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Abstract: Epigenetic mechanisms are responsible for the regulation of transcription of 

imprinted genes and those that induce a totipotent state. Starting just after fertilization, 

DNA methylation pattern undergoes establishment, reestablishment and maintenance. 

These modifications are important for normal embryo and placental developments. 

Throughout life and passing to the next generation, epigenetic events establish, maintain, 

erase and reestablish. In the context of differentiated cell reprogramming, demethylation 

and activation of genes whose expressions contribute to the pluripotent state is the crux of 

the matter. In this review, firstly, regulatory epigenetic mechanisms related to somatic cell 

nuclear transfer (SCNT) reprogramming are discussed, followed by embryonic 

development, and placental epigenetic issues. 

Keywords: epigenetic; pluripotency; SCNT; embryogenesis; gametogenesis; polycomb; 

methylation; histone modification 

 

1. Introduction 

The transition from the differentiated somatic cell to the embryonic stage through somatic cell 

nuclear transfer (SCNT) requires activation energy to efficiently reprogram the resultant zygote to a 

proper pluripotent state [1,2]. SCNT is a tool to clone nuclear material into the enucleated cytoplasm 

of an unfertilized oocyte and thereby create genetically identical animals (Figure 1). SCNT not only 
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benefits agricultural applications, but has the potential for great advances in the field of medicine. In 

addition, SCNT has paved the way to better understand the changes in cell differentiation and 

reprogramming. Despite many investigations that have been done by numerous laboratories, the 

efficiency (i.e., the ability to create a live born animal per nuclear transfer) by this technique is still 

below 5% and several abnormalities have been reported [3]. One of the main reasons for these 

abnormalities is the failure in reprogramming/remodeling of differentiated cells to the stage that will 

evolve to a normal neonate. In the other words, programs involved in differentiated cells should be 

replaced with totipotency to ensure nuclear cloning and production of healthy offspring. Gene 

regulatory pathways are the critical network that could redefine SCNT. Clones, on the other hand, have 

to change expression profiles to embryo-specific, global rearrangement of chromatin structure. As a 

result, the cloning study is a way to understand epigenetic mechanisms and reprogram differentiated 

nuclei. Epigenetic modifications in the donor cells remodel the gene expression profile to the extent 

that is similar to the normal embryo. However, the epigenetic mechanisms that are responsible for the 

transformation from a differentiated somatic cell into a pluripotent state remain mysterious. In this 

review, we explore the epigenetic regulatory events that occur during the gametogenesis, embryogenesis 

and placental development. The epigenetic modifications that modulate expression of genes and 

subsequent reprogramming of the somatic nucleus to pluripotent state are also briefly discussed. The 

purpose of review is to summarize effective epigenetic events that could increase efficiency of SCNT 

and to emphasize recent epigenetic findings. In this regards, we briefly look into transition techniques 

and highlight epigenetic modifications that happen during the nucleus reprogramming. 

Figure 1. The schematic method used to create a cloned animal. A nucleus is taken from a 

somatic cell (nucleus donor animal) and injected into enucleated Oocyte (Oocyte donor 

animal). The zygotic cell begins dividing and the resultant blastocyst (embryo) transfers to 

a foster mother to develop the cloned animal. 
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2. Transition to Pluripotency 

SCNT provides new insight into gene manipulation to achieve defined purposes. This technique is 

to reprogram the differentiated somatic cell to a pluripotent state by transferring the nucleus of a 

somatic cell into an enucleated oocyte and produce a zygote, which results in a live offspring.  

In mammals, genomes of differentiated cell have to reprogram to a totipotent state to establish SCNT 

during pre-implantation. Consequently, the development of a zygote initiates and follows with blastocyst 

and the subsequent embryonic stages. Cloned embryos derived from less differentiated cells  

(as nucleus donors), such as embryonic stem cells, show better implantation than those derived from 

more differentiated somatic cells probably due to minimum or no reprogramming requirement [4]. It 

was shown that the efficiency of bovine SCNT is relatively higher than the other experienced species  

(for see review [5]) and pregnancy in Bos taurus is very similar to that of human in terms of length  

and development.  

Generation of induced pluripotent stem cell is to transport defined regulatory signals, influence the 

epigenetic state and change it to another state (plasticity) which emphasizes the mutual reliance between 

cell identity and epigenetic states [6,7]. This is, especially true during early embryo development and 

gametogenesis [1]. Pluripotent stem cells are driven from somatic cells that are introduced by specific 

reprogramming factors through either cell fusion or delivery of defined biochemical and/or chemical 

factors which are also categorized as a reprogramming approach. The fusion technique produces 

hybrid cells from differentiated somatic cells by nuclear reprogramming through the reactivation of 

embryo-specific genes, whose expressions are suppressed in somatic cells [8]. In 2006, a four-gene set 

was introduced to reprogram somatic cells to a pluripotent state [7]. Hybrid cells produced by fusion 

technique show a pluripotent state by expression of the pluripotent markers such as OCT4 [9]. Moreover, 

a number of other genes such as Nanong, Sox2, Lin28, Klf4, c-Myc and AID have been correlated to 

the pluripotent state of a cell. The expressions of these genes result in cell reprogramming [7,10–13]. 

Based on these evidences, identification of embryo-specific genes is crucial to defining their expression 

profiles during embryogenesis, functions during different stages of embryogenesis and the development 

of placenta. These regulations, actually, are defined epigenetic regulation for which molecular signals 

modulate the modifications. 

