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Abstract
Background: Quantitative proteomics holds great promise for identifying proteins that are
differentially abundant between populations representing different physiological or disease states.
A range of computational tools is now available for both isotopically labeled and label-free liquid
chromatography mass spectrometry (LC-MS) based quantitative proteomics. However, they are
generally not comparable to each other in terms of functionality, user interfaces, information input/
output, and do not readily facilitate appropriate statistical data analysis. These limitations, along
with the array of choices, present a daunting prospect for biologists, and other researchers not
trained in bioinformatics, who wish to use LC-MS-based quantitative proteomics.

Results: We have developed Corra, a computational framework and tools for discovery-based
LC-MS proteomics. Corra extends and adapts existing algorithms used for LC-MS-based
proteomics, and statistical algorithms, originally developed for microarray data analyses,
appropriate for LC-MS data analysis. Corra also adapts software engineering technologies (e.g.
Google Web Toolkit, distributed processing) so that computationally intense data processing and
statistical analyses can run on a remote server, while the user controls and manages the process
from their own computer via a simple web interface. Corra also allows the user to output
significantly differentially abundant LC-MS-detected peptide features in a form compatible with
subsequent sequence identification via tandem mass spectrometry (MS/MS). We present two case
studies to illustrate the application of Corra to commonly performed LC-MS-based biological
workflows: a pilot biomarker discovery study of glycoproteins isolated from human plasma samples
relevant to type 2 diabetes, and a study in yeast to identify in vivo targets of the protein kinase Ark1
via phosphopeptide profiling.
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Conclusion: The Corra computational framework leverages computational innovation to enable
biologists or other researchers to process, analyze and visualize LC-MS data with what would
otherwise be a complex and not user-friendly suite of tools. Corra enables appropriate statistical
analyses, with controlled false-discovery rates, ultimately to inform subsequent targeted
identification of differentially abundant peptides by MS/MS. For the user not trained in
bioinformatics, Corra represents a complete, customizable, free and open source computational
platform enabling LC-MS-based proteomic workflows, and as such, addresses an unmet need in the
LC-MS proteomics field.

Background
One area of particular interest to the proteomics commu-
nity is the application of proteomics to the determination
of proteins that are differentially expressed or abundant
between samples representing different physiological or
disease states [1-3]. Typically, such analyses require a
quantitative proteomics approach, for which there is a
wide range of experimental options available to the
researcher. These generally fall into one of two categories,
or represent some combined form of both [4]: i) stable
isotope labeling, combined with LC-MS/MS identifica-
tion, providing accurate relative abundance, or, if suitably
calibrated peptide or protein reference samples are availa-
ble, absolute quantification; ii) LC-MS label free quantifi-
cation (i.e. pattern-based), in which quantification is
determined via observed changes in the ion current for
individual analytes.

Isotopic labeling and label free approaches each have
their own set of challenges and limitations. MS/MS-based
isotopic labeling approaches must introduce the label pre-
or post-sample isolation. Post-isolation methods include
the use of labeling reagents such as ICAT [5] and iTRAQ
[6], whereas pre-isolation labeling methods (i.e. in vivo)
include the use of SILAC [7] labeling reagents, for use in
cell culture-based experiments. All of these methods,
however, limit the number of individual biological sam-
ples that can be compared in a single experiment to a very
low number, and peptides can generally only be quanti-
fied if they are also successfully identified by MS/MS,
unless combined with a LC-MS profiling approach. In
contrast, LC-MS-based label free approaches are ideal for
the comparison of large sets of samples or populations
where, in principle, every feature detected by the mass
spectrometer is potentially quantifiable. However, since
LC-MS approaches rely on some form of data alignment
or pattern matching, they require a much higher degree of
experimental reproducibility. This can be challenging for
LC-MS, when large numbers of consecutive analyses are
often required.

