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Abstract

Studies of the time development of empirical networks usually investigate late stages where lasting connections have
already stabilized. Empirical data on early network history are rare but needed for a better understanding of how social
network topology develops in real life. Studying students who are beginning their studies at a university with no or few
prior connections to each other offers a unique opportunity to investigate the formation and early development of link
patterns and community structure in social networks. During a nine week introductory physics course, first year physics
students were asked to identify those with whom they communicated about problem solving in physics during the
preceding week. We use these students’ self reports to produce time dependent student interaction networks. We
investigate these networks to elucidate possible effects of different student attributes in early network formation. Changes
in the weekly number of links show that while roughly half of all links change from week to week, students also reestablish a
growing number of links as they progress through their first weeks of study. Using the Infomap community detection
algorithm, we show that the networks exhibit community structure, and we use non-network student attributes, such as
gender and end-of-course grade to characterize communities during their formation. Specifically, we develop a segregation
measure and show that students structure themselves according to gender and pre-organized sections (in which students
engage in problem solving and laboratory work), but not according to end-of-coure grade. Alluvial diagrams of consecutive
weeks’ communities show that while student movement between groups are erratic in the beginnning of their studies, they
stabilize somewhat towards the end of the course. Taken together, the analyses imply that student interaction networks
stabilize quickly and that students establish collaborations based on who is immediately available to them and on
observable personal characteristics.
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Introduction

The formation and evolution of (social) networks has been

modeled by many researchers, who have investigated theoretical

models of mechanisms for producing networks resembling

empirical networks [1–5]. However, longitudinal network data is

rare [6], and it is difficult to obtain network data from the time, t0,

at which the network begins to form. Here, we investigate

longitudinal social network data from a time close to t0.

Students beginning their university studies with few or no prior

connections to each other, are in a new situation, and will

presumably make new connections with other students as a natural

part of their studies. Many of them will also become socially

involved, which also involves making new connections to other

students. As students become both academically and socially

integrated, they may change the ways in which they are

connected; such changes might happen on a short time scale,

perhaps daily or weekly. Thus, investigating high resolution

network data from such students may offer insights as to how such

networks form and how they evolve.

If students beginning their studies do not know other students,

we could expect them to try out many different possibilities for

interaction when they study. Some of these interactions will be

deemed worthwhile by the student, and thus continue each week.

Other interactions might occur on a less frequent basis and some

interactions would only occur once. Another possibility would be

that they do not interact much at all about their studies, but mostly

work alone. In that case, we would not expect much activity in

networks where links depict interactions about study work. If we

have additional information about students, for example who they

do recitations and laboratory work with, their gender and their

grades, we may couple these socially derived attributes with the

evolving patterns of connections. These early patterns of

interactions in social networks are largely unknown from an

empirical point of view.

This study investigates early interaction patterns among

approximately 170 physics students enrolled in an introductory

mechanics course at the University of Copenhagen. Students

reported recalled interactions about their work in physics on a

weekly basis (see Figure 1). Naming another student naturally

involves a direction (that is, A ‘‘names’’ B is A to B), so the

networks are directed. Self-reported measures are notorious for

being biased [2,7]; however, unlike potentially more objective
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measures, self-reports can reveal what students are interacting

about. Also, using emails, phone calls, or digital proximity as

proxies for social ties, may be misleading. For example, it has been

found [8] that people remember their friends rather than

remembering everyone they are near to as measured by digital

means. In contrast, asking students who they remember having

communicated with about some subject (in this case, physics), does

indicate what the interaction was about. In this work we try to

minimize bias [7,9,10] by only asking about remembered

interactions and not asking students to rank these relations in

any way. In particular, we do not ask students to judge the quality

of interactions in any way. Recent work [11] suggests that

interactions remembered by students are more useful to them than

are non-remembered interactions.

To build an understanding of the processes underlying the

formation and evolution of social networks, researchers have

related network measures to non-network node attributes. For

example, for university students the probability of making new

social connections has been tied to the number of classes taken

together [6]. Also in a 32 yearlong study, people with increasing

body mass index (BMI) tend to cluster together [12]. Thus,

relating calculations that we can perform on networks to the

socially relevant variables can lead to knowledge of social processes

relevant to network formation.

In this paper, we characterize weekly networks of student

academic interactions through (1) basic properties like degree

distributions, plots, and link development (e.g. number of links

each week that are new) and (2) community detection and analysis

using socially derived attributes to characterize communities. In

terms of social networks, finding communities would help an

investigator understand the structure of groups in a closed system

of people [13,14]. Communities of nodes are identified by

algorithms [15] by optimizing a given quality function [16]. Being

directly connected, a property sometimes referred to as homophily

[6], is neither a necessary nor sufficient condition for nodes being

assigned to the same community. Still, in social networks, the

expectation is that nodes in a community share one or more

attributes. Thus, it would be interesting to analyze communities

found by an algorithm in terms of the distribution of node attribute

types within groups. This would give a more detailed understand-

ing of the structure of the network by giving an answer to the

question: What binds people together in communities found by

community detection algorithms?