Several morphological abnormalities such as hydroallantois, placentomegaly, cardiomegaly, 

enlarged umbilical cord, abdominal ascites and placental dysfunctions [14,15], have been observed in 

the cloned offsprings. Large offspring syndrome (LOS) is a developmental disorder mostly seen in 

SCNT driven embryos. This syndrome in addition to the failure in the development of embryo and 

placenta and other abnormalities is attributed to inappropriate and/or inadequate somatic nuclear 

reprogramming events. Significant increase in genomic methylation in liver of cloned bovine fetuses is 

attributed to fetal overgrowth [16]. LOS and failure in the normal development of an embryo that are 

seen in cloned animals could be due to abnormal epigenetic patterns [17]. In fact, assisted reproductive 

techniques appear to be accompanied by several anomalies, especially in the second half of the 

gestation [14,18–20]. 
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3. Molecular Signals in Epigenetic Regulation 

Cells’ information is inherited to the next generation through genetic and epigenetic routes. Genetic 

information is encoded in the DNA sequence while, epigenetic information is defined basically by 

DNA modification (DNA methylation) and chromatin modifications (methylation, phosphorylation, 

acetylation and ubiquitination of histone cores). Combination of these modifications characterizes the 

chromatin configuration and the accessibility of genes to the transcription machinery and consequently, 

transcriptional regulation of the expression of genes. Cheng [21] introduced three categories by which 

transcriptional function is generally initiated and controlled: First, general intrinsic promoter and 

transcriptional machinery [22–24], second, specific transcriptional regulatory factors [25–27] and, third, 

the configuration and accessibility of chromatin structure and DNA to the transcriptional machinery 

through posttranslational modifications of histone and post replicational modification of DNA [27–29].  

3.1. Main Epigenetic Regulatory Mechanisms 

Complex epigenetic regulation comprises several molecular signals that direct the expression of 

genes based on environmental changes and developmental status. Transcription factors, non-coding 

RNAs (ncRNAs) [30], DNA methylation, histone modification and chromatin remodeling are such 

epigenetic signals that mediate accessibility and expression of genes as needed. Transcription  

mainly defines a self-propagating state mediated by cis-acting and/or trans-acting regulatory 

mechanisms [31], and are able to establish epigenetic states through cis-acting [32] and non-coding 

polycomb domains [31,33]. Reinforcement of epigenetic states happens through mutual relationship 

between DNA methylation and histone modifications [34]. DNA methylation postulates a reinforcing 

signal for other regulatory mechanisms whose functions are not that much strong [31].  

DNA methylation and histone modification are two important mechanisms for modulating the 

chromatin structure and regulating the expressions of the genes (for review see [35]). Epigenetic 

regulation is a complex phenomenon that consists of a variety of different processes [21] such as 

imprinting [36], X chromosome inactivation [37] and gene silencing [38,39]. In addition it encompasses 

the development of an embryo [40–43] and placenta [44–46], nuclear reprogramming in SCNT 

embryos [3,6] and carcinogenesis [47,48]. 

3.2. Transcriptional Regulation 

The transcriptional regulation of genes is mainly directed by different strategies. These include the 

state of genomic methylation [21], chromatin configuration [49,50], chromatin structural variations 

(euchromatin and heterochromatin) [51,52], and chromatin modifications [53]. Chromatin modification 

in turn is influenced by methylation, acetylation and phosphorylation, as well as polycomb proteins [54] 

and matrix attached region [55]. Transcriptional regulation is mostly controlled by the methylation 

pattern of the genome. DNA methylation on specific CpG dinucleotide (CpG) located in a cluster 

(CpG islands) is the regulatory mechanism by which expression of gene is either activated or suppressed 

(for review see [56]). Moreover, chemical modifications of chromatin histone cores are mediated by 

DNA methylation of CpG islands [57]. These modifications have a mutual relationship with each  
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other [58]. Germ cells and embryonic cells during early development are two epigenetic sites where 

methylation patterns erase, establish and reestablish [59]. 

3.3. Epigenetic Reprogramming During Embryogenesis  

In mammals, epigenetic reprogramming in germ cells and during preimplantation, especially its 

effects on imprinting genes, predominantly establishes developmental stages [60]. The DNA methylation 

patterns characterize developmental status during cell differentiation. In the concept of epigenomics, 

molecular signals are responsible to establish the proper expression of embryo-specific genes, mainly 

during gametogenesis and embryogenesis. Therefore, the main issue for a successful SCNT is the 

establishment of these modifications, occurring during embryogenesis, which should be similar and 

ideally identical to its normal embryo counterpart. However, undoubtedly, several lessons are still to 

be learnt regarding epigenetic modifications during gametogenesis.  

3.4. Epigenetic Features of DNA Methylation  

As mentioned before, DNA methylation and histone modification are the main epigenetic factors, 

by which gene expression could be regulated, and have important roles in nuclear reprogramming 

during embryogenesis. DNA methylation is a heritable epigenetic marker by which expression of a 

gene may be regulated through alteration in the local chromatin structure that mostly happen within the 

CpG islands and imprinted genes at cytosine carbon 5 within palindromic dinucleotide 5′-CpG-3′ and 

differentially methylated domains (DMDs) respectively (see review [60]). Cytosine residue of CpG is 

the site for DNA methylation by which gene expression is regulated. Generally, DNA methylation  

at CpG sequences suppresses the expression of the methylated gene [61]. CpG islands are usually 

located within repetitive elements such as centromic repeats, satellite sequences and ribosomal RNA 

genes [62,63]. DNA methylation can be varied in terms of patterns and the level of global/regional 

DNA methylation, is specific to developmental stages [64] and origin of tissue [16,65]. In fact, the 

mature parental gametes at fertilization are significantly methylated. For instance, DNA of sperm, in 

comparison with that of the oocyte, is more methylated [66,67] and, undergoes demethylation after 

fertilization [68–70]. However, imprinted genes and some retrotransposons mostly remain methylated. 

In mouse, hypermethylation pattern in repetitive regions and heterochromatin region has been 

observed; whilst in gene-specific region of DNA hypomethylation is predominant [17,71,72]. 

Abnormal DNA methylation of various repetitive elements in cloned blastocysts was reported for the 

first time by Kang and coworkers [73]. Methylation of imprints, monoallelic expressed genes [74,75], 

on the other hand, is a maintained (not de novo) and highly conserved event [76,77]. Recently, in a 

human study, comparison between embryonic stem cells and differentiated cells illustrated that there 

are a number of methylated cytosine in non-CpG regions of the embryonic stem cells [78]. 

3.5. DNA Methylation Signals 

DNA methylation is under the control of two types of signals: cis-acting signals and trans-acting 

signals. IGF2R, SNRPN, H19 and RASGRF1 are genes regulated by cis-acting signals (see review [79]). 