As a result of both the increased use of LC-MS-based work-
flows, and the complex computational challenge that the
alignment of large sets of LC-MS data represent, a wide

range of tools to address this need have appeared [8-16].
It is also because of the complexity of this problem, and
the different computational approaches that can be taken
to solving it, that each of the tools has its own, individual
set of strengths and weaknesses. Thus for the biologist or
proteomics researcher, tool selection can depend on what
experiment is being done, or what mass spectrometer or
data type is being used etc. For example, the two LC-MS
tools we have implemented in the version of Corra pre-
sented here, SpecArray [12] and SuperHirn [15], each
work better than the other with data generated with differ-
ent types of mass spectrometer, as is discussed further
below. Other tool limitations/considerations include:
those designed to run on a single processor versus those
that can run on a cluster; some have a limitation on the
number of samples (data files) that can be aligned in one
experiment; others are designed to use MS/MS identifica-
tion of some peptides as 'landmarks' during the alignment
process. In general, these LC-MS tools also have no, or
only very minimal statistical capability to assign confi-
dence to data alignments, and thus control the false dis-
covery rate. Finally, as each tool was developed in a
different academic setting, each with their own set of
needs and workflows, the input/output formats of the
tools do not make them readily compatible with each
other, or the array of statistical packages that have been
developed for analysis of high-dimensional data. For all
these reasons, embarking on an LC-MS-based proteomic
discovery workflow can be a daunting task for the biolo-
gist or other researcher who is not already well versed in
proteomics and bioinformatics.

We therefore set out to develop, and here present Corra: a
free, open source and customizable computational plat-
form that enables LC-MS proteomic workflows. The Corra
framework extends and adapts existing algorithms used
for LC-MS-based proteomics, as well as existing statistical
algorithms from the microarray community suitable for
the analysis of high-dimensional LC-MS data, as well as
adapting additional software engineering technologies,
such as distributed processing and Google Web Toolkit.
As such, Corra addresses an unmet need in the LC-MS pro-
teomics field: to provide an open source computational
platform that allows biologists and other researchers, not
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formally trained in bioinformatics, to easily process, visu-
alize and analyze LC-MS data in the manner of their
choosing, all within a single application, and on their own
workstation. Using a web-based interface, Corra guides
the user from MS data generation, through data process-
ing, visualization, and statistical analysis steps, providing
for multiple server-side data processing modes and statis-
tical analyses along the way, towards the identification of
differentially abundant or expressed candidate features for
prioritized targeted identification by subsequent MS/MS.
Corra also provides all the information and documenta-
tion required for the knowledgeable user to customize the
platform, and integrate the data processing and/or statis-
tical analysis tools of their own choosing, according to
their specific workflow needs.

To illustrate the implementation of Corra for the analysis,
visualization and interpretation of biologically relevant
LC-MS data, we present analyses of two biological pilot
studies as examples of commonly performed proteomic
LC-MS experiments, that each highlight different aspects
and uses of Corra. The first pilot study demonstrates the
use of Corra for candidate plasma biomarker discovery
aimed at human type 2 diabetes. Here we show the use of
aligned LC-MS features to correctly classify the normal
and disease plasma sample groups, followed by Corra-
enabled targeted MS/MS identification of the differen-
tially abundant peptide features. The second pilot study
demonstrates the use of Corra for phosphopeptide profil-
ing, where we identify in vivo substrates of a protein kinase
using a kinase deletion strain of yeast. Here we expect that
the target phosphopeptides of the kinase will be absent
from one set of samples. Again, follow-up Corra-enabled
targeted MS/MS identified the phosphopeptide features
absent in the kinase knockout strain.

Methods
Overview of the APML format
To facilitate the integration into a coherent analysis plat-
form of existing software tools with those yet to be devel-
oped, it was necessary to define a data format that could
capture any and all relevant information relating to the
data and the experiment, to ensure portability of data
between the disparate tools in use. We therefore defined
and implemented the Annotated Putative peptide Markup
Language (APML) data format within the Corra frame-
work to both store processed data, and port it from one
tool to the next. APML is defined using eXtensible Markup
Language (XML). We chose XML since it is a simple lan-
guage, designed for data representation, and is easily
parsed and self-describing by markup tags. APML captures
essential LC-MS data information for statistical analysis,
as well as additional information for identification, profil-
ing, clustered features, etc. The APML schema and docu-
mentation can be found here [17].

The apml element has two child elements, the dat-
aProcessing and data elements (Figure 1A). The dat-
aProcessing element only stores software information in
the SoftwareType, while the data element, and all its sub-
elements, stores all data information and potential anno-
tations. The primary elements for data storage are the
peak_lists and alignment elements. However, there is also
an optional cluster_profile element, which, for example,
can be used to capture a list of clustered feature references,
such as would be found in a time course or dilution series
experiment, when needed. Picked feature lists are stored
in peak_lists, and can have one to many peak_list ele-
ments, where each stores the detected features of a single
LC-MS run (Figure 1B). The alignment element stores all
the LC-MS file information in the feature_source_list ele-
ment, and stores aligned features in the aligned_features
element (Figure 1C).