The literature is abundant with different community detection

algorithms. We focus this study on the Infomap algorithm [17]

that has been shown to be both robust and usable for directed

networks. Infomap uses a random walker that is able to teleport as

a proxy for information flow, and minimizes the description length

of a random walk over a set of communities. Infomap is one of the

few community detection algorithms that takes directed links into

account and it has been shown to perform well on benchmark

directed networks compared to other community detection

algorithms [15].

Community detection benchmark studies have mostly employed

an information theoretical measure called the normalized mutual

information to measure the overlap between two community

designations. We used the variation of information [18] since it is

also applicable to different networks with overlapping nodes. In

this study, the variation of information is used as a measure of both

Infomap’s performance on networks of student interactions and

differences between communities detected each week.

To visualize and investigate detailed differences between

consecutive weeks, we used the infomap communities to create

alluvial diagrams [19]. While alluvial diagrams were originally

designed to reveal flow patterns, we recast them to show actual

student movement.

Such analyses allow us to investigate how students structure

themselves during their first months at university. To quantify how

students structure themselves in groups we develop a measure of

segregation based on Kullback-Leibler divergence [20]. This

measure is applied to each group to see how these groups were

segregated compared to the cohort’s distribution of grade, gender,

and section (see below). Further, by giving each group’s

segregation a weight proportional to the number of students in

it, the segregation for the whole network can be calculated. Thus,

the segregation is a measure of how each group and the whole

network is structured according to a given attribute, compared to

the cohort’s distribution.

We invite the interested reader to consult the Methods section at

the end of the article for details on any of the methods for analyses

above. In Methods, we provide (1) definitions of the basic

measures we use, (2) descriptions of Infomap, alluvial diagrams,

and variation of information, and (3) a derivation of the

segregation.

The rest of this article is structured in the following manner.

First, we explain the background for data collection and network

Figure 1. Networks are based on student recall of interactions.
Links in these networks are based on the assumption that students
remember interactions they had as a part of studying (a). Once a week
for nine weeks, sessions were set up so students could indicate the
names of fellow students with whom they remembered having
communicated about problem solving in physics. Students were asked
to consider only the preceding week, and they responded online (b).
For each session, the responses were used to create a directed network
that models the interactions between students. In each network a
directed link exists from a node B to a node A if student B indicated
student A in the corresponding session. (c)
doi:10.1371/journal.pone.0112775.g001
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preparation. Then, in the Results and Discussion section we first

characterize networks of student interaction in physics with degree

distributions, average degree, and a between week analyses of

links. Then, we show an alluvial diagram and flow maps of

networks in the study, and we present the results of the variation of

information and segregation analyses. Calculations and results that

elaborate on the main findings presented in the Results and

Discussion section have been placed in File S1. In the final part of

the Results and Discussion section we first sum up and then discuss

implications of the results. We suggest that including node

attributes is a crucial step towards understanding the meaning of

communities in social networks.

Background, Data Collection, and Preparation of
Networks

Cohort and context
Students were allotted time during the obligatory weekly

laboratory exercises to fill out online self-report surveys. Typically,

students would fill out the survey at some time during the lab

exercise, although some chose to fill it out at home. They were

encouraged to fill out the survey at the beginning of a lab class, but

some fitted in the survey when a natural break came in their lab

activities. Students were told that their answers would be

confidential and could not be used by their instructors/lecturers

to identify individuals. Participation was not mandatory, although

students were encouraged repeatedly to to take part in the study.

The students in the course attend four hours of (non-required)

lecture per week. Students are assigned to sections, of which there

are seven, and have the opportunity to attend four hours of

problem solving sessions. Due to budgetary and space constraints,

it is not possible to have the required laboratory exercises

concurrently, so these are spread throughout the week, using the

same sections of students. These sections are also used in the

introductory math course taken by these students. Given this,

students who attend all sessions on offer will spend at least

24 hours a week together, with roughly 15 hours of this spent in

small (less than 30) sections of students.

We can, therefore, assume that a student answered the survey at

the same time of week from one week to another. That is, if

student A answers the survey on a Tuesday afternoon one week,

chances are that student A answers the survey on the following

Tuesday again. However, students were allowed to switch lab

exercise hours, if for some reason they were not able to make it to

the scheduled one. Typically, 3 or 4 students per week attended

another section. Thus, there is some fuzziness with regards to

when student answers are recorded.

The measurements were done during a course in introductory

mechanics and special relativity at a large Danish University.

Students are primarily ethnic Danes. The majority (roughly 85%)

of students are physics majors who have just started their studies.