Global DNA methylation takes place especially after fertilization and with different rate of 
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demethylation that is specific to either parental genome [61]. Cell cycle observations reveal that 

paternal demethylation generally happens during the first cell cycle but maternal alleles take a few 

cycles to be demethylated [80]. After fertilization, imprinting control regions (ICRs) methylation is 

established in a sex-dependent manner [61]. Despite the maintained methylation pattern in somatic 

cells, methylation pattern in germ cells needs to be appropriately reestablished to provide a 

methylation pattern that is heritable to the next generation. This suggests that methylation is modulated 

in a sex-dependent manner [81]. Although hypomethylation of female germ line seems not to be 

correlated to the sex chromosomes, their regulation is thought to be associated with genital ridge. 

However, in the male germ line it is regulated by both mechanisms [81,82].  

3.6. DNA Methylation Analysis 

Epigenetic studies are strongly involved in DNA methylation. Analysis of the methylation patterns 

is the main approach in different studies that focuses on gene regulation. The cytosine 5 methylation in 

the context of CpGs mostly takes place within CpGs islands at the promoter region of genes and this 

leads to suppression of the expression of the gene. Several studies correlate aberrant methylation 

pattern of DNA to developmental failure during embryogenesis [83–85] and placentation [86,87] as 

well as several diseases and disorders [88–91] (for review see [92]). DNA methylation techniques 

cover a wide range of analysis from gene specific, locus specific to entire genome analysis using 

proper methods categorized in four groups based on DNA methylation analysis techniques [93]: in the 

first category cytosine residues are converted to Uralic by a bisulfite conversion, the second category is 

based on methylation-sensitive restriction endonuclease, enrichment based methods and the last is the 

capturing method based on the affinity to retain methylated DNA [94,95].  

3.7. Regulatory Factors in DNA Methylation 

As mentioned before, DNA methylation is a common epigenetic modification taking place by 

enzymatic reactions to be added to the cytosines at CpG, mostly known as repetitive elements and 

imprinted genes [79]. Generally, DNA methylation is classified either as de novo methylation or 

maintained methylation. Therefore, there are two classes of enzymatic: de novo methyltransferases and 

maintenance methyltransferases [96,97]. In mammals, DNA methylation occurs by the addition of a 

methyl group from S-adenosylmethionine to Cytosine using DNA methyltransferases (DNMTs). 

DNMTs are trans-acting factors targeting DNA sites for methylation using cis-acting signals. There 

are a number of mammalian DNMTs (see Table 1) that have been identified since 1980s [98]  

(for review see [99]).  

Table 1. Types of DNA methyltransferases and their epigenetic functions. 

DNMT # types [100] Functions 

DNMT1 
Maintaining methylation pattern [21,101,102] 
Essential for chromosome replication and repair [21,103,104] 
Essential for de novo methylation [105] 

DNMT2 Effective in DNA and RNA methylation (for review see [106]) 
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Table 1. Cont. 

DNMT3a 
Establishment of de novo methylation pattern [107,108] 
especially during gametogenesis [109] 
Maintaining methylation pattern [101] 

DNMT3b Establishment of de novo methylation [107,108] 

DNMT3L 

Essential for de novo methylation [110] 
Enhance de novo methylation activity of DNMT3a [111] and 
DNMT3b [112] 
Establishment of de novo methylation pattern especially during 
gametogenesis [113] 

# DNA methyltransferase 

3.8. DNA Methyltransferases 

DNA methylation at cytosine 5 nucleotide is catalyzed by DNMTs. This family of enzyme is vitally 

important in epigenetic regulation which modulates the expression of genes especially imprinted ones 

as well as X chromosome inactivation [114,115]. There are five main DNMTs that are important in  

de novo and/or maintenance DNA methylation: DNMT1, DNMT10, DNMT3a, DNMT3b and 

DNMT3L [99]. DNMT1, DNMT2 and DNMT3 are mostly characterized DNMTs that can categorize 

either maintenance or de novo DNMT. DNMT1 is a maintenance DNMT that methylates both imprints 

and non-imprints genes. DNMT2 seems to have a regulatory role in DNA methylation but the 

mechanism and its role in methylation maintenance or de novo remains unclear. DNMT3 as a de novo 

DNMT (DNMT3a) is a key factor in imprints’ methylation. Its isoforms are suggested to have roles in 

global DNA methylation in germ cells [116]. 

DNMT3L is defined as an imprints’ regulatory candidate for DNA methylation by regulating 

NMT3a/b [117]. The expression of DNMT1 gene has a positive correlation with DNA methylation 

status on the satellite I region. Consequently, it has been shown that in vitro development of bovine 

SCNT embryos to the blastocysts state can be enhanced through down regulation of DNMT1 [118].  

It is also shown that the DNMT is responsible for ICRs methylation [109]. Moreover, transcriptional 

analysis on the pS2/TFF1 during cell cycles reveals that DNMTs carry out two distinct actions, namely 

methylation and demethylation of CpGs [119].  

In comparison to the male germ line in which the establishment of ICR methylation of an imprinted 

gene, H19, is regulated by DNMT3a and DNMTL [109,113], DNMT3L is the de novo methylating 

regulatory factor for the female germ line [109]. In the female germ line, DNMT3L establishes the 

methylation of ICRs that selectively interact with histone H3 [120]. This evidence in addition to 

DNMT3L’s stimulating role for DNMT3a and DNMT3b [117] shows its potential in chromatin  

mark-specific recognition and methylation establishment [61]. Promoter methylation-mediated 

DNMTs show down regulation of DNMT1 and up regulation of DNMT3L in the human placenta and 

brings strength to the capability of DNMT family in the establishment of de novo DNA methylation in 

extraembryonic tissue [46]. A novel DNMT3b splice variant, DNMT3B3Δ5, is highly expressed in 

pluripotent embryonic stem cell and in contrast, is repressed during differentiation [121]. 