Both the FeatureType and AlignedFeatureType elements
(shaded boxes, Figure 1B and 1C) have the coordinate ele-
ment. The coordinate element is defined as Coordina-
teType (Figure 2A), which contains coordinate
information defined by m/z (mz), retention time (rt),
charge and mass attributes. The CoordinateType also con-
tains optional range elements for scan, time and m/z. We
also defined PpidCollectionType for the ppid element for
each feature (Figure 2B). This is an optional element to
store putative feature identification that can be derived
from MS/MS data, or via existing database information,
such as from PeptideAltas [18] or UniPep [19]. Finally, we
also found it useful to have an element, the optional Clus-
terProfileType (Figure 2C), to store a grouped collection
of any type of intensity profile that may arise through a
sample dilution series or time course, for example. Full
descriptions of all elements of APML and its types can be
found in the APML documentation [17].

APML implementation with LC-MS and statistical tools
A goal of Corra was to enable the integration of multiple
and disparate LC-MS data analysis tools, and integrate
them, seamlessly, with common statistical packages to
allow for better comparison between differently-proc-
essed datasets, via the addition of statistical measures of
confidence and error rates. The integration of tools was
achieved via AMPL and the various parsers. In the current
build of Corra we have integrated SpecArray [12] and
SuperHirn [15], both adapted to generate their final out-
put in APML, as well as to operate in a distributed com-
puting environment. To integrate the tools with the
needed statistical analyses, we implemented another
APML parser, using R's XML library, to facilitate an inter-
face to CorraStatistics.R. This allows the user to launch
within Corra additional statistical data analyses, suitable
for quantitative proteomics data analysis, via the use of
selected Bioconductor packages.
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Top elements of APMLFigure 1
Top elements of APML. In the presented XML schema graph notation, dotted rectangles represent optional elements and 
solid rectangles represent required elements. Complex types, which can be used as common element types, are defined by 
shaded boxes. Elements with "+" indicate there are further subelements and elements with "-" indicate that it has been 
expanded to display in the figure.  indicates sequence type of child elements and  indicates choice type of child ele-

ments. A) The apml element has two child elements. The dataProcessing element stores software information, and data ele-
ment child elements of either feature list as peak_list element, or alignment feature list as alignment element. The 
cluster_profile element is an optional element for a list of clustered feature references in any time course or dilution series 
experiment. The dataProcessing element stores software information, and data element stores either feature list as peak_list 
element or alignment feature list as alignment element. B) The peak_lists can have one to many peak_list elements, which 
stores the detected features of a single LC-MS run. C) The alignment element stores all LC-MS file information in 
feature_source_list, and aligned features are stored in aligned_features element.



BMC Bioinformatics 2008, 9:542 http://www.biomedcentral.com/1471-2105/9/542

Page 5 of 22
(page number not for citation purposes)

Additional elements of APMLFigure 2
Additional elements of APML. XML schema graph notation is the same as described in Figure 1 above. A) Both Feature-
Type in peak_list and AlignedFeatureType in alignment elements have CoordinateType, which contains coordinates for each 
feature, defined by required attributes of m/z, rt (retention time), charge and mass. It also has optional retention time, m/z and 
scan range child elements. B) We also defined the optional PpidCollectionType element for each feature, to store putative fea-
ture identification, via MS/MS tandem mass spectrometry experiments and/or other existing database references. C) Cluster-
Profile Type element is to store grouped features, by referencing the features defined in either peak_list or alignment, since 
some post-alignment processing tools might need to cluster LC-MS processed features by some criteria. For example, features 
whose intensities display a correlation with a sample concentration dilution series can be grouped and stored in this optional 
element.
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Bioconductor is a leading open source and software
project for the statistical analysis of high-throughput bio-
logical data [20], and is primarily based on R, a language
and environment for statistical computing and graphics.
Bioconductor represents a rich source of statistical pack-
ages pertinent to proteomic data analysis, and thus a per-
fect source of tools for Corra's data processing framework.
The current version of CorraStatistics.R includes the
LIMMA [21] and maSigPro [22] Bioconductor packages to
detect statistically significant features that are differen-
tially abundant between related sample sets (e.g. disease
control vs. case) and with a controlled false discovery rate,
with the option of adding time course information, if
required. CorraStatistics.R also allows for the use of MLIn-
terfaces and Hierarchical Clustering for supervised and
unsupervised clustering applications.

