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Abstract

Recent studies indicate a stage-specific, differential role for the oncogene Akt on

various cancers. In prostate cancer (PCa), suppression of Akt activity in the

advanced stages promoted transforming growth factor-b (TGFb) pathway-

mediated epithelial-to-mesenchymal transition (EMT) and metastasis to the lungs.

In the current study, we performed Affymetrix analysis to compare the

expression profile of microRNAs in the mouse prostate tissues collected at the

prostatic inter-epithelial neoplasia (PIN) stage from Transgenic adenocarcinoma

of the mouse (TRAMP)/Akt1þ/þ versus TRAMP/Akt1e/e mice, and at the

advanced stage from TRAMP/Akt1þ/þ mice treated with triciribine (Akt inhibitor)

versus DMSO-treated control. Our analysis demonstrates that in the early stage,
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Akt1 in the TRAMP prostate tumors express a set of miRNAs responsible for

regulating cancer cell survival, proliferation, and tumor growth, whereas, in the

advanced stages, a different set of miRNAs that promote EMT and cancer

metastasis is expressed. Our study has identified novel Akt-regulated signature

microRNAs in the early and advanced PCa and demonstrates their differential

effects on PCa growth and metastasis.

Keywords: Biochemistry, Bioinformatics, Cancer research

1. Introduction

Metastatic prostate cancer (PCa) is the leading cause of cancer-related deaths in men

in the US and the Europe [1]. Although slow-growing cancer, PCa that has metas-

tasized to the bone, lungs, and brain are difficult to treat [2]. Uncertainties in the mo-

lecular mechanisms leading to the switch from early to advanced PCa is the

underlying reason for the unreliable screening measures and ineffective treatments

that are currently used in the management of PCa [3]. Recent studies from our lab-

oratory have indicated that transforming growth factor-b (TGFb)-induced epithelial-

to-mesenchymal transition (EMT) plays an important role in this process [4]. TGFb,

that plays a tumor suppressor role in the early stages switches to a metastasis pro-

moter in the advanced stages [4, 5, 6]. However, the mechanisms that regulate

this switch are not clearly understood.

Recently we showed that Akt1, the predominant Akt isoform in the PCa cells [7] and

vascular cells [8, 9, 10] plays a dual, reciprocal role in tumor growth and metastasis

[11]. Similar results have also been reported in four other types of cancer such as the

breast [12, 13], liver [14], non-small cell lung [15] and head and neck [16]. Further-

more, a very recent study from our lab has indicated that the specific loss of Akt1 in

endothelial cells promotes prostate cancer metastasis [17]. These studies have identi-

fied Akt1 to promote tumor growth but suppress cancer metastasis. The above studies

also have identified a reciprocal link between Akt1 and TGFb pathways in promoting

cancer cell EMT and metastasis. Until today, the molecular mechanisms connecting

these two pathways in the regulation of EMT and metastasis have not been identified.

Micro-RNAs are novel players in the modulation of cellular signaling in various

physiological and pathological processes [18]. There are several microRNAs that

have been identified to regulate the tumor progression, EMT, and metastasis in

PCa [19]. Interestingly, one of the studies linking Akt1 suppression to EMT in breast

cancer demonstrated the involvement of microRNAs, mir200 cluster in particular in

the process [12]. However, such a link between Akt1 activity, microRNAs expres-

sion regulation, tumor growth, EMT, and metastasis has not been shown in other

cancer types.
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In the current study, we performed microRNA array on an Affymetrix platform to

identify the signature microRNAs followed by bioinformatics analysis to identify

the potential microRNA regulated pathways in the early prostatic inter-epithelial

neoplasia (PIN) [20] stage and the advanced stage (31 week old mice) TRansgenic

Adenocarcinoma of the Mouse Prostate (TRAMP) PCa tissues in the presence and

absence of Akt1 gene in the early stage (12-week old mice; PIN stage) and between

DMSO and triciribine (Akt inhibitor) treatment in the advanced stage. Our results

indicate different signatures of the microRNA by Akt1 in the PIN and advanced

PCa, with a clear role of Akt1-regulated microRNAs in the regulation of cell survival

and proliferation in the early stages and EMT and metastasis in the advanced stages.
2. Materials and methods