In a human study on DNMTS, global hypomethylation is shown to be induced by significant 

reduction in the expression of DNMT3A, DNMT3b and DNMT1 using microRNA-29b [122]. 
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DNMT3L by itself has no methyltransferase activity; however, its association with the DNMT3 family 

seems essential for de novo methylation in mice [123]. There are some evidence on the activity of 

DNMT1 in the establishment of methylation at non-CpG regions [55] and CpG islands [21,124,125]. 

Histone modification and CpG spacing are able to direct DMR methylation of imprints [21]. 

Crystallographic analysis showed that de novo DNA methylation might be controlled by specific 

histone modifications in that a heterotetramer structure, assembled from DNMT3a and DNMTL, 

provides two active sites of CpG that are 8–19 base-pair distance from each other [126–128]. A study 

on chromosome 21 also Reinforces the crucial role of CpG spacing in DNA methylation [129]. Active 

demethylation in mammalian genome seems promising, however, there has been no report of an 

enzyme that can catalyze this reaction [130]. Some studies have emphasized an active demethylation 

process, independent from DNA replication [131,132]. In fact, demethylation of the paternal alleles is 

an active event that happens rapidly after fertilization. The maternal genome, however, demethylates 

during first cell cycles in which demethylation mostly appears to be an inactive process. In addition to 

DNA methylation and histone modification, ncRNAs and regulatory proteins are the most studied 

epigenetic mechanisms that modulate epigenetic reprogramming. Small interfering RNAs (siRNAs) 

transfection is a technique to silence DNMT mRNA and modify the DNA methylation pattern in  

cells [6]. In a recent study, To examine the efficacy of the technique in SCNT embryos, DNMT1 RNA 

was silenced using siRNA in SCNT bovine embryo which demonstrated the capability in nucleus 

reprogramming through inducing DNA methylation [118]. In the expression of H19 in the male germ 

line, DNMT3a and DNMTL are counterparts and reached their maximum [133,134] on embryonic  

day 13 while there is no methylation on the H19 ICR, in mouse [135]. In addition, these enzymes seem 

not to be specific for DNA binding [99], suggesting direct/indirect interactions with specific chromatin 

modifications [61,136,137]. 

3.9. Epigenetic Features of ncRNAs 

The cluster-oriented imprinted genes are laid in ~1Mb length base pair, containing parental expressed 

genes, ncRNA sequences that regulate the nearby imprinted genes [138–141]. ncRNAs are mostly 

placed in clusters and regulated by ICRs [142]. The GNAS and KCNQ1 are examples of such imprints; 

containing ncRNAs that mediate the gene expression [143,144]. ncRNAs are divided into two groups, 

small ncRNAs and long ncRNAs. Small ncRNAs attach chromatin modifiers to specific genome 

sequence [145] and may interact with either RNA, single stranded DNA or double stranded  

DNA [1,146]. Long ncRNAs have complex tertiary structure and act globally to bridge chromatin 

modifiers to the genome [147]. But there are some evidences for local function of long ncRNAs, which 

is considered to function in cis-acting regulation of parental imprinted gene and inactivation of 

chromosome X [1]. 

In mammalian transcription of ncRNA genes is an important feature. ncRNAs usually are classified 

based on their mature length, location and orientation according to the nearest protein-coding gene, 

and their function which could be cis or trans [148–150]. Macro RNAs, such as inactive X-specific 

transcript (Xist) and X (inactive)-specific transcript, antisense (Tsix), are categorized as cis-acting 

ncRNAs that usually locate within clusters of imprinted genes. On the other hand, short ncRNAs such 

as short interfering RNAs, micro RNAs, piwi-interacting RNAs and short nucleolar RNAs are 
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categorized as trans-acting ncRNAs (for review see [151]) [148]. Koerner (2009) concluded that 

chromosomes express macro ncRNA usually do not express imprinted mRNA genes and the expression 

of imprinted macro ncRNAs may be regulated by an unmethylated imprint control element [148]. 

Moreover, there are a number of evidences that show trans-acting regulators for imprinted small 

ncRNAs such as Snurf-SNRPN and Dlk1-Gtl2 [152,153]. It has been shown that ncRNAs have a 

critical role during development. For instance, two ncRNAs, Dicer1 and Dgcr8, show developmental 

impact in mice [154,155]. Moreover, studies on effects of ncRNAs during animal embryogenesis show 

their specific and crucial role during embryonic development (for review see [156]). Micro ncRNAs, 

specifically, show precise control on expression of imprinted genes during development [157]. For 

instances, miR-15 and miR-16 are important in early embryonic development [158], miR-1, miR-133 and 

miR-206 in development of skeletal and heart muscle [159,160], miR-124 in neuronal development [161] 

(for review see [162]). During placentation, ncRNAs such as KCNQ1OT1, a long ncRNA, also 

illustrate a leading role in imprinted genes regulation [163–165]. Regulation of ncRNAs is an 

important silencing mechanism in plancenta (for review see [148]). It was shown that the repression of 

imprinted genes during gestation is directly regulated by micro RNAs during placentation and 

embryogenesis [166,167]. It seems that ncRNAs targets placental histone methyltransferases by 

ncRNAs through chromatin modification [148].  

3.10. Epigenetic Features of Small RNAs 

Small RNAs (terminologically different from ncRNAs), generated by activity of RNaseIII enzymes 

(reviewed in [168]), have variety of biological functions such as heterochromatin formation, mRNA 

inactivation and transcriptional regulation [169,170]. Generally, their bioactivity is due to their 

association with Argonaute (Ago)-family proteins [171]. microRNAs (miRNAs), endogenous small 

interfering RNAs and Piwi-interacting RNAs (piRNAs) are classes of small RNAs. In mammalians, 

small RNA-associated Ago proteins are mostly classified into Piwi subfamily and Ago subfamily  

(for review see [171]). miRNAs to do their biological activity, which is post translational regulation by 

acting on mRNAs, needs to be bound by Ago subfamily proteins (for review see [170]). Moreover, 

regulation of most miRNAs may control by developmental signaling [172]. piRNAs are mostly bound 

by Piwi subfamily proteins and have a critical role during gametogenesis [173] in germ line [174]. This 

subfamily protein has shown to have a critical role in regulation of germline stem cells [175]. 