Some major in other disciplines (for example mathematics), but

are allowed to choose this physics course as part of their study

plans.

Description of survey and data collection
The online survey was divided into two parts each week; an

academic part and a social part. The academic part consisted of 9

interaction categories, while the social part consisted of 3

interaction categories. The categories were developed through a

mixed methods pilot project prior to data collection [21], and in

this study we only examine the category pertaining to communi-
cation concerning problem solving. A weekly format was chosen

based on [8] who found the greatest correspondence between self-

reported networks and digitally measured proximity networks if

the interactions were reported within a week. While more finely

grained temporal data would be interesting, conversations with a

number of students indicate that asking for answers more often

than once per week would lead to survey fatigue and significantly

lower participation.

Students were given a login to a learning management system,

and they were given time during laboratory exercises to take the

survey each week. Apart from this, the online nature of the survey

made it possible for students to fill it out at any time. For each

interaction category, students marked each of the students they

remembered having had interactions with. Names of possible

students (all students enrolled in the course) were given in a roster

[9]. The researcher was present throughout most data collection

sessions, and students were invited to ask if they had doubts on

how to answer the survey. The researcher emphasized repeatedly

that they should mention only the people they remembered, that

their answers where anonymous, and that there was no implicit

ranking of their friends.

Preparation of networks
Each week student answers were collected and stored. Due to

initial confusion about how to respond, many students did not

answer the first two surveys, so the first two weeks’ data were

combined. Further, due to a technical error, course week 6 data

were not recorded. Each of the seven remaining networks was then

stripped for self-loops and multiple connections. For each network,

we attached three different attributes to nodes: Gender, section,

and end-of-course grade.

Ethics statement
The departments involved (see author affiliations) in the data

collection require no specifics ethics submission, and neither has

an ethics board nor any formal procedures to be followed in

research on human subjects. Instead, an informal agreement with

the Heads of Departments was established and discussions with

fellow researchers (not involved in this project) and with course

instructors were maintained to ensure the ethical treatment of the

students. As part of this process, the students were informed orally

several times that they would remain anonymous and that their

participation was completely voluntary and would have no effect

on their course grades. Students who did not want to participate

were instructed to simply not answer the survey. The data has

subsequently been analyzed anonymously and are secured

digitally.

Results and Discussion

In this section we first give basic characteristics of the networks.

We show four networks from four different weeks along with their

cumulative degree distribution and the evolution of the distribu-

tion of repeated links. To characterize the evolution of links and

linking patterns we then show how the links vary across all

recorded weeks. Next we show how networks segregate with

respect to the three attributes gender, section, and grade, and

finally we show the detailed evolution of network groups using an

adaption of the alluvial diagram. The technicalities of each of these

measures can be found in the methods section. We provide

anonymized versions with consistent node labels throughout each

of the seven networks. For each network we also provide lists of

section, gender, and grade.

Early History of Social Networks
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Characterization of networks
The introductory course has duration of nine weeks, but for the

reasons given above, there are only seven networks, four of which

are displayed in Figure 2. The colors the figure denote section

number and these are consistent throughout the four networks.

For example, if red nodes in the top network belong to section n,

then red nodes in the three other networks also belong to section n.

Furthermore, larger circles represent female students, while

smaller circles represent male students. Thus, the large grouping

on the left of the network representing Course week 4 is composed

of students from mainly one section (blue nodes), and five of the

students from this section in this grouping are female. Clearly,

students form ties across both gender and section, but layout here

seems to display at least some clusters of students with an

overrepresentation of specific sections and gender. We elaborate

on this observation in the Segregation subsection.

Turning to the structure of the networks, they seem to evolve

from a compact to a more modular nature. This may signify

students’ tendency to form groups which are connected by bridges

[22,23] as proposed by social network analysis. However, there

may also be effects of survey participation since the number of

students naming at least one other student for the four weeks is (see

also Figure 3b) 124, 114, 97, and 83 for the four networks. This

decline in participation could be due to student fatigue with

respect to the survey [10], an increased workload on the students

towards the end of the course, student drop out (see File S1, where

Figure S1 shows that students who turn out to be low-achieving

tend to disappear from the network), or to a combination of the

three.

The link weight distributions in the middle panes of Figure 2

shows the number of links that re-occur a given number of times.

These indicate links that persist throughout the course are rare,

but the end of the course most links are re-occurring. The

cumulative in-degree (red crosses) and out-degree (black circles)

distributions for each network is shown on the right-hand panes.

They have sharp cut-offs at around 10 (in-degree) and 20 (out-

degree) showing that in these networks is easier to name many

people than to be named by many people.

The left-hand side of Figure 3 shows how the total number of

links, Ltot change from week to week. The dip in course week 7

corresponds to the traditional Fall Break in most Danish

educational institutions. This dip is peculiar here, since this is an

intensive course with no scheduled fall break. However, this could

explain both the dip and the slow recovery in course week 8. In

week 7, a larger number of students would be absent not

participate, and in week 8, fewer people would list having had

interactions with these students.