2.1. Generation and genotyping of TRAMP/Akt1þ/e and TRAMP/
Akt1e/e mice

Akt1e/emice (C57BL/6 background) were generated and maintained as reported pre-

viously [8]. In order to generate TRAMP/Akt1e/e transgenic mice, C57BL/6 Akt1þ/e

male was crossed with TRAMP (C57BL/6 background) female mice (Jackson, Bar

Harbor, ME). All experiments were carried out in accordance with guidelines set

by Augusta VA Medical Center. DNA was extracted from the tails of 10- to 21-

day old litters (Qiagen, Valencia, CA). TRAMP transgene (600 bp) was detected

by PCR (forward: 50-GCGCTGCTGACTTTCTAAACATAAG-30 and reverse: 50-
GAGCTCACGTTAAGTTTTGATGTGT-30) with an annealing temperature of 55
�C. The internal positive control (forward: 50-CTAGGCCACAGAATTGAAA-
GATCT-30 and reverse: 50-GTAGGTGGAAATTCAGCATCATCC-30) produced

a 324 bp fragment. Primers to confirm Akt1 gene knockout (forward: 50-TCCAG-
GACCAGGGGAGGATGTTTCTACTG-30 and reverse: 50-ACGACATGGTG-
CAGCAATGGCCAGCG-30) yielded a 600 bp band. Primers for Neo gene

(forward: 50-TGAGACGTGCTACTTCCATTTGTCACGTCC-30 and reverse: 50-
ACAGGCCGCTACTATGCCATGAAGATCCTC-30) generated a 1200 bp frag-

ment [11]. All studies involving animals are reported in accordance with the

ARRIVE guidelines for reporting experiments involving animals. All tests were per-

formed with the approval of the Charlie Norwood VAMC Institutional Animal Care

and Use Committee (approval reference #15-08-083).
2.2. TRAMP prostate miRNA isolation and microarray profiling

We subjected the prostate tissues collected from TRAMP/Akt1þ/þ and TRAMP/

Akt1e/emice at 12 weeks (PIN stage) age for Affymetrix� technology-based micro-

RNA array analysis. To determine the specific effect of pharmacological suppression

of Akt in advanced PCa, we subjected the prostate tissues collected from TRAMP/
on.2018.e00796
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Akt1þ/þ mice treated with DMSO (control) or triciribine (Selleckchem, Houston,

TX) for 5 weeks starting from week 26 and collecting at 31 weeks for the microRNA

array analysis. miRNAs were isolated from mouse prostates using Qiagen miRNeasy

Kit according to manufacturer’s protocol. The concentration of miRNA was deter-

mined using a NanoDrop spectrophotometer (Thermo Scientific) and the quality

of miRNA was analyzed using an Agilent 2100 Bioanalyzer. Microarrays were per-

formed on miRNA using an Affymetrix GeneChip� miRNA 4.0 Array at the Inte-

grated Genomics Core, Augusta University, GA. The miRNA profiles for the early

stage prostate tumors with or without the Akt1 gene and the advanced prostate tu-

mors with DMSO (control) or triciribine treatment were determined and analyzed.
2.3. Normalization and pathway analysis of microRNA array

The miRNA expression was normalized to the average of the house keeping genes

(snoRNA251, snoRNA202, snoRNA142, and U6) provided in the miRNA PCR ar-

rays. The miRNA profile of TRAMP/Akt1e/e was normalized to TRAMP/Akt1þ/þ

(early stage), while the miRNA profile of triciribine treated advanced tumor-

bearing TRAMP/Akt1þ/þwas normalized with the respective DMSO treated controls

(late stage). T-tests were used to calculate the p-value to determine the significant

difference in miRNA expression between the groups. The p-value cutoff of 0.05

and the miRNAs with a fold change above 1.5 were considered differentially ex-

pressed for further analyses. Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) signaling pathway analyses were performed using DIANA-

miRPath version 3.0 (http://diana.imis.athena-innovation.gr/DianaTools/index.php)

on differentially expressed microRNAs target genes [21]. Analysis of EMT genes

regulated by microRNAs was determined using the epithelial-to-mesenchymal tran-

sition gene database (dbEMT; http://dbemt.bioinfo-minzhao.org/). Principal

component analysis (PCA) was performed between control and test TRAMP

tumors both in the early and advanced stages.
2.4. Ingenuity pathway analysis

Ingenuity Pathway Analysis (IPA, Qiagen Bioinformatics) is a software that trans-

