagnosed cancer among women,
which accounts for 15.5% of all cancer deaths. In the era of precision
medicine, using prognostic and treatment-predictive biomarkers to
assess clinical outcomes after treatment is crucial for treatment
decision.

Radiotherapy (RT) is a major modality of postoperative treatment in
breast cancer.1 It has been shown that adjuvant RT after breast-
conserving surgery (BCS) or mastectomy reduces local recurrence
and increases survival.2,3 In the era of molecular medicine, it is essen-
tial to identify patients whomay benefit from RT. Attempts have been
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made to discover biomarkers to predict response to RT among pa-
tients with breast cancer. Several gene-expression-based classifiers
have been presented to predict prognosis after RT,4–7 or to classify tu-
mors as radiosensitive or radioresistant.6,8

The metabolism of tumor cells is relatively different from that in
normal tissue cells. Tumor cells predominantly utilize glycolysis
even in the presence of ample oxygen. This phenomenon is known
as the Warburg effect.9–11 Several preclinical studies have shown
that tumor glucose metabolism is highly correlated with radioresist-
ance.12–14 Interfering with glucose metabolism of tumor cells might
reduce the amount of antioxidant metabolites and could therefore
improve the therapeutic efficacy of RT.15,16 High glucose uptake is
observed during a clinical diagnosis of cancer using 18F-fluoro-
deoxy-glucose positron emission tomography computed tomography
(18FDG-PET/CT).17,18 The diagnostic and therapeutic impact of
18F-FDG PET/CT is well established in many solid tumors, such as
lung, and head and neck tumors.19 In breast cancer, several studies
have demonstrated the relationship between metabolic information
obtained with 18F-FDG PET/CT and tumor biology. Palaskas et al.
has carried out genome-wide transcriptome analysis of cell lines
and primary human breast tumors after determining their FDG up-
take. Using 11 primary breast cancer patients as training set, they
identified a “glucose uptake signature” that included genes enriched
in glucose metabolic pathways, and further tested its predictive ability
of radiotracer uptake in breast cancer cell lines.20 However, whether
there is a correlation between gene expression of glucose uptake
related genes and the prognosis after RT remains unknown.
Authors.
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Figure 1. Development of FDG uptake gene signature

(A) Survival analysis in patients with and without RT in GSE103744. (B) Correlation analysis between glucose uptake score and SUVmax value of PET-CT in GSE21217. (C)

Survival analysis in two groups of patients stratified by FDG uptake gene signature in GSE103744.
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To address this question, we used clinical and genomic database to
validate the prognostic value of this glucose uptake signature in
post-RT breast cancer patients.
RESULTS
Correlation of glucose uptake signature score and SUVmax

value

RT is considered as an effective intervention to prevent local relapse
after BCS.2 We performed survival analysis on a GSE103744 cohort
that consisted of 172 patients with gene-expression data, among
whom 118 patients had received RT. Unexpectedly, survival analysis
showed that there was no difference of recurrence between patients
with or without RT (p = 0.3, Figure 1A).

We speculate that the level of tumor glucose metabolism might be a
confounding factor affecting the outcome observed. Thus, an FDG
uptake gene-expression signature was derived by a single sample
gene set enrichment analysis (ssGSEA) algorithm based on a total
of 75 glucose metabolism related genes (the gene list is shown in Table
S1). We evaluated the FDG uptake signature in an additional dataset
GSE21217 in which SUVmax value wasmeasured by PET-CT directly
in breast cancer patients. For each patient, an FDG uptake gene signa-
ture score was calculated according to gene expression (Table S2). The
Molecular Therapy: Oncolytics Vol. 23 December 2021 413
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Figure 2. Validation of FDG uptake gene signature in post-RT patients in

GSE103744

(A) Kaplan-Meier curves of LRFS in patients treated with RT and (B) without RT. (C)

Multivariable analysis on FDG uptake gene signature and ER status.
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FDG uptake score was highly correlated with SUVmax value (R =
0.71, p = 0.015, Figure 1B), suggesting that FDG uptake score was
of good performance to be an alternative to predict the SUVmax
value. The FDG uptake score was then calculated on 172 patients in
the GSE103744 cohort. The optimum cutoff level for differentiating
two groups was defined as 0.22 by the X-tile plot approach (Figure S1).
Patients were divided into FDG uptake score-high (72 patients) and
FDG uptake score-low (100 patients) groups according to the optimal
cutoff level. Survival analysis showed that patients assigned to the
FDG uptake score-low group had better local recurrence-free survival
(LRFS) compared with the FDG uptake score-high group (p = 0.039,
Figure 1C).