An inherent aspect of any LC-MS profiling experiment,
where features are to be aligned across multiple LC-MS
runs, is the issue of missing features across a subset of the
LC-MS runs being aligned. One explanation for such
'missing' features is the failure of the feature detection
and/or alignment tools to correctly detect and align every
true feature in every data file, usually as a result of experi-
mental variation (e.g. variations in LC retention, signal to
noise, m/z drift, etc.). However, missing features may also
be indicative of real and desired experimental informa-
tion. Therefore, instead of throwing away aligned features
with missing intensity values of a subset of the LC-MS
runs, CorraStatistics.R also provides the user with the
option to replace such missing intensity values, either
with a user-specified value, or the default setting: the min-
imum intensity value obtained among all aligned fea-
tures, after intensity normalization, for the given data set.
These missing values are then applied to the aligned inten-
sity dataset, allowing subsequent analyses to detect fea-
tures that were above the limit of detection by LC-MS in
one data/sample sub-group, but not in another.

APML Parsers and viewers
To enable Corra to launch multiple and disparate tools, as
well as to facilitate the integration of other new and yet to
be developed LC-MS tools into Corra, we needed to
implement APML parsers and enable the use of APML
across the whole Corra platform. We thus implemented a
generic APML parser library package using Java Standard
Edition 6. To ensure efficient memory and parser use,
Simple API for XML and Stream API for XML were used in
the library package. The APML parser package is also
included with Corra, along with the APML schema docu-
mentation, to the quantitative proteomics tool develop-
ment community, to enable the integration of other pre-
existing and newly developed tools into the Corra frame-
work, and thus enable other workflows and applications
of Corra on an 'as needed' basis. The APML schema and

implementation are also readily extensible, and thus cus-
tomizable, via the addition of new optional elements and
by extending the provided java classes. The Javadoc,
org.systemsbiology.libs.apmlparser, is thus provided to
assist any developer who wishes to plug the current parser
into another analytical tool implementation, for his or
her own specific needs (see Figure 3). APML peaklist and
alignment viewers are also implemented within Corra to
provide the user with a visual 2D display of LC-MS inten-
sity data, within m/z and LC retention time dimensions
(see Figure 4).

Corra web graphical interface
Another important design goal for Corra was to enable
relative ease of use of its various tools and statistical pack-
ages by users with little or no formal bioinformatic train-
ing, all within a single computational interface. This was
accomplished via the development a web-based graphical
user interface (GUI) to help guide any user through the
various desired data processing and analysis steps, in a
systematic and straightforward way. This was done by
using Google Web Toolkit for the client web application.
Access to the interface is via a web-browser, and does not
require installation of any custom software on the user's
computer. Data processing happens on a remote server
that leverages a compute cluster environment to achieve
high-throughput and scalability. This has the advantage of
not tying up the user's computational resources during
time-consuming analyses.

Figure 5A shows the Corra project setup page, where the
user can create new, as well as retrieve existing projects. In
addition to guiding the user through the Corra workflow,
the graphical interface also allows the user to monitor the
processing status of a project, as well as visualize the anal-
ysis results when they are available. The Project setup page
also captures meta-data information, which can also be
used during statistical analysis. The user must indicate
"Sample ID" (same as individual ID), "Condition", "MS
Replicate" and "Time Point" information for each LC-MS
run (more than two conditions can be used for a statistical
contrast study). Figure 5B shows the analysis panel, in
which users can view APML outputs in a plotted graphical
format, or outputs from CorraStatistics.R. A tab delimited
file, which can be used as an inclusion list for follow-up
targeted MS/MS analyses, is also available for download
to the client computer.

In addition to the number of LC-MS runs to be analyzed
and their inherent file-sizes, the processing time is highly
variable and dependent on which LC-MS tool is used, user
specified setup parameters, as well as the hardware and
number of compute nodes that the Corra platform is run
on. However, as a guide, utilizing SpecArray for alignment
in a multi-threaded and distributed computing environ-
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ment, feature extraction for 105 LC-MS runs, with a ~3 GB
mzXML file per LC-MS run, took Corra ~25 hours. This
was done on a six dual-core, dual processor AMD Opteron
275 (2.2 GHz) cluster, each with 1 MB of level 2 cache.