forms a list of molecules into a set of relevant networks associated with pathology

based on extensive records maintained in the Ingenuity Pathways Knowledge

Base [22]. Highly interconnected networks are predicted to represent a significant

biological function [23]. IPA was used to connect 132 genome-wide association

study (GWAS)- implicated cancer genes along with microRNA and various cancer

pathways [24, 25]. Significantly changed miRNAs associated with Akt1 inhibition

from the two experimental sets were uploaded in IPA and core analyzed. Genes

that are differentially regulated by miRNAs, as well as miRNAs, were mapped to

molecular pathways, canonical pathways, and biological functions that are
on.2018.e00796
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predominantly associated with cancer. All genes that were directly affected by the

pathway in cancer are shown.
2.5. Data and statistical analysis

All the studies performed using the KEGG, Ingenuity, and miR-Path databases were

performed in an unbiased manner without focusing on any specific targets or

signaling pathways. dbEMT database analysis was performed specifically to look

into the known and potential genes/targets regulated by each or combination of

the most up- or down-regulated miroRNAs as obtained from the KEGG and miR-

Path analysis on EMT and cancer metastasis. All the data are presented as mean

� SD and were calculated from multiple independent experiments performed in qua-

druplicates. For normalized data analysis, data was confirmed that normality

assumption was satisfied and analyzed using paired sample t-test (dependent t-

test) and/or further confirmed with non-parametric test Wilcoxon signed rank test.

For all other analyses, Student’s two-tailed t-test or ANOVA test were used to deter-

mine significant differences between treatment and control values using the Graph-

Pad Prism 4.03 software and SPSS 17.0 software. Data with P < 0.05 were

considered significant.
3. Results

3.1. Akt1 gene deletion in the early (PIN) and pharmacological
suppression in the advanced (metastasis) PCa in TRAMP prostate
reveal expression changes in microRNAs involved in different
signaling pathways

Principle component analysis (PCA) mapping of TRAMP/Akt1þ/þ and TRAMP/

Akt1e/e showed that TRAMP/Akt1þ/þ group was clustered distinctly from

TRAMP/Akt1e/e group (Fig. 1A). KEGG pathway based all microRNA target pre-

diction analysis indicated changes in the expression of several genes involved in

the regulation of cancer growth, Wnt signaling pathway, focal adhesion, extracel-

lular matrix interactions and cell-cell junctions etc. (Fig. 1C). As supported by the

literature, these results indicated that Akt1 predominantly regulates cancer pathways,

Wnt Signaling pathways, Focal adhesions, junctional proteins, extracellular matrix

interactions, actin cytoskeleton and VEGF signaling pathway in the promotion of tu-

mor growth in the early stages and that the absence of Akt1 gene suppresses these

effects.

Principle component analysis (PCA) mapping of TRAMP/Akt1þ/þ þ DMSO and

TRAMP/Akt1þ/þ þ triciribine in the advanced stages showed that TRAMP/Akt1þ/þ

þ DMSO group was clustered distinctly from TRAMP/Akt1þ/þ þ triciribine group

(Fig. 1B). KEGG pathway based all microRNA target prediction analysis of the
on.2018.e00796
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C
Pathway Name

Enrichment 
Score

Enrichment
p-value

% genes in pathway 
that are present

TR-Akt1-PIN vs
TR-PIN score

# genes in list,
in pathway

Pathways in cancer 22.5899 1.55E-10 8.33333 1.8637 125
Wnt signaling pathway 19.6736 2.86E-09 10.1382 1.78544 66
Focal adhesion 13.7705 1.05E-06 8.32396 1.67597 74
Adherens and Tight junc on 9.90508 4.99E-05 9.56284 1.76326 71
Matrix-receptor interac ons 9.31652 8.99E-05 9.51009 1.61127 65
Prostate cancer 7.61258 0.000494196 8.26087 1.88998 38
Regula on of ac n cytoskeleton 7.49147 0.000557822 7.05128 1.8564 66
Transcrip onal regula on in cancer 7.33192 0.000654315 7.16846 1.86271 60
VEGF signaling pathway 1.68937 0.184636 5.76923 1.75209 21