The right-hand shows the average degree of each network with

error bars. The size of the error bars indicate broad distributions

consistent with Figure 2. The numbers on the left of each data

point represent then number of nodes in the network, while the

numbers to the right indicate the diameter of each directed

network.

There are a considerable number of new links, Lnew, each week

compared with the preceding week. Roughly half of the links each

week are new compared to the preceding week. However, the

number of re-established links, Lree, comprise a larger and larger

fraction of the total. For a given week, the number of re-

established links is the number of links in the network which are

present in at least one of the preceding weeks’ networks. Together,

the variations in Lnew and Lree may be used to form a hypothesis

about how bonds are created during the early stages of this

particular student network’s history: students try working with a lot

of different collaborators. As they do this, they find out who they

want to work with and return to them again. This is supported by

Figure 4, where the fraction of completely new links,
Ltot{Lree

Ltot

, is

shown to decrease over time. The number of unique links for all

weeks is 1214, which is roughly 5% of the total number of possible

links (Lpossible~N(N{1)) in a directed network with 140–160

nodes (Lpossiblew19500)). This implies that the decrease in

completely new links is not due to a saturation of the network links.

Community detection and segregation
We used Infomap [17,24] to calculate clusters on each of the

seven networks. For each network and for each algorithm, we

calculated the variation of information, or information theoretical

distance [18], between two successive runs. We repeated this

procedure 104 times for each network. Infomap also returned the

number of communities found, modularity, and the average per

step coding length (see Methods section) for each run of each

algorithm. Table 1 shows the average values and standard error

for each of these measures. The variation of information (VI)

varies between 0 (with no uncertainty) and 0.2(1) bits. This is small

compared to both distances between consecutive weeks (&1{3:5
bits) and smaller than the average for a reference modularity

optimization algorithm [16] (See Table S1 in File S1).

We calculated the total segregation for each of the section,

grade, and gender attributes. The results of the calculations for the

whole network segregation from week to week during the course

are shown in Figure 5. When Zv1:96, the segregation is

indistinguishable from random variation. The expected distribu-

tion qtf g is calculated from the students that are present in the

network in a given week. The first week shows neither significant

segregation nor non-segregation. During the following weeks,

students segregate significantly according to lab classes and to a

lesser degree according to gender.

While there is significant segregation according to gender and

section, students do not segregate or mix near perfectly (see

Methods section). If students segregated perfectly, calculations

show that the Z-scores would be around 20 for gender and around

40 for grade and lab class. If they did not segregate at all, that is if

Dseg~0 corresponding to perfect mixing, the Z-scores would be

around -2 for gender and -4 for grade and lab class. Thus, groups

do not consist for example of students from only one lab class but

of clusters of students from different classes.

Development of group structure
The top panel of figure 6 shows an alluvial diagram [19] for

student groups in the four networks displayed in Figure 2. Each

box corresponds to a group of students. The height of each is box

is proportional to the number of students in that group (see also

the scale). The color of the boxes mark if the groups are

significantly segregated (Zw1:96) with respect to gender (green),

section (dark red) or both (purple).

The streamlines between each column indicate student move-

ments from one week to the other. From course week 3 to 4 there

are 71 streamlines indicating 71 movements of varying student sizes.

From course week 4 to 5 this number drops to 51 and form course

week 5 to 9 even further to 44. Also, average thickness of streamlines

seems to become larger, indicating that more and more students

move together. This intuitive pattern is confirmed by calculations of

the distance between community structure as calculated by the

variation of information [18] (see Methods section), which becomes

increasingly smaller from week to week (see File S1).

The visualization of segregation gives insights into the

composition of individual communities. Many communities are

Early History of Social Networks
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not significantly segregated, which may in part explain why the

networks as a whole never reach the maximum segregation for any

measure. Moreover, we see that most groups that are significantly

segregated with regards to gender are also significantly segregated

with regards to section. Thus, it seems that students primarily find

their collaboration partners within their section and secondarily

within their gender. However, based on the visualization, we

would not expect the total segregation of networks to be close to

the maximum (see Methods section).