3.11. Epigenetic Features of Chromatin Modifications 

Chromatin structure is crucial for gene regulation/expression, which is carried out by exploiting 

recruitment of protein complexes [29]. Euchromatin structure of embryonic stem cells is a 

predominant chromatic structure that allows for global gene expression accessibility [176] and 

facilitates reprogramming to the pluripotent state. It is not surprising that histone modifications might 

in turn influence the global gene expression by modulating chromatin configuration [177]. Covalent 

modification of the core histone has a critical role in the regulation of gene expression through 

acetylation and methylation. Chromatin modification and their function are important especially for 

gene regulation. Kouzarides (2007) reviewed a number of chromatin modifications characterized by 

mass spectrometry (for nucleosomal modification) and specific antibodies (for global histone 
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modification) [178]. Cellular condition is the key element for such modifications and these chromatin 

modifications, as a dynamic procedure, are mediated by a number of histone-modifying enzymes that 

can fascinate unravels chromatin, recruitment of nonhistone proteins and transcriptional regulation  

(for review see [178]). Chromatin modifications, to regulate gene expression, are mostly implied be a 

number of chromatin modifications such as acetylation/deacetylation, phosphorylation, lysine/arginine 

methylation, deimination, ubiquitylation/deubiquitylation, sumoylatio, ADP ribosylation and proline 

isomerization which are properly reviewed by Kouzarides (2007) [178]. 

Histone acetylation is the main type of histone modification during oogenesis, and it is shown that 

histone acetylation is critical in epigenetic reprogramming [179,180]. For instance, in vitro study on 

acethylation of histones in cloned porcine blastocyst showed that increase the level of acetylation may 

enhance the embryonic development [181,182]. Generally, hyperacetylation of histone H3 andH4 

improve the accessibility of nucleosome to transcriptional machinery [183]. The level of histone 

acetylation may correlate with the regulation of the expression of genes because more histone 

acetylation the more expression of a given gene, and vice versa [180]. As mentioned before, histone 

modifications and DNA methylation are cooperative. Histone modification is able to direct DNA 

methylation as shown in H3 in Neurospora crassa [184,185] (for review see [186]). Results from recent 

studies [187,188] have recapitulated that some chromatin modifiers directly act in a cis-acting  

manner [31]. However, a study on the relationship between DNA methylation and histone methylation 

suggests that they act mostly independently [189]. The affinity of UHRF1 binding protein to the 

nucleosomal H3K9me3 increases if CpG islands at the nucleosome are methylated but in contrast, in 

the absence of DNA methylation KDM2A binds to nucleosome having H3J9me3 [190]. Two epigenetic 

markers, H3K27me3 and CpG DNA methylation, at the RASGRF1 locus, are interdependent and 

antagonistic so they are more likely to exclude each other at the same loci [191]. The SNF2 family is 

an ATP-dependent remodeling complex. In this family, LSH has a role in establishment of normal 

DNA methylation. A null mutation in Hells gene, codes for LSH that results in the reduction or loss of 

methylation. Besides, this study suggests the importance of LSH in de novo methylation during 

embryogenesis [192]. Although histone methylation at H3K4 is able to control methylation at DMR of 

imprinted genes in an allele-specific manner [193,194], it seems to have preventive influence in terms of 

de novo methylation in mammalian somatic cells and may require low promoter methylation [195,196]. 

Furthermore, mutation in genes, coding for histone methyltransferase such as EZH2 and G9a [197,198] 

and histone deacetylases like HDAC1 [199] leads to premature death of mammalian embryos typically 

in less than ten days from fertilization. 

4. General Features of Imprinted Genes and Their Regulation 

After fertilization, a mammalian zygote undergoes proliferation and development. Although  

there are many active parental genes, involved in a normal embryo development, there are a few genes 

with bias regulation and transcription, referred to as imprinted genes [61]. Imprinting genes are 

important for normal embryonic development in mammals. Imprinting genes are selectively (on bias) 

expressed from a single parental allele [200] and conserved in their molecular structures and 

epigenomics [75,201]. These genes, essential for normal development, are expressed in a  

parent-specific manner, regulated by complex epigenetic mechanisms (e.g., DNA methylation,  
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post-translational histone modification) using epigenetic markers (e.g., DNA methylation) [61]. The 

conflicting interests of parental, imprinted genes are hypothesized as maternally and paternally 

expressed imprints suppress and enhance the fetal growth respectively (see review [60]). In the nucleus, 

imprinted genes are mostly placed in a cluster orientation but some are identified as isolated ones [72] 

such as Nap1l5, Nnat, Inpp5f_v2 [202–206] and Gatm, Dcn and Htr2a (for review see [207]). Imprints 

that are placed within CpG rich region are mostly in clusters, controlled by imprinting the control 

regions through DNA methylation and histone modifications [58,208,209]. Regulations of imprinted 

genes are generally proceeded through DNA methylation, post translational histone modification and 

ncRNAs [210]. In addition, active imprinted genes (expressed allele) contains the allele-discriminating 

signal (ADS) and the de novo methylation signal (DNS) that are necessary for establishing or 

maintaining methylation [211,212]. For instance, SNRPN is a paternally expressed imprint whose 

regulation is similar to that of IGF2r [212]. Human SNRPB contains two DNS signals; an ADS signal 

and a signal to maintain paternal imprint (MPI) [213]. 

Methylation of Imprinted Genes and Its Abnormalities in Cloned Animals 

Short regions of DNA, described as differentially methylated regions (DMRs), are marked by 

methylation in a parental specific manner and therefore the expressions of such genes are monoallelic. 