TRAMP/Akt1+/+

TRAMP/Akt1-/-

A B

TRAMP + DMSO

TRAMP + TCBN

Pathway Name
Enrichment 

Score
Enrichment

p-value
% genes in pathway 

that are present
TR-DMSO vs

TR-TCBN score
# genes in list,

in pathway
Pathways in cancer 18.416 1.00E-08 14.1333 1.79551 212
MAPK signaling pathway 16.1029 1.02E-07 14.1956 1.80586 180
Wnt signaling pathway 19.0138 5.53E-09 16.8971 1.79399 110
Regula on of ac n cytoskeleton 8.82737 0.000147 13.3547 1.81522 125
Adherens and Tight junc on 8.9183 0.000134 15.847 1.79523 139
TGF-beta signaling 9.37164 8.51E-05 15.9574 1.86195 60
ECM-receptor interac on 6.30004 0.001836 14.6974 1.72916 51
Hedgehog signaling pathway 8.08318 0.000309 17.6471 1.86199 36
Notch signaling pathway 6.52075 0.001473 16.6667 1.80608 33

D

Fig. 1. Akt-regulated microRNAs differentially regulate PCa pathways in the early and advanced stages.

(A) Principle component analysis (PCA) mapping of TRAMP/Akt1þ/þ and TRAMP/Akt1e/e profiling.

TRAMP/Akt1þ/þ group (indicated by red color) was clustered distinctly from TRAMP/Akt1e/e group

(indicated by blue color). (B) Principle component analysis (PCA) mapping of 31 weeks old, 5 weeks

treated TRAMP þ DMSO and TRAMP þ Triciribine prostate tissue profiling. TRAMP þ DMSO group

(indicated by blue color) was clustered distinctly from TRAMP þ Triciribine group (indicated by red co-

lor). (C) Table showing pathways affected by the microRNA expression in TRAMP/Akt1e/e compared to

TRAMP/Akt1þ/þ mouse prostates as determined by the KEGG pathway analysis. (D) Table showing

pathways affected by the microRNA expression in TRAMP þ Triciribine compared to TRAMP þ
DMSO mouse prostates as determined by the KEGG pathway analysis.
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TRAMP/Akt1þ/þ þ DMSO and TRAMP/Akt1þ/þ þ triciribine treated advanced

stage prostate cancer tissues indicated changes in the expression of several genes

predominantly involved in the regulation of the Cancer pathways, Wnt signaling

pathway and cytoskeletal remodeling, similar to what was observed in the early
on.2018.e00796
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stages. Interestingly, Akt suppression by triciribine in the late stages also promoted

EMT-regulating pathways such as the MAP kinase signaling, TGFb pathway, Notch

and Hedgehog signaling etc. (Fig. 1D). A highly diverse group of microRNA reper-

toire was observed in these mouse prostate samples (TRAMP/Akt1e/e compared to

TRAMP/Akt1þ/þ prostates versus TRAMP þ DMSO compared to TRAMP þ tricir-

ibine) at two different stages of the disease (Figs. 2 and 3, respectively) suggesting an

important role of microRNAs in stage-specific effects of Akt suppression on PCa.
3.2. Akt1 deletion in TRAMP mice alters expression changes in
selective microRNAs that regulate cell survival and proliferation
in early PCa

There were significant changes in the repertoire of microRNA expression in TRAMP/

Akt1e/e compared to TRAMP/Akt1þ/þ prostates (Figs. 2 and 4A). While w5e13-

fold increase in miR-155-5p, miR199a-5p, and miR-29b-3p was observed in

TRAMP/Akt1e/e compared to TRAMP/Akt1þ/þ prostates, this was also associated

with a 2e3-fold decrease in miR-485-5p and miR-493-3p (Fig. 4A). Based on the In-

genuity PathwayAnalysis� system that converts a list of microRNAs and/or genes of

interest in particular disease pathology into a set of functional networks based on the

reported biological interactions, we identified that the net effect of Akt1 gene deletion

in TRAMP prostate at early cancer stage such as PIN stage will be suppression of pro-

liferation and promotion of apoptosis (Figs. 4B and 5), thus inhibiting oncogenic

transformation and tumor growth. All the microRNAs that were modulated by

Akt1 gene deletion in the PIN stage TRAMP prostate were previously characterized

for their target genes and cellular function in various cancers. The gene targets of the