Implementing new LC-MS tools or statistical packages in 
Corra
As has been discussed above, the version of Corra pre-
sented here includes implementation of SpecArray [12]
and SuperHirn [15] for the LC-MS data alignments, and
the LIMMA [21] and maSigPro [22] packages for statistical
analysis of aligned data. However, researchers with a suf-
ficient bioinformatics background can readily implant
additional tools of their choosing. To add an additional
LC-MS tool, this would minimally require modifying the
new tool's code to be able to input and output data in
APML format. Tools that also use MS/MS data would have
to be modified to use pepXML [23] representation of the
MS/MS data. Additionally, tools that are not designed to
do so could be modified to take advantage of Corra's dis-
tributed processing architecture, if desired. Since Corra

already includes parsers for R's ExpressionSet data format,
introducing existing or new R statistical packages is very
simple. Finally, the Corra GUI would have to be updated
to show the new tools in the web interface.

Enrichment of N-glycopeptides from human plasma 
samples relevant to type 2 diabetes
22 human plasma samples were obtained directly from
the funding agency (i.e. from the NIDDK, collected specif-
ically for the project PAR-04-076 [24]). Diagnostic classi-
fications had been made via the oral glucose tolerance test
(OGTT), the current diagnostic 'gold standard' for diabe-
tes. 13 control samples were from subjects with normal
glucose tolerance (NGT), with blood glucose levels rang-
ing from 54 to 98 mg/dl 2 hours post-glucose challenge
after fasting. 9 samples were from patients newly diag-
nosed with type 2 (adult onset) diabetes (DB) (i.e. had
not received treatment, or made lifestyle adjustments),
with blood glucose levels ranging from 202 to 279 mg/dl
2 hours post-glucose challenge after fasting. N-linked glyc-
oproteins were enriched from the plasma samples, and

APML parser documentationFigure 3
APML parser documentation. Corra software provides an APML parser package written in java. This is to facilitate Corra 
customization via the adaptation of existing software or analytical components, or importing of new software or analytical 
components, as required by users with specific workflow needs. This figure shows an example screenshot of the parser pack-
age documentation.
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APML viewerFigure 4
APML viewer. Corra also provides a 2D graphical APML viewer, for user-friendly visualization of peak list or aligned APML 
files. A) It allows for color-coding of displayed features according to observed charge state, or the number of LC-MS runs the 
feature was successfully aligned for. Feature coordinates can be zoomed in and out to allow viewing of entire APML files, or 
just regions of particular interest. B) When a given aligned feature is selected, a pop-up window will be displayed for that fea-
ture across all LC-MS runs in the dataset.
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Corra graphical user interface (GUI)Figure 5
Corra graphical user interface (GUI). Example screenshots of the Corra GUI, provided as a web client using Google Web 
Toolkit. The GUI guides users, step by step, through the Corra pipeline, and also to serves to organize data by project, in a 
user-friendly way, not requiring extensive knowledge of computational biology. A) Project setup GUI panel guides project 
organization and status. B) Analysis GUI panel displays figures from analyses.
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the formerly N-glycosylated peptides recovered, following
digestion with trypsin and protein N-glycosidase F
(PNGase F) sequentially, essentially as described else-
where [25]. Sample preparations were performed in a 96-
well plate format, using a Freedom Evo robotic worksta-
tion (TECAN, Maennedorf, Switzerland) for all liquid
handling and incubation steps, following manual transfer
of plasma samples to the 96-well plate. Sample locations
in the plate were randomized and recorded. Final N-glyc-
opeptide isolates were stored, dry, in glass vials at -80°C
until needed. Samples were resuspended in 0.4% acetic
acid prior to MS analyses.