Validation of prognostic value of FDG uptake signature score for

post-RT patients

To further explore the association of this signature with RT,
patients in GSE103744 were classified into RT-treated group
(118 patients) and non-RT-treated group (54 patients). In the
RT-treated group, the survival of patients in FDG uptake score -
414 Molecular Therapy: Oncolytics Vol. 23 December 2021
high and FDG uptake score-low group was significantly different
(p = 0.007, Figure 2A). However, in the group of non-RT-treated
patients, there was no difference between FDG uptake score-low
and FDG uptake score-high groups. In multivariable Cox analysis,
estrogen receptor (ER) status was not associated with prognosis,
while the FDG uptake gene signature score remained to be a sig-
nificant factor for prognosis (Figure 2C). To confirm these results,
we investigated this signature in another cohort of 319 patients
from the Netherlands Cancer Institute (NKI) cohort. All the pa-
tients in this cohort had received RT. Using FDG uptake signature,
patients were classified into FDG uptake score-high group (129
patients) and FDG uptake score-low group (190 patients). Similar
results between the two groups were noted in this cohort. Patients
in the FDG uptake score-high group had worse recurrence-
free survival (RFS) (p = 0.039) than those in the FDG uptake
score-low group. Five-year RFS was 62.3% in the FDG uptake
score-high group and 77% in the FDG uptake score-low group,
respectively (Figure 3A). Multivariate analysis showed that when
adjusting for chemotherapy, endocrine therapy, ER status, and
age, this FDG uptake signature remained an independent predic-
tive factor for RFS (Figure 3B). In addition, we performed the sur-
vival analysis on Fudan University Shanghai Cancer Center
(FUSCC) cohorts that enrolled 359 triple-negative breast cancer
patients.21 Survival analysis in the RT-treated patients (108 pa-
tients) revealed that the disease-free survival time of patients in
the FDG uptake score-high group was significantly shorter than
that in the FDG uptake score-low group (p = 0.021). However,
no significant difference was observed in the non-RT-treated
patients (251 patients) (Figure 3C).

The underlying biology characteristic associated with FDG

uptake score

We then explored the biology characteristics of the tumor cell associ-
ated with SUVmax using single-cell RNA sequencing (RNA-seq) of
five breast cancer samples.22 Uniform Manifold Approximation and
Projection (UMAP) analysis classified the cells into several clusters,
including epithelial cells, immune cells, and fibroblasts, as originally
defined by Wu et al22 (Figures 4A and 4B). We calculated the FDG
uptake gene signature score in each cell type of five breast cancer pa-
tients and found higher FDG uptake gene signature score cells were
mainly enriched in epithelial cells (Figure 4C). The epithelial cells
were further divided into malignant epithelial cells and normal
epithelial cells.22 We also observed that the cells bearing a higher
FDG uptake gene signature score significantly enriched in the malig-
nant epithelial cells compared with normal epithelial cells (Figures
4D–4F). To investigate whether the FDG uptake gene signature score
is associated with the RT response on a single-cell dataset, we
calculated the RT response signature from the Molecular Signatures
Database (MSigDB). Correlation analysis showed that FDG uptake
gene signature score is correlated with a radioresistance signature,
namely “WATANABE_RECTAL_CANCER RADIOTHERAPY_
RESPONSIVE_DN”, which may suggest that FDG uptake gene
signature score closely correlates with radioresistance of breast cancer
patients as well (Figure 4G).
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Figure 3. Validation of FDG uptake gene signature in

NKI and FUSCC cohorts

(A) NKI cohort: Kaplan-Meier curves of RFS in patients

treated with RT. (B) NKI cohort: Multivariable analysis on

FDG uptake gene signature, chemotherapy, hormonal

therapy, ER status, and age. (C) FUSCC cohort: Kaplan-

Meier curves of disease-free survival in patients treated

with and without RT.
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The efficacy of RT is closely related to the immune status of the pa-
tient. We then investigated the expression pattern of the FDG uptake
gene signature score in each T cell of breast cancer. Interestingly, the
cells bearing higher FDG uptake gene signature score were signifi-
cantly enriched in the exhausted CD8+ T cells compared with other
T cell types (Figure 5A). Previous study has shown that the upregula-
tion of some inhibitory receptors and ligands, including programmed
cell death 1 (PD-1, also known as PDCD1), T cell Immunoreceptor
With Immunoglobulin and ITIM Domains (TIGIT), Lymphocyte
Activating 3 (LAG3), and T cell immunoglobulin domain and mucin
domain 3 (TIM-3, also known as HAVCR2), prevents RT from
Molecular The
achieving the optimal therapeutic effect.23

Then, the T cells were split into high and low
groups according to FDG uptake gene signature
score. We observed that the immunosuppres-
sion markers, including PDCD1, TIGIT,
LAG3, and HAVCR2, were significantly upre-
gulated in the T cell bearing high FDG uptake
gene signature score (Figure 5B). We further
investigated the relationship between FDG up-
take gene signature score and four immunosup-
pression markers in the GSE103744 cohort. As
expected, correlation test revealed that FDG up-
take gene signature score was positively corre-
lated with the mRNA expression of PDCD1, TI-
GIT, LAG3, and HAVCR2 (Figure 5C).