Regulation of clusters of imprinted genes and their activities are mostly controlled by differentially 

methylated ICRs. In fact, ICRs are DMRs that obtain methylation on one allele (bios) and regulate 

clustered imprinted genes [138]. In the other words, those DMRs that have a critical role in 

maintaining imprinting are known as ICRs [81]. CpG spacing suggests a potential influence on ICRs 

recognition and DMRs methylation in imprints [126]. Moreover, the transcriptional system, especially 

those traversing ICRs, are considered a common requirement to open chromatin domains, and make 

targets available for methylation specially in the germ line [32]. Besides, an in vivo study in a mouse 

model illustrated a novel cis-acting function for the H19 ICR [214]. This study shows changes in the 

size and CpG density that coincide with biallelic expression of the H19 without any detectable 

alteration in the methylation pattern. The researchers concluded that, in addition to CTCF sites, there 

are sequences within the ICR that are essential for its regulatory function. Moreover, the ICR size and 

CpG density are of determinant elements.  

Maternal alleles are dramatically more exposed to ICRs methylation than paternal ones [61,138]. 

Maternal alleles are mostly methylated on promoters of antisense transcripts but those of paternal 

alleles are placed between genes (non-promoter regions), suggesting that parental imprinting 

methylation acts differently [215]. In general, there is higher degree of methylation of the maternal 

ICRs allele in comparison with that of paternal allele [61]. The H19 is an example of imprinted genes 

whose preference is to be expressed from maternal allele. Methylation of the DMDs of H19, 

maternally expressed imprinted gene, is needed for maintenance methylation [141]. 

DMRs of imprints, mostly, epigenetically signal for monoallelic expression of the gene. IGF2 

encodes a fetal growth-factor and is predominantly expressed from the paternal allele, while H19 is 

expressed from the maternal allele and encodes a transcript which may reduce cellular proliferation. In 

mouse, IGF2 has a few identified DMRs named DMR0, DMR1, DMR2 and DMR3 among which the 

first two DMRs are positioned upstream and DMR2 within the IGF2 gene [216–218]. Recently, an 
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intragenic regulatory DMR has been reported within the last exon of the IGF2 gene [81]. The 

comparison between methylation patterns of IGF2 DMR from parthenogenetic and androgenetic 

blastocysts on one hand and that evolved from a normal zygote suggests that in normal embryos, 

paternal allele significantly contributes in the DNA methylation at the locus [81]. Methylation on 

DMDs of imprints are initially established during gametogenesis and prior to parental pronucleus 

fusion in the zygote [61,219]. After fertilization, the intergenic DMR of bovine IGF2 undergoes 

demethylation followed by low level remethylation before blastocyst stage, which in turn precedes 

implantation by which the DMR is heavily remethylated. The study speculates that global methylation 

pattern of SCNT blastocysts is reprogrammed and maintained in a sex specific manner, similar to its 

normal counterpart. A recent study shows that, except for RASGRF1 DMR (paternally expressed 

imprinted gene), methylation of the most imprinted genes during mouse embryonic cleavage stages 

(preimplantation phase) are mainly controlled by maternal and zygotic DNA methyltransferase 1 

(DNMT1) protein family [220]. 

Abnormalities at imprinted loci have been observed in cloned mammals. In cloned cattle abnormal 

imprinted gene profiles have been observed especially in the expression of IGF2 and H19 [221]. In the 

Bos taurus model, the IGF2 and H19 (IGF2/H19), a conserved cluster of imprinted gene, showed 

significant variations from the normal pattern, mostly hypomethylation, associated with abnormal 

expressions of the H19 (but not IGF2) from both alleles in methylation pattern of DMRs [17,222]. 

Moreover, methylation pattern which mostly occurs in early embryogenesis is dependent on 

developmental stage and specific to different tissues, as was studied in IGF2/H19 [218].  

Super ovulation, also, can cause abnormal imprinting patterns in oocytes [223] that might be 

attributed to the reduced expression of imprinted parental alleles, SNRPN, PEG3 and KCNQ1OT1, but 

to increased methylation of H19 [224]. MII oocytes of cloned porcine showed mostly unmethylated 

profiles of DMR [225]. A recent study on bovine SCNT showed that significant demethylation at the 

H19 DMD is attributed to biallelic expression of the imprint which might lead to decline in the rate of 

implantation [226]. Moreover, biallelic expression of H19 in bovine is correlated to hypermethylation 

of the paternal H19 differentially methylated domain and locus anomalies cause low SCNT efficiency 

in cattle [226]. 

5. Control of Gene Expression During Gametogenesis 

Gametogenesis and embryogenesis involve epigenetic reprogramming to establish proper epigenetic 

marks and gene regulation. Generally, epigenetic pattern of the genome first reprograms and 

reestablishes during gametogenesis. The second round of reprogramming and maintenance happens 

after fertilization, especially during preimplantation of the embryo [61] (Figure 2). Gametogenesis in 

both sexes involves methylation of DMRs, reestablished in a parent-specific manner [60]. Epigenetic 

reprogramming is mostly characterized during gametogenesis and early embryonic development 

especially prior to the zygotic implantation [227]. In fact, during gametogenesis (spermatogenesis and 

oogenesis) the methylation patterns of these genes are erased and reestablished. These modifications 

are continued after fertilization and during preimplantation specifically within non-imprinted  

genes [225] (for review see [180]). Gametogenesis involves sex-specific, epigenetic remodeling of 

male and female germ lines that matures the gametes for fertilization and constitutes proper regulatory 
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processes [180]. Epigenetic reprogramming in sperm begins with DNA demethylation, followed by 

DNA remethylation and de novo methylation to chromatin modification and histone-to-promatine 

transition [180,228]. Moreover, during spermatogenesis, testis specific linker histones occupy somatic 

linker variants. Among the histone variants centromere protein A appears to be epigenetically 

important during spermatogenesis [180]. Spermatozoa have a transcriptionally inactive and highly 

condensed chromatin structure. During spermatogenesis in rats, paternal-specific imprinted genes are 

prone to hypomethylation due to estrogen-associated signaling [229]. In the male germ cells, DMR of 

IGF2/H19 acquires DNA methylation during spermatogenesis, however, in the female germ cells, the 

DMR possesses the zinc finger protein CTCF by which the DMR defends against methylation so the 

allele is able to be expressed [230]. Through fertilization, paternal genome undergoes a series of 

remodeling events which are controlled by the activity of the oocyte, and the protamine replaced by 

oocyte-supplied histone and possessing maternal chromatin related proteins [231].  