Mass spectrometric analyses of human plasma N-
glycopeptide isolates
Peptides were separated on an 1100 Series HPLC system
(Agilent, Santa Clara, CA) equipped with a nanoflow
pump, operating at a flow rate of 1 μl/min. Mobile phase
A was a 0.1% formic acid in water, and mobile phase B
was 0.1% formic acid, 5% water, 95% acetonitrile. A
binary linear gradient from 5% to 35% B was used to sep-
arate the peptides on a 10 cm monolithic C18 column,
with a 100 μm inner diameter (Merck KGaA, Darmstadt,
Germany). A self-packed integraFrit column (new Objec-
tive, Woburn, MA) with a bed of magic C18 5 μm particles
(Michrom Bioresources, Auburn, CA), 2 cm × 100 μm,
was used as a pre-column. Sample volumes of 5 μl were
injected by the autosampler. Samples were randomized
for loading, and re-randomized for all subsequent techni-
cal replicates.

Mass analysis was performed on a micrOTOF electrospray
time-of-flight mass spectrometer (Bruker Daltonics, Bill-
erica, MA) at a mass accuracy of 5 ppm, and a resolving
power of 9,000 or better. The mass scale was calibrated
using glu1-fibrinopeptide B (Glufib)(Sigma, Saint-Louis,
MO) and mass spectra were acquired at 1 spectrum/s over
an m/z range of 300–1,600. High mass on the micrOTOF
was maintained via automated instrument recalibration
between each sample injection. This was achieved by
injecting 320 fmol of Glufib, before running a 15 minute
wash gradient, increasing the cone voltage to 220 V to
induce in-source CID. The Glufib fragment ions were then
used by a visual basic script to recalibrate the mass spec-
trometer on-the-fly, thereby ensuring high mass accuracy
from the first to last sample. This measure also has the
benefit of greatly reducing carry-over between complex
samples, such as plasma-derived peptide isolates, and also
provides a way to monitor sensitivity and reproducibility
of the system during large-scale sample batch analyses.

For MS/MS identification of Corra-identified discrimina-
tory N-glycopeptides, an inclusion list for the top-ranked
400 discriminatory peptides was used for targeted MS/MS

on an LTQ-FT mass spectrometer (ThermoFisher, San
Jose, CA) as described elsewhere [26].

Enrichment of phosphopeptides from control and Ark1 
kinase knockout strains of yeast
Three biological replicates each of the yeast S. cerevisiae
wild type (BY7092: can1::STE2pr-Sp_his5 lyp1Delta
his3Delta leu2Delta ura3Delta met15Delta) and the dele-
tion strain (BY7092: can1::STE2pr-Sp_his5 lyp1Delta
his3Delta leu2Delta ura3Delta met15Delta ark1Delta)
were grown to OD ~0.8 at 30°C in synthetic defined (SD)
medium (per liter: 1.7 g YNB, 5 g ammonium sulfate, 2%
glucose (w/v), 0.03 g isoleucine, 0.15 g valine, 0.04 g ade-
nine, 0.02 g arginine, 0.1 g leucine, 0.03 g lysine, 0.02 g
methionine, 0.05 g phenylalanine, 0.2 g threonine, 0.04
g, 0.04 g tryptophan, 0.03 g tyrosine, 0.02 g uracil, 0.1 g
glutamic acid and 0.1 g aspartic acid). Cells were har-
vested at 30°C by centrifugation. Then cells were washed
once in SD medium (at 30°C), pelleted by centrifugation,
and were shock-frozen in liquid nitrogen until needed.
Yeast cell pellets were subsequently thawed in ice-cold
lysis buffer (20 mM TrisHCl pH 8.0, 100 mM KCl, 5 mM
EDTA, 20 nM calyculin A, 200 nM okadaic acid, 4.8 μm
cypermethrin (all from Merck KGaA, Darmstadt, Ger-
many), 2 mM vanadate, 10 mM sodium pyrophosphate
and 10 mM NaF) using 1 ml of lysis buffer per gram of
yeast. Yeast cells were lysed by glass bead beating (using
acid washed glass beads). Phosphopeptides were isolated
following tryptic digestion of total protein isolates using
titanium dioxide affinity purification, as described else-
where [27,28].