To probe the FDG uptake gene signature score
associated pathways on an unbiased basis, we
performed gene set enrichment analysis using
microarray data of the breast cancer cohort
in the GSE103744 cohort. We observed that
RT resistance signature, including WATANA-
BE_RECTAL_CANCER RADIOTHERAPY_
RESPONSIVE_DN and MONNIER_POSTRA
DIATION_ TUMOR_ESCAPE_UP, was as-
signed with the high enrichment score in the
samples bearing high level of FDG uptake
gene signature score (Figure 6).

DISCUSSION
In this study, we identified and validated the
prognostic value of a glucose uptake signature
in post-RT breast cancer patients. To our
knowledge, this is the first study to identify prognostic value of
FDG uptake signature in post-RT breast cancer patients. In our study,
the glucose uptake score-high group predicted by the FDG uptake
gene signature showed worse survival compared with the glucose up-
take score-low group in post-RT patients.

FDG PET/CT is widely recommended as part of the initial staging of
locally advanced breast cancer, and the detection of SUVmax depends
on various factors, such as their size (partial volume effect), metabolic
activity, the surrounding background activity, and the serum glucose
level. The decision of radiation treatment conventionally depends on
rapy: Oncolytics Vol. 23 December 2021 415
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Figure 4. The FDG uptake gene signature score expression increased in malignant epithelial cells based on single-cell transcriptome

(A) UMAP plot visualized the clusters of each cell type of breast cancer. (B) Violin plot shows the expression of FDG uptake gene signature score in each cell type. (C)

Visualization of UMAP colored according to malignant epithelial cells and normal epithelial cells. (D and E) UMAP plot shows the expression of FDG uptake gene signature

score in epithelial cells. (F) Violin plot showed the expression of FDG uptake gene signature score in malignant epithelial cells and normal epithelial cells. (G) Scatterplot

showing the correlation between FDG uptake gene signature score and RT response.
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the clinical and pathological features after surgery as well. Thus, using
glucose metabolism gene expression to predict the prognosis of pa-
tients after RT might be an alternative, useful tool for precise stratifi-
cation of risk groups.

It has been well established that high FDG uptake might provide a
unique insight into tumor cell metabolism. Numerous studies have
suggested that PET parameters, such as SUVmax, depend on the bio-
logical characteristics and subtypes of breast cancer.24–26 The prog-
nosis of postoperative breast cancer patients with higher SUVmax
is worse than that of patients with lower SUVmax.27 Also, Wang
et al. showed that PET value could predict a patient’s response to
chemotherapy.28 Osborne et al. attempted to correlate 18F-FDG
uptake with different molecular profiles and specific genes from mi-
croarray analysis in locally advanced breast cancer; higher 18F-FDG
uptake was found in ER-negative tumors and multiple genes were
416 Molecular Therapy: Oncolytics Vol. 23 December 2021
identified to be associated with glucose use.29 Crespo-Jara et al. has
generated and validated a genomic signature for the prediction of
FDG uptake in diverse metastatic tumors. Multiple biological pro-
cesses were involved in this signature, including glycolysis and
glucose transport.30 Also, it has been demonstrated that the glycolytic
metabolism in malignancies is highly correlated with radioresistance.
Previous studies have explored the link between FDG uptake features
and radiosensitivity in some cancer types. Recently, it has also been
reported that SUVmax might be a good predictor of outcome after
stereotactic ablative radiotherapy (SABR) for early-stage non-small
cell lung cancer.31

Also, we investigated the biology characteristics of tumor cells asso-
ciated with the FDG-uptake signature using single-cell RNA-seq
data. We have shown that some immunosuppression markers
were significantly upregulated in the T cell bearing a high FDG
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Figure 5. The FDG uptake gene signature score expression increased in

exhausted T cells based on single-cell transcriptome

(A) Violin plot shows the expression of FDG uptake gene signature score in each

T cell type. (B) Violin plot shows the expression of PDCD1, TIGIT, LAG3, and

HAVCR2 in the T cells bearing high and low FDG uptake gene signature score. (C)

FDG uptake gene signature score was significantly correlated with the expression of