A map of information flow between communities is shown at

the bottom for each week. Communities are labelled by a number

both in the alluvial diagram and in the flow map, and the colors

again signify segregation. Thus, G1 in course week 3 is represented

both as a box in the first column of the alluvial diagram and in the

flow map below the box. The arrows indicate probability flow,

which we can relate to how many students in one community

name students in another community. Since a naming indicates

communication about problem solving, these arrows might

indicate which communities are important for how problem

solving knowledge is spread in the network. As such, they might

provide an indication of which students need and which students

can give help in an introductory physics course. It is worth noticing

that large communities do not necessarily have a correspondingly

large accumulated flow. The most prominent example is G2 in

course week 5. The community contains 32 students, but as can be

gathered from the map below the column, the accumulated flow is

Figure 2. Four networks from different weeks indicate how student interactions develop. The density r&0:02 for each network. Colors
represent different sections of students. Females are represented by large circles, males by smaller circles. For each week right panel shows the
degree distributions (in and out). The middle panels show the accumulated link weight distribution, indicating the extent to which links are reused.
The total numbers of nodes in the networks are 161, 152, 154, and 139 respectively.
doi:10.1371/journal.pone.0112775.g002
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comparable to much smaller communities. This example is

supported by standard linear modelling of size versus flow, which

shows that R2
v0:6 (pvv0:001). Thus, even though there is a

clear accumulation of flow due to community size, large size is not

a guarantee for large flow.

Summary and implications
This study investigated the early stages of network formation

based on student self-reports of whom they remembered having

communicated with about problem solving in physics. The

network data consisted of seven networks made from weekly

reports these types of communication in an introductory physics

course. We employed several different types of analysis, including

both network data and student attribute data, to investigate the

structure and nature of these networks.

The link analysis showed that roughly half of the links in a week

were new compared with the preceding week. However, as weeks

go by, students communicate with former communication

partners. This is indicated by the relative decrease in the total

number of completely new links. One interpretation of this result is

that students try out many different collaboration partners

throughout course weeks and maintain collaborations that they

find valuable. By construction, the nature of collaborations in these

networks has to do with problem solving in physics, so the results

yield information about pathways by which ways of solving

problems in physics spread amongst students. Students who

collaborate often have more opportunities to influence on each

other’s problem solving techniques than students who collaborate

only once. One question for future research on networks is

whether these opportunities are used or not.

Stream lines in alluvial diagrams showed that while students

shift between communities from week to week, the tendency is that

communities stabilize over the nine weeks of this physics course.

This is consistent with the link analysis, but it also expands the

picture. Since students in a community need not be directly

connected to be grouped we could use the communities as

indicative of connections that are not reported by students. Since

self-reports are biased in a number of ways, for example, by

humans’ ability to recall interactions, researchers may always

question the reliability of the network created in this way. For

example, if we were able to objectively record students’ real-time

behavior, we could reasonably expect students that were identified

as a community in the problem solving network to also be near

each other during study activities pertaining to problem solving.

The student segregation analysis of the communities found by

Infomap showed that students segregate significantly (Zw1:96) to

according to section number and to lesser extent gender, but at no

point according to grade. This seems to indicate that when new

networks are formed, people tend to group themselves based on

immediate availability and observable personal characteristics (e.g.

gender). Since people were randomly distributed according to

section number, there is no reason to believe that this should have

any other effect that to make random people available to each

other for collaborations. Still, this is the most significant factor for

segregation. A person being either male or female is a superficial

sign, since in most cases it is easy to distinguish between the two.

Also, we might expect (fe)males to on average feel similar to other

(fe)males. Then, significant gender segregation across weeks

implies that recognizing another person as being similar to one

self, might form the basis of collaboration. Grades are not easily

Figure 3. Student interaction networks develop over time. (a) Number of total, new, and reestablished links. New links, Lnew, calculated based
on the preceding week. Lree is the number of links in a given week which are also present in at least one of the preceding weeks. Ltot~160 for week 2
(not shown). (b) Average degree with error bars for each week. Numbers at data points indicate the size, n, of the network and the diameter.
doi:10.1371/journal.pone.0112775.g003

Figure 4. The fraction of completely new links relative to the

total number of links,
Ltot{Lree

Ltot

, decreases over time. This is not

due to students saturating connections, since summed over all weeks;
students use a total of 5% of all available links.
doi:10.1371/journal.pone.0112775.g004
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accessible signs or they may not be a valid similarity measure, and

this could explain why people do not segregate according to them.

As an attribute, grade seems to be indicative of other processes

than homophily. As is shown in Figure S1 (File S1), students with

low or failing grades become less prevalent in the network towards

the end of the course.

This study shows that it is possible to characterize communities

found with community detection algorithms in terms of node

attributes. A possible extension of this study would be to ask

students if they recognize the communities detected by the

algorithm. If a student is clustered together with another student

without them being directly linked in the corresponding network,

will they then recognize each other? Will non-reciprocal links be

recognized as reciprocal? If the answer is ‘‘yes’’, then one could

argue that clustering algorithms can help detect communities from

incomplete data. Another set of questions are related to the

segregation: Do students recognize that grade is unimportant for

clustering? And that section is? Do they recognize the gender

segregation? On the long term, will they group more according to

grade and gender? Or will the original section follow them

throughout their studies?