upregulated microRNAs in the PIN-stage TRAMP prostates, such as the mir155-5p,

mir29b-3p, mir199a-5p, mir125b-1-3p, mir674-3p and mir29b-3p because of Akt1

gene knockdown, as identified by the Gene ontology and KEGG pathway

(DIANA-miRPath database) analyses has informed about the integral role of these

microRNAs and their target genes in the promotion of cell survival and/or prolifera-

tion (Fig. 6A; Supplemental Table 1). Similarly, GO and KEGG analysis on the target

genes of downregulated miRNAs such as mir485-5p, mir3097-5p, mir460e-5p,

mir3090-3p, mir365-1-5p and mir3099-5p identified their role in promoting cellular

arrest and apoptosis (Fig. 6B; Supplemental Table 2), suggesting that Akt inhibition

in the early stages of PCa has a tumor suppressive effect.
3.3. Pharmacological inhibition of Akt in the advanced PCa-
bearing TRAMP mice alters expression changes in selective
microRNAs that regulate EMT and metastasis

We observed significant changes in the repertoire of microRNA expression in tricir-

ibine treated compared to DMSO treated control prostates, which are entirely
on.2018.e00796
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Fig. 2. Akt suppression in the early and advanced stages of PCa modulates a different set of microRNAs.

Alteration in the miRNAs in TRAMP/Akt1e/e mouse prostates compared to TRAMP/Akt1þ/þ shown in a

Heat-map (n ¼ 3).
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Fig. 3. Akt suppression in the early and advanced stages of PCa modulates a different set of microRNAs.

Alteration in the miRNAs in TRAMP þ Triciribine mouse prostates compared to TRAMP þ DMSO

shown in a Heat-map (n ¼ 3).
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Fig. 4. MicroRNA expression changes in TRAMP/Akt1e/e mouse prostates compared to TRAMP/Akt1þ/þ

show the integral role of Akt1 in cell survival and proliferation. (A) Selected miRNAs differentially

regulated in TRAMP/Akt1e/e mouse prostates compared to TRAMP/Akt1þ/þ. (B) Signaling network

analysis using Ingenuity Pathway Analysis software involving microRNAs identified from the study indi-

cating the integral role of Akt1-regulated microRNAs in cell survival, proliferation and growth in the early

stage PCa.
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different from the early stage tumors (Figs. 3 and 7A). While w5-fold increase in

miR-669h-3p, miR3104-3p and miR-598-3p were observed in triciribine treated

compared to DMSO treated control prostates, more changes were observed in the

downregulated microRNAs resulted in w7e17-fold decrease in miR-375-3p, let-

7a-5p, miR-10a-5p and miR-143-3p (Fig. 7A). Based on the Ingenuity Pathway
on.2018.e00796
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Fig. 5. Signaling network analysis using Ingenuity Pathway Analysis software involving microRNAs

identified from the study indicating the integral role of Akt1-regulated microRNAs in cell survival, pro-

liferation and growth in the early stage PCa.
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Analysis�, we identified that the net effect of Akt activity suppression using tricir-

ibine in TRAMP prostate in the advanced stages will be the promotion of cellular

migration, invasion, malignancy and differentiation to mesenchymal type as demon-

strated by changes in the expression of smooth muscle cell actin-a and TGFb

signaling (Figs. 7B and 8), thus promoting metastatic ability. Analysis based on

KEGG pathway analysis and dbEMT database analysis also indicated that the

changes in these microRNAs with Akt suppression in advanced PCa will promote

EMT and metastasis.

Although severalmicroRNAs thatweremodulated byAkt suppression in the advanced

stage TRAMP prostate were previously characterized for their target genes and cellular

function in various cancers, information regarding some of the highly downregulated

microRNAs such as mir375-3p was not available in these databases or in the literature.