Mass spectrometric analyses of yeast phosphopeptide 
isolates
The phosphopeptide samples were analyzed on a hybrid
LTQ-OrbiTrap mass spectrometer (ThermoFisher Scien-
tific, Bremen, Germany) interfaced with a nanoelectro-
spray ion source. Chromatographic separation of peptides
was achieved on an Eksigent nano LC system (Eksigent
Technologies, Dublin, CA, USA), equipped with a 11 cm
fused silica emitter, 75 μm inner diameter (BGB Analytik,
Böckten, Switzerland), packed in-house with a Magic C18
AQ, 5 μm beads, loaded from a cooled (4°C) Spark Hol-
land autosampler, and were separated using acetonitrile/
water solvent system containing 0.1% formic acid, at a
flow rate of 200 nl/min. Peptide mixtures were separated
with a gradient from 5 to 30% acetonitrile over 80 min-
utes. For MS/MS data acquisition, one data-dependent
MS/MS scan was acquired in the linear ion trap for each
OrbiTrap-MS scan, the latter acquired at 60,000 nominal
resolution settings (full width at half maximum), with an
overall cycle time of ~2 seconds. Charge state screening
was employed to select for 2+ ions, rejecting 1+ ions and
those with undetermined charge. For injection control,
the automatic gain control was set to 5 × 105 and 1 × 104
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for full OrbiTrap-MS and linear ion trap MS/MS, respec-
tively. The instrument was calibrated externally, according
to manufacturer's instructions. Data was acquired using
internal lock mass calibration on m/z 429.088735 and
445.120025.

Database searching of MS/MS data for peptide 
identification
Data from targeted LC-MS/MS on an LTQ-FT, for the
human plasma study, were searched using SEQUEST v27,
and the human IPI database v3.23 (which contains
66,617 proteins). Trypsin was specified for cleavage,
allowing one non-tryptic terminus. No mass filtering was
used, a 0.1 Da precursor mass tolerance was used, and a
fragment ion tolerance zero was applied (which in this
version of SEQUEST corresponds to a tolerance of ~0.5 Da
due to the unit mass binning that SEQUEST applies to the
input spectra). A stable modification for Cys of +57.05 Da
was used, as well as differential modifications for Met of
+16.0 Da and for Asn of +0.984 Da. A maximum of 4
modified residues per peptide were allowed. OrbiTrap
MS/MS data, for the yeast kinase study, were searched
using SORCER ER-SEQUEST v3.0.3, running on SageN
Sorcerer, and using the Yeast SGD database (Version of
10.20.2007, which contains 6,795 forward protein entries
and 6,795 reversed protein entries). Trypsin was specified
for cleavage, allowing for two missed cleavages and one
non-tryptic terminus. Mass tolerance was set to 25 ppm
for the monoisotopic precursor ions, and to 0.5 Da for
fragment ions. Stable modification for Cys of +57.0214
Da was used, along with stable modification for all car-
boxylate groups of +14.0156 Da, and differential modifi-
cation for Ser, Thr and Tyr of +79.9663 Da was also used.
For both datasets, final peptide assignments were made
and false discovery rates calculated by PeptideProphet
(v3.0) interpretation of SEQUEST search results [29]. For
the purposes of this study, modified amino acid assign-
ments, according to above criteria, were made by virtue of
the top-ranked SEQUEST match, followed by manual/vis-
ual inspection of MS/MS spectra.

Results and discussion
As has been previously stated, the goal of the Corra project
was to create a single computational platform that was
customizable, free and open source, for the enabling LC-
MS-based proteomic workflows. The sections that follow
below serve to illustrate the data flow through the Corra
framework, and include discussions of the processing/
analysis options available in the Corra implementation
presented here, summarized in Figure 6. This is then fol-
lowed by sections describing two, very different, biologi-
cal pilot studies, chosen as 'real world' experimental
examples, both to illustrate and validate the application
of key aspects of the Corra workflow to quantitative LC-
MS data processing and analysis, and it's use for inform-

ing subsequent identification of peptides/proteins of
interest via targeted MS/MS.