Methods

Unless otherwise stated calculations have been done within the

R package for statistical programming [25] using the igraph

package [26]. All R-functions, anonymized data files, and node

attributes used in this study are available in File S2.

Basic characterization of networks
Visualization. We visualize four of the networks using

software Gephi [27] and the Force Atlas 2 algorithm [28]. We

color the nodes according to external attributes. In the results, we

color the nodes according to section. In Figure S1 (File S1) we

show the four networks colored with respect to grade. We use large

circles to denote females and small circles to denote males.

Link weight distribution. Some connections are re-estab-

lished in subsequent weeks. The link weight distributions shows in

a cumulative manner, how many students have named another
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Figure 5. Segregation Z-scores for gender, grade, and section
show different behaviors. The shaded area indicates the non-
significant region, where Zwv1:96. Students segregate according to
section, and somewhat according to gender but not according to end-
of-course grade.
doi:10.1371/journal.pone.0112775.g005
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student once, twice, thrice, etcetera. The final link weight

distribution integrates all networks in the study. Formally, link

weights for course week n is wij~D
Tn

l~1 Aij D, where Aij is the

adjacency matrix.

Cumulative degree distribution and average degree. We

use the degree sequences to generate cumulative degree distribu-

tions, average degree and standard error on the average degree.

First, define pk~
nk

N
, where nk is the number of nodes with degree

(in, out, or total) k. The cumulative degree distribution is then

[13]:

P(k§k’)~
Xkmax

k’~k

pk’

We calculate the m’th moment as

vkm
w~

Xkmax

k~1

kmpk

Figure 6. Large scale structures show between-week student movement and within-week information flow. Top: Alluvial diagram for
communities of the four networks displayed in Figure 2. The height of a block indicates the number of students in the community (see scale). The
thicknesses of the gray streamlines between groups in different weeks indicate between group movements; thicker lines indicate that more students
moved together. The color of a box representing a community indicates whether it is significantly segregated (Zw1:96) with respect to the given
attribute. Bottom: Maps of community structure for the same networks. Node sizes are proportional to accumulated flow rate for a particular
community. Labels on the map correspond to labels in the alluvial diagram, allowing for comparison between community size and flow. Arrow sizes
are proportional to the information flow between groups as calculated by Infomap. Color codes in the maps have the same meaning as in the alluvial
diagram. The total number of communities each week is 28, 28, 22, and 20, respectively.
doi:10.1371/journal.pone.0112775.g006
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For each network, we use this to calculate vkw and the

standard deviation as

vskw~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vk2

w{vkw
2

p

Link development. To characterize link development

throughout the period, we define three different kinds of links:

N Ln
tot is the total number of links in network for a week n.

N Ln
new is the number of links in network for a week which were

not in a graph for the previous week. Formally, if n refers to the

network for a given week, Ln
new~DEn\En{1D.

N Ln
ree is the number of links in the network for week n, which

were present in any one preceding week. Formally

Ln
ree~DEn[

Sn{1
l~1 El D

Together these measures characterize the variation of links. Ltot

can be seen as a measure of the total activity in the network. A

higher value then signifies more interactions. Lree measures the

degree to which students tend to re-connect at a later point in

time. A growing value signifies that people tend to interact more

with people they already know. Lnew measures how much

connections fluctuate from week to week. A high value means

that people tend to interact with different people from one week to

the other. However, Lnew has no memory of other weeks.

Community detection and analysis
Community detection with Infomap. We have used

Infomap [17] to detect communities on networks. Infomap is

based on the hypothesis that communities in networks can be

detected as a set of local structures that minimize the information

cost of describing paths through networks. Seen in this way, the

function of communities is to make it easier to keep track of

information about the network.

One can consider a network of n nodes as a codebook with n
words. To simulate information flow, Infomap uses a random

walker that visit nodes using links. During a walk, node a is visited

a fraction pa of the time. This would correspond to using the a’th

word a fraction pa of the time. In Huffman coding one would then

assign each node a code word with length proportional to the visit

frequency, pa. With such a scheme, the expectation value of the

minimal amount of code needed to describe a single step in the

random walk is

H(X )~{
Xn

a~1

pa log pa ð1Þ

Infomap introduces the possibility of making several codebooks

on the network, where each codebook, Pk, represents a

community, k. The advantage of this approach is that one can

reuse code words in different codebooks. One then has to keep

track of each of the new codebooks, Pk, with an index codebook,

Q. The core principle in Infomap is to join nodes into a set of m

communities, called the partitioning M. This partitioning is

described by

1. An index codebook, Q, that describes the network on a

community level. The random walker will change from

community k a fraction qk of the time. Relative to other

communities’ codebooks, community k’s codebook is then used

at a rate of
qk

q
, where q ~

PK
k~1 qk Thus, assigning code

words to communities in an optimal way yields an expected

information cost of H(Q)~{
PK

k~1

qk

q
log

qk

q
for using the

index codebook.

