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ABSTRACT Azospirillum sp. strains TSA2S and TSH100 are plant growth-promoting
rhizobacteria with the capacity to mitigate N2O from agricultural soil. They were iso-
lated from the rhizosphere of paddy soil in Tokyo, Japan. Here, we present the ge-
nome sequences of these two strains.

Plant growth-promoting rhizobacteria (PGPR) are a group of rhizosphere bacteria
which can improve plant growth, suppress invading pathogens, and improve plant

abiotic stress tolerance and productivity (1–4). Studies have shown that the inoculation
of soil with PGPR strains with nitrous oxide (N2O)-reducing ability decreases N2O
emissions (2, 5, 6). As PGPR, Azospirillum sp. strains TSA2S and TSH100, originally
isolated from the rhizosphere of paddy soil in Tokyo, Japan (7), possess the ability to
improve plant growth and mitigate N2O from soil (2, 6). Thus, these two strains could
be explored as environmentally friendly biofertilizers. Here, we present the genome
sequences of TSA2S and TSH100.

A single colony of each strain was grown in 5 ml nutrient broth with NaNO3 and
sodium succinate culture medium (peptone 5 g liter�1 and beef extract 3 g liter�1

containing 0.3 mM NaNO3 and 4 mM sodium succinate, pH 7.0) at 26°C and 220 rpm.
Twenty-four to 48-hour cultures of the 2 strains were collected. The genomic DNA
was extracted with a DNeasy blood and tissue kit (Qiagen, Germany) according to
the manufacturer’s protocol. A SMRTbell library of 20-kb insert size was constructed
with the template prep kit v1.0 and the BluePippin size selection system using
standard protocols. The genomes were sequenced at Macrogen Japan with a PacBio
RS II DNA sequencing system using C4 chemistry. In order to use only the PacBio long
reads, FALCON software (v0.2.1) (8), which is a de novo genome assembler, was applied
with default parameters except that daligner selected overlap detection and error
correction of the raw reads. When the ends of each contig are overlapped, the
contigs are connected to form a circular DNA molecule. When there is no sign of
overlapping, the contig might have been originally linear, or there might be gaps
at the end of the contig. The genome sequences were annotated using the NCBI
Prokaryotic Genome Annotation Pipeline (PGAP, v4.8) with the best-placed refer-
ence protein set (GeneMarkS-2�) (9, 10).

Strain TSA2S, with about 171-fold genome coverage, had a circular chromosome of
2,804,606 bp, 6 chromids (11, 12), and 3 plasmids. A total of 7,349 protein-coding
sequences (CDSs), 82 tRNA genes, and 29 rRNA genes were discovered. Strain TSH100,
of about 192-fold genome coverage, had a circular chromosome of 2,712,114 bp, 5

Citation Gao N, Shen W, Nishizawa T, Isobe K,
Guo Y, Ying H, Senoo K. 2019. Genome
sequences of two Azospirillum sp. strains,
TSA2S and TSH100, plant growth-promoting
rhizobacteria with N2O mitigation abilities.
Microbiol Resour Announc 8:e00459-19.
https://doi.org/10.1128/MRA.00459-19.

Editor J. Cameron Thrash, University of
Southern California

Copyright © 2019 Gao et al. This is an open-
access article distributed under the terms of
the Creative Commons Attribution 4.0
International license.

Address correspondence to Weishou Shen,
wsshen@nuist.edu.cn.

Received 5 May 2019
Accepted 12 July 2019
Published 8 August 2019

GENOME SEQUENCES

crossm

Volume 8 Issue 32 e00459-19 mra.asm.org 1

https://doi.org/10.1128/MRA.00459-19
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:wsshen@nuist.edu.cn
https://crossmark.crossref.org/dialog/?doi=10.1128/MRA.00459-19&domain=pdf&date_stamp=2019-8-8
https://mra.asm.org


chromids (11, 12), and 2 plasmids. A total of 6,221 CDSs, 80 tRNA genes, and 26 rRNA
genes were discovered. The genomes of Azospirillum spp. constitute multiple replicons;
the largest replicon has all the features of a bacterial chromosome, whereas the
chromid definition applies to the corresponding replicon, i.e., plasmid-type mainte-
nance replication systems, the presence of essential genes, and a nucleotide compo-
sition close to that of the chromosome (11, 12). The complete denitrification gene sets
were identified on the chromosomes of TSA2S and TSH100. The whole genomes
contain gene clusters encoding nitrogen fixation, a two-component system relative to
quorum sensing, bacterial chemotaxis, and genes encoding lipopolysaccharide biosyn-
thesis that may be involved in plant-microbe communications for symbiosis (13). The
whole genomes contain genes encoding carbon fixation. The whole-genome se-
quences are of critical importance for revealing the molecular mechanisms of TSA2S
and TSH100 for the promotion of plant growth and the mitigation of N2O emissions
from agricultural soil.

Data availability. The whole-genome sequences of strains TSA2S and TSH100 have
been deposited in GenBank under the accession numbers listed in Table 1. The raw
reads have been registered and submitted to the Sequence Read Archive (SRA) under
the accession numbers listed in Table 1.
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Contig 10 105,657 63.7 No Plasmid 3 98 0 0 CP039643

Azospirillum sp. TSH100 10,960 170,174 7,166,382 6,221 80 26 SRR8886132
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a The GenBank sequences for Azospirillum sp. TSA2S, chromids 1 through 6, and those for strain TSH100, chromids 1 through 5, are called chromosomes and noted as
chromids because NCBI does not have a chromid qualifier.
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