The gene targets of the up-regulated microRNAs such as the mir669h-3p, mir5046,

mir3092-3p, mir328-3p, mir296-5p and mir674-5p because of Akt suppression by tri-

ciribine treatment in the advanced PCa tissues as identified by the dbEMT database an-

alyses has informed about the integral role of thesemicroRNAs and their target genes in

the promotion of EMT and metastasis (Fig. 9A and Supplemental Table 3). Similarly,

the gene targets of the down-regulatedmicroRNAs such as themir145a-5p,mir30c-5p,

mir10a-5p, mir143-5p, let7a-5p and mir133a-5p because of Akt activity suppression

by triciribine treatment in the advanced PCa tissues as identified by the dbEMT data-

base has informed about the integral role of these microRNAs in the suppression of

EMT and metastasis (Fig. 9B and Supplemental Table 4). Overall, the results suggest
on.2018.e00796
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Upregulated miRNAsA

miR-146a-5p
Fastkd2, 

Cdc42bpb, 
Kras, Hnrnpd, 
Parp1, Appl1

Cell Survival
and 

Prolifera�on

miR-199a-5p
Tgfb2, Dmrt3, Atxn7, Caprin1, 

March7, Naa40, Apbb1, Cacna1b, 
Fgf4, Ncpg2, Fastkd2,Adrbk2, 

Npas2, Asap3, Cdkn2aip, Fzd6, 
Nlk, Pfkfb4, Ero1lb, Gcnt2, 

Cx3cr1, Cyb5r2, Fzd4, Podxl, 
Pou3f2, Sulf1, Acot8, Bcl2l13, 

Gon4l, Fut9, Ppil3, Ptpru, Sun1, 
Pkn2, Itk, Map3k11, Tacr1, Thoc1

miR-674-3p
Wipf1, Igfbp6, Cacybp, Map4k3, Uba7, Irf4, 

Fastkd2, Hoxb3, Rnd3, Erich1, Lgr4, Cdkn2aip, 
Creb5, Atg10, Erlin2, Mob4, Syne3, Stk25, Egfr, 
Hepacam, Gnaq, Mmp16, Rdx, Wnt7a, Srebf2, 
Usp36, Bcl6, Hspa5, Rnase4, Fmod, Ddah2, 

Sertad2, Wnt5a, Usp24, Larp4b, Clcn3, Ckap4, 
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Fig. 6. KEGG and Gene Ontology (mirPath) analysis indicate modulation cell survival and proliferation

by Akt-regulated microRNAs in the early PCa. (A) Diagram showing highly upregulated miRNAs in

TRAMP/Akt1e/e mouse prostates compared to TRAMP/Akt1þ/þ, and their predicted and known targets

indicating their predominant involvement in the cell survival and proliferation in the early PCa. (B) Di-

agram showing highly down-regulated miRNAs in TRAMP/Akt1e/e mouse prostates compared to

TRAMP/Akt1þ/þ, and their predicted and known targets indicating their predominant involvement in

the cell survival and proliferation in the early PCa.
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that Akt inhibition in the advanced stages of PCa would promote metastasis. Complete

lists of microRNAs identified in the Affymetrix microarrays comparing TRAMP/

Akt1e/eto TRAMP/Akt1þ/þ prostates versus TRAMP þ DMSO to TRAMP þ Triciri-

bine treated prostates are provided in Supplemental Tables 5 and 6, respectively.
on.2018.e00796
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Fig. 7. MicroRNA expression changes in TRAMP/Triciribine mouse prostates compared to TRAMP/

DMSO show promotion of EMT with Akt suppression. (A) Selected miRNAs differentially regulated

in Triciribine treated TRAMPþ mouse prostates compared to DMSO treated control TRAMPþ. (B)

Signaling network analysis using Ingenuity Pathway Analysis software involving microRNAs identified

from the study indicating the integral role of Akt-regulated microRNAs in EMT and PCa metastasis in

the advanced stages.

13 https://doi.org/10.1016/j.heliy

2405-8440/� 2018 Published

(http://creativecommons.org/li

Article Nowe00796
4. Discussion & conclusion

Our study has demonstrated for the first time that Akt(1) suppression during the early

and advanced stages of PCa induces stage-specific changes in the repertoire of mi-

croRNAs involved in the differential regulation of oncogenic transformation, tumor

growth, and metastasis. Mechanistically this involves microRNA-mediated
on.2018.e00796

by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

censes/by-nc-nd/4.0/).
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Fig. 8. Signaling network analysis using Ingenuity Pathway Analysis software involving microRNAs

identified from the study indicating the integral role of Akt-regulated microRNAs in EMT and PCa

metastasis in the advanced stages.
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regulation of genes involved in cell survival and proliferation in the early stages and

deregulation of TGFb, MAP kinase, Notch and Hedgehog signaling in the later

stages.