2. A set of K different codebooks over nodes, Pk, each with an

expected information cost of H(Pk)~{
qk

pk
log

qk

pk

{

PK
k~1

pk
a

pk
log

pk
a

pk
. Here, pk ~qk z

P
a pk

a . The qk ’s are

needed in the community codebook to ensure that we keep

track of when the random walker leaves the community. Thus,

each community needs to allow for one extra code word, an exit

code, on top of the code words needed for each of the nodes.

The index codebook is needed a fraction q of the time; when

the walker changes module. Thus the expected contribution from

using the index codebook is q H(Q). Likewise, each community

codebook is only used when the walker is in the community (or

exiting the community), and this happens with a frequency pk .

Thus the contribution from each community codebook to the total

expected information cost is pk H(Pk). For a given partitioning,

M, of a network, then, the expected per step code length must

then be the weighted sum of all these

L(M)~q H(Q)z
XK

k~1

p H(Pk) ð2Þ

The Infomap algorithm joins nodes to communities and then

allows sub-communities and single nodes to move between

communities until the combined information cost is minimized.

The details of the minimization is given in [24].

Infomap has been modified several times since it was first

introduced [29–31], including different teleportation and walk-

recording procedures, multilevel code books, overlapping com-

munity structure. While these changes and other methods [15] for

identifying clusters could yield interesting differences, in this work

we report on the original Infomap as an example of a robust

community detection algorithm that is applicable for directed

networks.

Alluvial diagrams to visualize transitions of

students. Alluvial diagrams can be used to map changes in

networks [19]. The idea is to compare network partitionings with

overlapping nodes at two or more points in time. Originally,

communities’ accumulated flow was shown and compared, and

stream lines connected groups to represent changes in accumulated

flow. Thus, in a social network, a community with a small flow rate

would be shown as small in the alluvial diagram even if the

community contains a large number of nodes. In contrast, we use the

alluvial diagrams to portray the size of communities, not their flow.

Starting from networks wi and wj for two consecutive course

weeks, we used Infomap to create partitionings Mi and Mj . The

partitioning Mi contains K communities fkig with sizes fnk
i g,

where k~1 . . . K . Likewise, Mj contains L communities fljg with

sizes fnl
jg, where l~1 . . . L In the alluvial diagram each

community is shown as a box with height cni
k, where c is a

scaling factor. Streamlines that connect community ki with

community lj represent the number of students that were placed

in ki and in lj . Thus, in this alluvial diagram streamlines are a
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visualization of the confusion matrix used to calculate the variation

of information between partitionings [18] (see next section).

As a further visualization, we assign color to communities based

on their segregation score (see section Node segregation measure).

We use red for groups that are significantly segregated (Ziw1:96)

with respect to section, green for groups that are significantly

segregated with respect to gender and purple for groups that are

segregated with respect to both.

Interested readers may consult Figure S2 in File S1 to see

alluvial diagrams based on the original [19] flow rate based idea.

Information based distance between partitionings. To

characterize the difference between two partitions of nodes, we use

the variation of information (VI) between the two partitions [18].

Given two partitionings Mi and Mj of n nodes, VI is calculated by

constructing the confusion matrix, Nij . If Mi has K modules and

Mj has L modules, the dimensions of the confusion matrix is

K|L. The kl’th element of Nij is equal to the number of nodes,

nkl in the k’th module in Mk that are also in the l’th module in Mj .

Given the three probability distributions for Mi, Mj and their

overlap, Nij , pk~
nk

i

n
, pl~

nl
j

n
, and pkl~

n
ij
kl

n
, the entropies

of these distributions, H(Mi)~{
PK

k~1 pk log pk, H(Mj)~

{
PL

l~1 pl log pl , H(Mi,Mj)~{
PK

k~1

PL
l~1 pkl log pkl can be

calculated. The variation of information can then be calculated as:

VI(Mi,Mj)~2H(Mi,Mj){H(Mi){H(Mj)

VI is a metric [18], which means that the numbers obtained can

be intuitively understood as distances. For each network the

distance cannot be more than log no, where no is the number of

overlapping nodes. Since the number of overlapping nodes vary

between 102 and 160, VImax varies between 6.67 and 7.32.

In this work we use this measure to characterize the stability of

Infomap (directed) as applied to the networks of this study. In File

S1 and File S2 we have compared Infomap undirected with

undirected simulated annealing.

Since networks for different weeks will have an overlap of nodes,

we can also use VI as a measure of the distance between

partitionings of different weeks. Since the method is built upon the

confusion matrix, VI only considers nodes that are common to

both networks into account. Thus we use reduced groupings, when

we compare between weeks, but otherwise the procedure is the

same as described above. Measuring the difference between

consecutive weeks allow us to describe how groups stabilize over

time quantitatively. A smaller distance between groupings,

indicate that students tend to stay more in the same groups than

if the distance is larger. The detailed results of these calculations

are given in File S1 and File S2.