PDCD1, LAG3, TIGIT, and HAVCR2 in the GSE103744 cohort.
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uptake gene signature score. Although glucose in T cell activation
and effector functions have been demonstrated to be important,
their roles in T cell exhaustion remain undetermined.32 Here we hy-
pothesize that elevated tumor oxygen consumption contributes to
T cell exhaustion and immune evasion. The reason is that elevated
glucose consumption resulting in cancer cell glucose deprivation in
the tumor environment has been found to dampen the tumoricidal
activity of tumor-infiltrating lymphocytes in a mouse melanoma
and sarcoma model.33,34 More and more evidence suggests that tu-
mor glycolysis plays a key role in instigating immunosuppressive
networks that are critical for immune evasion. Several recent studies
have begun to establish the relationship of tumor-intrinsic meta-
bolism to successful immunotherapy. For instance, it has been re-
ported that increased glycolytic metabolism in melanoma cells is
associated with resistance to adoptive T cell therapy and checkpoint
blockade.35

There are several limitations in our study. First, tumor tissues are
necessary to get gene profiling information, and their clinical utility
is to be further validated and has not yet been introduced into clinical
routine. In clinical practice, gene signature might be less convenient
than immunohistochemical markers. Second, the NKI dataset lacks
some clinical information, such as TNM stage, HER2, and histological
type, so multivariable Cox regression has been adjusted for the avail-
able information. Third, in this study, only retrospective cohorts were
used for the validation, prospective studies are warranted to validate
these results.

In summary, we demonstrated the potential prognostic value of a
glucose uptake signature in post-RT breast cancer patients. More pro-
spective data are warranted for the use of signature in the clinical
setting.

MATERIALS AND METHODS
Study design and patients

By mining RNA expression profiling of samples, we developed a
gene-expression-based signature using a gene set variation analysis
(GSVA) algorithm from gene-expression data of GSE21217.20 The as-
sociation of the signature and SUVmax was tested. To validate this
signature, we performed survival analysis on the Sjöström
(GSE103744), NKI, and FUSCC datasets. In the Sjöström
(GSE103744) dataset, 172 patients undergoing BCS with or without
RT were collected.36 The median follow-up time was 9.2 years (range,
0.6–19.6). LRFS was the clinical endpoint for training purposes. Pa-
tients were divided into SUVmax-high and SUVmax-low groups ac-
cording to the signature. To further test these results among patients
treated with RT only, we investigated the gene signature in another
cohort of 319 patients (NKI dataset).37–39 In this cohort, all the pa-
tients with breast cancer had undergone breast conserving therapy,
including surgery and RT. The median follow-up time was 7.1 years
(range, 0.05–18.4 years). For this validation cohort, RFS was used as
the endpoint since information about LRFS was not available. As
per the FUSCC cohort, 360 patients with mRNA sequencing data
were retrieved from the NCBI Sequence Read Archive (SRA
ID:SRP157974). One sample with obscure RT status was removed
for downstream analysis. Follow-up time was updated until May 2021.

Development of FDG uptake signature

To construct the FDG uptake gene signature, we used ssGSEA that
defined an enrichment score to represent the degree of absolute enrich-
ment of a gene set in each sample within a given gene list.20 ssGSEA is a
methodology to calculate separate enrichment scores for each pairing of
Molecular Therapy: Oncolytics Vol. 23 December 2021 417
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Figure 6. FDG uptake gene signature score associated pathways

(A and B) Gene set enrichment analysis on the GSE103744 cohort.
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a sample and gene set. Each ssGSEAenrichment score represents the de-
gree to which the genes in a particular gene set are coordinately up- or
downregulated within a sample. The ssGSEA analysis were performed
in R package GSVA. The association of the signature and SUVmax
was tested.

Determination of FDG uptake gene signature score cutoff value

The prognostic ability of the FDG uptake gene signature score was
analyzed by Kaplan-Meier survival analysis. The X-tile was used to
implement the optimal cutoff point of FDG uptake score. X-TILE
software 3.6.1 (Yale University School of Medicine, New Haven,
CT) was used to assess the X-tile analysis.

Survival analysis and multivariate analyses

We used the log rank test to assess the survival data between different
risk groups stratified by gene signature at the optimal cutoff.
Multivariable Cox regression analyses were applied to analyze the in-
dependent prognostic effect of the signature. Statistical analysis was
performed with R software (version 3.6.1) and statistical levels were
two-sided; statistical significance was set at 0.05.

Single-cell RNA-seq analysis

External single-cell mRNA-seq data have been described by Wu
et al.22 The Python package Scanpy (version 1.4.6) was used to analyze
these dataset. Raw data consisting of gene-expression values in count
value were used for downstream analysis. Before clustering, the full
dataset or a subset thereof was filtered for highly variable genes
(min_mean = 0.0125, max_mean = 3, min_disp = 0.5) and scaled.
Clustering was performed on the top 50 principal components of
the data using the UMAP algorithm with resolution = 0.3.
418 Molecular Therapy: Oncolytics Vol. 23 December 2021
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