Akt has been indisputably regarded as a pro-tumorigenic kinase in various cancers

[26, 27]. Several studies from our laboratory have indicated that Akt is indispensable

for the survival, motility, and proliferation of PCa cells in vitro and tumor growth

in vivo [7, 28, 29, 30, 31, 32]. Intriguingly, recent studies from various laboratories

in different cancer types such as the breast [12, 13], liver [14], non-small cell lung

[15] head and neck [16], have reported a different, paradoxical effect of Akt suppres-

sion on cancer metastasis. Our most recent study in PCa has clearly demonstrated

that although Akt1 gene deletion in TRAMPmice prevents oncogenic transformation

and tumor growth in the prostate, the pharmacological suppression of Akt kinase ac-

tivity in TRAMP mice bearing advanced PCa using triciribine-augmented metastasis

to distant tissues such as the lungs, liver, and kidney [11]. One of the key mecha-

nisms by which Akt suppression leading to increased metastasis in PCa [11] and

breast cancer [12, 13] has been identified to be the deregulation of various genes

involved in the TGFb-mediated EMT of cancer cells.

How Akt(1) suppression leads to deregulation of the TGFb pathway to promote

EMT and cancer metastasis is not clearly understood and literature in this area is

scarce. One of the first studies reporting a connection between Akt1 suppression,

TGFb expression and EMT in breast cancer indicated the down-regulation of
on.2018.e00796
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Fig. 9. KEGG and Gene Ontology (mirPath) analysis indicate modulation epithelial-to-mesenchymal

transition and metastasis by Akt-regulated microRNAs in the advanced PCa. (A) Diagram showing high-

ly upregulated miRNAs in Triciribine-treated TRAMPþ mouse prostates compared to DMSO treated

control TRAMPþ prostates, and their predicted and known targets indicating their predominant involve-

ment in the regulation of EMT in the advanced PCa. (B) Diagram showing highly downregulated miR-

NAs in Triciribine-treated TRAMPþ mouse prostates compared to DMSO treated control TRAMPþ
prostates, and their predicted and known targets indicating their predominant involvement in the regula-

tion of EMT in the advanced PCa.
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mir200 clusters such as mir200a, mir200b, and mir200c, which subsequently led to

reduced expression of E-Cadherin and increased expression of vimentin and EMT

transcription factor Zeb1 [12]. Although the involvement of microRNAs was not

investigated, a causal relationship between Akt1 suppression and promotion of

EMT via increased transcription factor Twist1 expression was also reported by

another group in breast cancer cells [13]. Although increased invasion as a result
on.2018.e00796
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of Akt suppression has also been reported by other laboratories in NSCLC [15], liver

[14] and head and neck [16] cancer, the involvement of microRNAs and TGFb

pathway in the process have not been investigated. Similarly, our recent study in

PCa demonstrated changes in the expression of a plethora of genes involved in

the TGFb and EMT pathways. Results reported in the current study is the second

in any cancers, after breast cancer [13] and is the first report in PCa that demonstrate

the involvement of stage-specific expression of various microRNAs linking Akt1 ac-

tivity suppression, activation of TGFb pathway and EMT.

Unlike breast cancer cells, analysis of TRAMP PCa tissues did not reveal a difference

in the expression of mir200 family with Akt1 activity suppression in either of the

early or advanced stages, indicating that different sets of microRNAs are involved

in various cancers. In the early (PIN) stages, Akt1 gene deficiency in the TRAMP

prostate resulted in significant increase in mir155-5p, mir199a-5p, mir29b-3p and

mir30a-3p as well as a decrease in the expression of mir485-5p, mir493-3p and

mir467e-5p, all of which that have been demonstrated to regulate the cell survival

and proliferation in the early stages of cancer as analyzed by the KEGG, GO and

IPA databases. Among these, mir155-5p has been shown to induce gastric cancer

cell apoptosis [33] and promote autophagy in cervical cancer cells [34]. On the other

end, in hepatocellular carcinoma [35] and colorectal cancer [36] mir155-5p has

demonstrated its ability to resist apoptosis and promotes cellular proliferation,

respectively. Intriguingly, although mir199a-5p was found to suppress tumor growth

from colorectal cancer cells [37], papillary thyroid carcinoma [38], triple-negative

breast cancer [39] and proliferation of esophageal cancer cells [40], its down-

regulation was shown to promote prostate adenocarcinoma progression [41].