Node segregation measure
Here, we develop measure of node segregation: The degree to

which nodes are partitioned into communities with similar nodes.

The measure can be used if nodes can be partitioned categories

based on an attribute. For example, gender would be an attribute

with two categories, male and female. Given a partitioning, M,

that contains K communities and given that each node belongs to

one of s different categories describing an attribute, we seek a

number that tells us the degree to which nodes in a community

k[M are the same. Here, we first illustrate the measure when the

number of attribute categories s~2, so that each node either has

the value a or the value b. We then generalize to an arbitrary

number of attribute categories.

Each group k[M consists of nk~na
kznb

k nodes. Thus, in group

k, the probability of choosing a node at random with the value a is

pa
k~

na
k

nk

:

However, if we choose a node at random from the entire network,

we have to consider all nodes in the network, and then n~naznb.

Thus, the probability, qa, of picking one with the value of a is

qa~
na

n

In information theory, the cross-surprisal [20] is the information

gained relative to the information known prior to the measure-

ment is da
k~log2(

pa
k

qa

). Taking the expectation value for the k’th

group yields the cross-entropy or Kullback-Leibler divergence [20]

for that group:

Dk~pa
klog2(

pa
k

qa

)zpb
klog2(

pb
k

qb

) ð3Þ

For the k’th group, (3) expresses the expected information gain

relative to what was known before. For the partitioning M, we

now require that it does not depend on the s categorical variables.

That is, we assume that the distribution over the categorical

variables in one group is independent of the distribution in another

group. Then the cross-entropy is additive and each group

contributes to the total weighted cross-entropy of the system given

the partition M in proportion to its size:

Dseg(M)~
X

k[M

nk

n
Dk ð4Þ

In general, attribute categories may divide node in more than 2

different categories. We now consider sw2. The probability of

selecting a node from the k’th group with the t’th attribute category is

pkt~
nt

k

nk

where nt
k is the number of nodes in the k’th group with the t’th

attribute. Thus, the total number of nodes in the k’th group is

nk~
P

t nt
k. Similar to the situation before, selecting nodes at

random from the network, we expect a probability distribution

qt~
nt

n

with n~
P

t nt. Then the cross-entropy for the k’th group is

Dk~(
Xs

t~1

pkt log2 (
pkt

qt

)) ð5Þ

The total weighted cross-entropy of segregation is then:

Dseg(M)~
1

n

X

k[M

nk(
Xt

t~1

pkt log2 (
pkt

qt

)) ð6Þ

The range of Dseg(M) can be determined as follows: If pkt~qt

for all t in all groups in M,
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Dmin
seg (M)~0

For perfect segregation, a group will only contain nodes with a

particular attribute l of the s attributes. Thus, pkt~dlt (where dlt is the

Kronecker-delta) for the k’th group. Then (5) reduces to

Dmax
k ~{ log2 (ql). The segregation for the entire network becomes:

Dmax
seg (M)~{

1

n

X

k[M

Xs

l~1

nl
k log2 (ql)

Setting nl~
P

k[M nl
k, collecting terms of log2 (ql), and using ql~

nl

n
,

perfect segregation, Dmax
seg (M), reduces to the Shannon entropy of the

ql -distribution:

Dmax
seg (M)~{

1

n

Xs

l~1

nl log2 (ql)~{
Xs

l~1

ql log2(ql)~H(q)

The final step is to calculate how different the network’s segregation is

from random variation. We adopt the Z-score [32] to this purpose:

First, the attributes are randomly re-distributed on the nodes, while

keeping the network structure and partitioning M. In this study, we

make 104 random re-distributions like this. For each random

redistribution, we calculate Dseg(M). Calculating the mean and

standard deviation over the randomized samples, the Z-score becomes:

Z~
Dseg(M){SDr

seg(M)T
sr

In this study, the segregation Z-scores of different three different

attributes are calculated: Gender (s~2), grade (s~7), and lab class

(s~7).

Notice that we can also measure community wise Z-scores by

using (3) and following the randomization procedure described

above. Then it is possible to see which groups contribute to the

segregation, and one can scrutinize the structure and composition of

the group. We use the community wise measure in Figure (6) to

show groups that are significantly (Zw1:96) segregated. Detailed

results of these calculations are available in Tables S3-S6 in File S1.

Supporting Information

File S1 Auxiliary calculations and visualizations. Varia-

tion of information, VI , calculations, visualizations based on grade,

and further discussions of these calculations and visualizations.

(PDF)

File S2 Anonymized data, node attributes, and R-
functions. Unweighted, directed networks, with consistent node

id’s for all course weeks, attributes for each node in each network,

and R-functions developed for this study.

(ZIP)
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