Figure 2. Establishment and maintenance of imprinted genes (epigenetic regulation) during 

mammalian gametogenesis and development. Sex specific establishment of DNA 

methylation of imprinted genes occurs during gametogenesis. Just after fertilization, 

protamine changes occur and follow by the second round of reprogramming begins with 

embryonic preimplantation. After fertilization, active and passive demethylations happen in 

parental specific manner. de novo methylation happens significantly during both rounds 

(for review see [61]). 

 

DNA methylation is a sex bias phenomenon. As opposed to the male mouse embryonic germ cells, 

the female is not that much prone to methylate IGF2 receptor, IDF2 and H19 [82,232–234]. The same 

result has been illustrated during the blastocyst stage. It has been shown that in bovine, there is a 

significant tendency for methylation in the male in comparison to that of the female [81]. Piwi proteins 

(mili and miwi2) are expressed only in germ line, which are responsible for the establishment of  

de novo DNA methylation in transposons, and it is shown that PiRNAs directs DNA methylation in the 

male mouse germ cells through which the transposon is silenced [235–237]. In the other words, 
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Piwi/PiRNA complex appears to guide the de novo methylation at transposons [235,237] and 

deactivate transposons within a germline [238]. PiRNAs and siRNAs such as the one located within 

AU76, a pseudogene of RANGAP1, negatively regulates transposons through their cis-acting function 

in mouse oocytes as well as establishes the methylation of retrotransposons in the male mouse germ 

line [235,237,239]. 

Somatic environment of the male/female germ line shows their influence in DNA methylation of 

imprints [82]. Using sex-reversed mice to evaluate sex-specific methylation pattern in vivo, the germ 

cells are found to be responsible for female/male imprints during oogenesis/spermatogenesis,  

though sex chromosome constitution shows significant influence on male germ line for imprint 

methylation [82]. It seems probable that somatic environment of the genital ridge and that of 

chromosomal constitution have key roles in the establishment of imprinted genes. RASGRF1, 

paternally expressed imprinted gene, is essential in the male germ line [240,241] suggesting a 

regulatory mechanism containing DMD methylation and the repeat sequences, by which methylation 

of the germ line is established [79].  

6. Epigenetic Regulation During Gestation 

Normal fetal development is dependent on proper development of embryo and placenta. These 

developments are modulated through epigenetic signals during gestation. Although these molecular 

signals are controlled by the same epigenetic mechanisms, their regulation is independent of each other 

and may follow different patterns during embryogenesis in comparison to placental development. 

During pregnancy, most monoallelic expressed genes carry out in extraembryonic tissues, such as 

trophoblast and yolk sac, regulate the development and function of placenta [44,201]. In placenta, this 

regulation seems to be directed by histone modification and ncRNAs through DNA methylation [201]. 

Embryo-placental development is a complex modulating phenomenon through which imprints undergo 

necessary maintenance, establishment and/or reestablishment. Placental development is under the control 

of IGF2 and its degradation receptor, IGF2r [242]. IGF2, paternally expressed imprint, codes for 

embryo-placental growth factors. However, its receptor seems an unorthodox, imprinted gene [243]. 

Embryogenesis involves global methylation to erase and remethylate the methylation pattern. 

During early embryogenesis, methylation re-establishment occurs mostly within CpG islands and the 

imprints regulate in a sex-specific manner based on the new gender [79,244,245]. The demethylation 

mostly happens during primordial germ cells (PGCs) migration towards the genital ridge [79,246,247]. 

It is hypothesized that histone replacement and chromatin changes, using DNA repair mechanisms, are 

in accordance with the epigenetic reprogramming of PGC [61]. Evidences for such associations come 

from the chromatin modification markers, for instance H3K9me2/3, H3K27me3, H3K4me2/3, H3K9ac, 

NAP-1 and HIRA, during early embryogenesis [248]. 

Just after fertilization, pre-implantation phase, promatines replace with histones and some level of 

histone modifications occur. Active demethylation of paternal pronucleus of the zygote starts and 

follows with passive demethylation during the cleavage states. Re-activation of the inactive X 

chromosome inactivation is the last significant change of the female embryo during pre-implantation 

development (for review see [43]). Chromatin modifications during germ line development begin with 

demethylation of imprinted genes in primordial germ cells, in a sex-dependent manner [246]. Then, 
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during female gametogenesis, this modification proceeds to form primary oocytes, and follows to 

reestablishment of maternal-specific methylation pattern during growth and maturation of oocyte [123]. 

In male gametogenesis, a number of modification factors are involved. During spermatogenesis, histones 

undergo hypoacetylation. Especially, DNMTs are significantly important in the alteration of Leptotene 

to Pachytene. In this transformation, DNA methylation, histone methylation and histone deacetylation 

are counterparts [249]. The last modification to produce a mature sperm is the promatine formation 

(for review see [53]). 

7. Epigenetic Regulation During Embryogenesis 

Early embryonic mouse shows high level of DNA methylation and expression of imprinted genes. 

The epigenetic pattern is maintained in somatic cells but erased in the PGC about 11.5–12.5 embryonic 

day [61]. At this time, the expression of the imprinted genes in PGC is biallelic and reestablishes 

during prenatal (in a male embryo) and postnatal stages (in a female embryo) [61,246,250]. 

Mammalian promoters enriched in H3 K27 trimethylation [251] and H3 K4 trimethylation [252] are 

mostly occupied by polycomb group (PcG). Besides, PcG proteins influence the pluripotency of 

embryonic stem cell [253–257]. Study on mouse embryos revealed the regulatory mechanism for 

imprints in which DNA configuration is the key silencing factor. An imprinted gene, KCNQ1, is 

paternally repressed by ncRNA, KCNQLOT1, in association with PcG proteins (EZH2 and Rnf2) at 

Cdkn1c, Cd81 and Tssc4 cis genes [167]. An in vitro study on the expression of imprinted genes, H19 

and SNRPN, in male mouse [258], suggested a mostly intrinsic, sex-specific reestablishment of DNA 

methylation (after DNA demethylation) in the male germ line. However, there is still a probability that 

somatic cells at earlier stages may influence DNA methylation [61].  