Furthermore, mir29b-3p has been shown to act as a tumor suppressor in glioblas-

toma where it can inhibit cell growth and induce apoptosis in vitro [42]. In addition,

a reciprocal correlation was found between miR-30a-3p expression and esophageal

cancer cells proliferation [43]. This clearly underlines the cell type-specific effect of

miRNAs despite the nature of the disease. Although miR-485-5p has been shown to

suppress breast cancer and hepatocellular carcinoma progression [44, 45], the prolif-

eration of NSCLC [46], its reduced expression was associated with poor gastric can-

cer prognosis [47]. Such a complexity indicate that the stage-specific effects of Akt

on PCa growth and metastasis is orchestrated by several but not a single miRNA. In

general, the microRNAs detected in the early PCa stage with Akt1 gene deletion

were not involved in the regulation of TGFb pathway, MAP Kinase pathway or

EMT indicating that the effect of Akt1 suppression on these events is limited to

the advanced stages.

In the advanced stages, Akt1 inhibition by triciribine treatment for 6 weeks resulted

in the increased expression of mir669h-3p and mir3104-3p as well as decreased

expression of mir375-3p, le7a-5p, mir10a-5p and mir143-3p all of which are the

signature microRNAs in the modulation of TGFb and EMT pathway as analyzed
on.2018.e00796
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using the KEGG, GO, IPA and dbEMT databases. In spite of the significant upregu-

lation of miR-375 in the serum of castration-resistant PCa patients [48], we observed

a significant reduction of miR-375-3p with tricirbine treatment in the advanced

tumor-bearing TRAMP mice. Interestingly, during their investigation for the

miRNA-Runx1/2 signaling network in the regulation of PCa progression in TRAMP

mice and by looking at the temporal miRNAs expression in TRMAP’s tumors,

Farina et al have also noticed a significant reduction in miR-375-3p expression as

the tumor develops in these mice compared to wild-type controls [49]. Although

its expression was measured up to 21-week-old mice, the expression of Runx1/2,

which are targets for miR-375-3p, was elevated in 33week-old TRAMPs indicating

the potential reduction of miR-375-3p during that stage. However, since we had

TRAMPþDMSO as our control, treatment with TCBN was the only reason respon-

sible for the further reduction in this miRNA, assuming its low level in the control

animals. Another study reported that loss of let-7a expression in human PCa speci-

mens was correlated to higher Gleason score and more importantly to higher EZH2

expression [50], which is known to regulate molecular features of cancer stem cells

(CSC), thus EMT [51]. The suppressive activity of miR-143-3p on ovarian cancer

progression was reported through downregulation of TGFb activated kinase-1

(TAK1) [52]. Interestingly, we observed a significant reduction in miR-143-3p

with TCBN treatment, which is potentially involved in augmenting TGFb-induced

PCa metastasis upon Akt inhibition in the advanced stage PCa. Currently, there is no

information related to the role of miR-669h-3p and miR-3104-3p in cancer, which

represents novel topics for further investigation. Our analysis thus demonstrates a

significant role of Akt-regulated microRNAs in the stage-specific regulation of PCa.

In conclusion, our study provides the necessary clues that the expression of different

sets of microRNAs during the early and the advanced stages of PCa plays a major

role in the differential regulation of many signaling pathways such as the Akt and

TGFb pathways and that the microRNAs are also responsible for linking these path-

ways together. Our results will lay the foundation for many future discoveries that

may lead to the development of various tools in the management of PCa by identi-

fying the key microRNAs involved in the regulation of different signaling pathways,

determining changes in the microRNA expression in cancer biopsies and/or body

fluids as a biomarker for staging and for future therapies. A major limitation of

our study is that the data is specific to a murine model of PCa and hence have limited

clinical relevance. Nevertheless, cellular studies involving human PCa cell lines in

our laboratory have yielded similar effects of Akt suppression on EMT and metas-

tasis [11]. However, because of the significant differences between the murine and

the human microRNAs involved in various pathologies, more studies on the specific

microRNAs involved in human PCa and their specific effects on cell signaling path-

ways, EMT and metastasis are warranted. This will be the focus of future research in

our laboratory.
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