8. Epigenetic Regulation and Placental Development 

In mammals, imprinting has an important role in extraembryonic tissue. Their activation pattern 

seems to be tissue-specific as they are varied between embryonic imprints and placental imprints, for 

instance in mouse, placental imprints are mostly paternally repressed [201]. The authors suggested an 

evolutionary relation between placenta imprints and that of chromosome X repression. These findings 

propose that independent regulatory mechanisms are active in the embryo and in the placenta [259]. 

The regulatory mechanism suggested for imprints expression, is DNA methylation through histone 

modification and ncRNAs [201]. Research on a mouse model postulates that the regulation of the 

expression of imprints is not very firm in the trophoblast as it is in the embryo [260]. In fact, histone 

methylation maintains the silencing of the inactive allele of the imprints in mouse extraembryonic 

tissue, placenta. Further, the absence of histone methyltransferase G9a that has aberrant effects on 

placental imprinted cluster, Kcnq1. Retrotransposon-derived Peg 11 (paternally expressed 11) or Rtl1 

(Retrotransposon-like q) is a paternally expressed imprinted gene responsible for the maintenance of 

placental development especially in fetal capillary development [261,262]. In placenta, repressive 

histone modification seems more crucial for the maintenance of imprinted genes [201,260].  

Moreover, ethanol-induced growth inhibitory effects on the methylation of paternal allele H19, 

suggests CCCTC-binding factor site as a epigenetic switch in placenta [263]. A recent study on 

methylation status of placental PEG10 emphasizes the importance of normal methylation of placental 
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imprints for normal development of SCNT in cloned cattle. The placental PEG10 shows a similar 

methylation pattern in the cloned calves, which survived and were healthy, in comparison with normal 

calves. Further, the cloned calves that died because of developmental failure, showed hypermethylation 

in PEG10 [264]. The importance of epigenetic regulation for proper placental development is obvious. 

Thus, unsurprisingly, SCNT paves the way to have a better understanding of placental development 

and molecular signals that modulate epigenetic regulation. 

9. Transcriptional Regulation by Polycomb Protein 

DNA methylation and PcG proteins are two main silencing epigenetic pathways that are in 

accordance with each other [265]. PcG proteins are epigenetic regulatory proteins combined in 

numerous protein complexes as well as individual PcG proteins and usually interact with histones. 

They are classified as polycomb repressive complexes 1 and 2 classes. EED is a PcG, which can 

modify histone and change chromatin structure. EZH2, a PcG protein, is a regulatory element for the 

methylation of CpG in which the protein is in direct contact with DNMTs. PcG proteins play a critical 

role in epigenetic regulation such as in higher organisms X-chromosome inactivation, imprinting 

regulation and restoring to pluripotent status [266,267]. Their epigenetic role is more in maintaining 

chromatin structure as well as reestablishment of transcriptional regulation (for review see [268]), 

especially during differentiation and development [255,269]. PcG are responsible for maintenance of 

repression of specific developmental genes [180]. CTCF is an essential factor in insulator’s function 

that regulates transcription in mammals [270]. It contains 11 zinc-finger DNA binding protein [271] 

with versatile functions [272,273] as well as a transcriptional activator [274] and a repressor [271,275] 

(see review [276] for more information). Studies show epigenetic activities of CTCF in regulation of 

imprints [277] and X chromosome inactivation [148,278,279]. However, post-fertilization methylation 

of the H19 ICR in a transgenic mouse model shows the necessity of the CTCF binding sites for the 

maintenance of the imprint pattern after implantation but not during pre-implantation phase [280].  

A recent study on H19 ICR in SCNT bovine embryos reconfirms that significant demethylation of the 

gene prevents successful implantation of the embryo [226]. These investigators showed that the CTCF 

binding sites of the paternal allele are mostly unmethylated, and coincided with the expression of the 

H19, though during postimplantation period the methylation pattern and the expression profile of the 

gene was similar to control. Transcriptional regulation of genes is also associated with chromatin 

modification enzymes, such as HDAC1 [265], G9a [281] which are associated with DNMTs [282].  

10. Conclusion 

Creating live and healthy offspring through SCNT technique is only partially explained through 

epigenetic modifications. Clearly, somatic nuclei need to appropriately reprogram to the pluripotent 

state from which embryogenesis embarks. Most of the epigenetic modifications are probably mediated 

by DNA methylation and histone modifications. The epigenetic modifications reviewed here might 

explain some of the transcriptional regulatory mechanisms in SCNT reprogramming, which could 

influence embryonic gene expressions and might also affect the placental development during 

gestation. In contrast to genetic alterations, most epigenetic modifications are reversible, and the 

modulation of such modifications by reprogramming pluripotent genes in an embryo and placenta 
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increase the amount of successes in animal cloning. In this review, we have highlighted the importance 

and possible epigenetic modifications that probably influences the efficiency of animal cloning. Proper 

regulation of these could further influence the life span of the cloned livestock via the epigenetic 

modulation of somatic gene expression. In addition to unraveling the mechanisms that have been 

described in the past decade, several other mechanisms would require additional careful investigation. 

As discussed, somatic profiles of DNA methylation, histone modifications and chromatin 

configuration must be erased and reprogrammed in a precise manner in terms of both timing and 

location. Embryo-specific marks must be acquired in cloned embryos, similar to its natural counterpart. 

For proper acquisition epigenetic marks take place during embryogenesis, and this is why 

understanding of the epigenetic modification through gametogenesis up to fertilization is crucial. 

Inappropriate modification and reprogramming would affect the embryo-placental development and, 

consequently, could lead to failure during gestation, abnormalities and syndromes. This review is 

intended to emphasize the importance of understanding nuclear reprogramming for proper SCNT and 

the importance of DNA methylation and chromatin modification in nuclear reprogramming. Failures in 

the reprogramming will influence normal development of embryo and placenta and cause several 

abnormalities. All efforts to illuminate the complexity of epigenetic reprogramming that produces 

healthy cloned offsprings are necessary in order to have a better insight into the interaction between 

genomics and epigenomics. 
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