Corra data input and software processing
At the outset, (multiple) raw LC-MS data files are first con-
verted to mzXML [30], prior to importing into the Corra
framework. The data can then be processed for feature/
peak picking and alignment. The current implementation
of Corra uses SuperHirn for very high mass accuracy Orbi-
Trap or FT-MS data (and is the default tool setting for such
data, unless otherwise specified by the user) and SpecAr-
ray for high mass accuracy TOF-MS data (similarly the
default tool setting for these data). These default settings
were, in fact, determined through testing the feature pick-
ing/alignment tools on multiple data types, where we
observed that a given tool performed better with certain
types of MS data, and in a somewhat instrument-depend-
ent way. We reasoned that this effect likely resulted from
the original data sets that were used during the initial
stages of tool development and testing. SpecArray was ini-
tially developed for the analysis of ESI-TOF data [12], and
thus performed better than SuperHirn for the analysis of
the ESI-TOF data, such as that obtained for the human
type 2 diabetes plasma study shown below. On the other
hand, SuperHirn was initially developed for the analysis
of very high mass accuracy FT-MS data [15], and thus per-
formed better than SpecArray for the analysis of very high
mass accuracy OrbiTrap FT-MS data, such as that in the
yeast kinase knockout study, also shown below. Since it is
necessary to have high mass accuracy data (i.e. from TOF
or FT mass spectrometry platforms) in order to perform
LC-MS profiling of complex samples, the implementation
of SpecArray and SuperHirn in this initial version of Corra
represents sufficient choice for anyone wanting to per-
form LC-MS profiling using Corra. However, the Corra
platform, being open source, was designed so that addi-
tional tools could be integrated, according to project-spe-
cific needs, as described under Methods above.

Another feature of the Corra framework is that it facilitates
the process of peak picking and alignment on the server
side (thus not tying up the user's own computer) utilizing
an underlying cluster environment with a job-scheduling
system (in this case a Portable Batch System) to process all
the LC-MS runs in a given data set. This mode of analysis
also ensures that the process is not limited by the size of
the data set (i.e. the number of LC-MS runs) as some
stand-alone tools can be. Following feature detection, the
user can display pertinent statistics to evaluate the data
quality and usefulness, such as a distribution for the
number of features extracted from each LC-MS run.
Finally, the outputs of these analyses are converted to
APML, both for storage, and for data visualization via
Corra's APML viewer (see Figure 4 and above under Meth-
ods).
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Summary of the Corra framework data flowFigure 6
Summary of the Corra framework data flow. In the flow chart, the rectangular boxes represent one or more software 
processing steps, parallelograms represent data, and the cylinder represents databases. The application of Corra begins with 
the input of data in mzXML format, converted from the raw files from any of various mass spectrometers capable of producing 
sufficient resolution to resolve isotopic distribution. Features (defined by m/z, retention time, and intensity) for each input LC-
MS run are extracted, based on observed isotopic distribution, and with the resultant peak list stored in APML format. 
Extracted features are then aligned across all LC-MS runs for the dataset in question, with the resultant aligned features list 
also and stored in the aligned APML format. The xml format of the aligned APML is then parsed into standard R data format, 
ExpressionSet, prior to statistical analyses. Statistical tests, using linear mixed model, are performed on all the aligned features, 
together with any relevant biological and technical replicate information in the sample set. The current implementation of 
Corra has adapted the previously published LC-MS quantification software tools SpecArray [12] and SuperHirn [15] for feature 
extraction and alignment.
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Corra peak picking and alignment
As discussed above, the current implementation of the
Corra framework allows for the use of either SpecArray or
SuperHirn for feature picking and alignment purposes.
However, in order to facilitate the analysis of large data
sets, where MS signal intensity typically varies over time,
Corra normalizes the MS signal intensity data, prior to
importing into the peak picking and alignment tools,
using LIMMA (Linear Models for Microarray Data) [21].
Corra, via APML, also allows for subsequent annotation
of aligned peaks where MS/MS data is available, for exam-
ple via subsequent targeted MS/MS identification of dif-
ferentially abundant peptide features.

It is worth noting here that Corra was designed primarily
for the analysis of LC-MS-based (i.e. label free) quantita-
tive proteomic data. It is thus highly desirable that the
data itself should be acquired under conditions that max-
imize for reproducibility. To this end, in one of the studies
discussed below, we instituted an automated calibration
of the mass spectrometer via the inclusion of a calibration
standard in the blank/wash cycle. This provided for very
consistent mass resolution and accuracy, meaning that the
major concerns to focus efforts on were the maintaining
reproducibility for both chromatography and sensitivity.
If sensitivity were to drop appreciably, then many features
that were above signal-to-noise may no longer be
detected. This effect could mislead the user into thinking
that the absence of such features was related to biology,
rather than machine performance. It is therefore impor-
tant to be mindful of this issue when analyzing large LC-
MS profiling datasets. Indeed, the use of the calibration
standard between runs enabled us to closely follow MS
sensitivity over the course of large-scale experiments, and
several datasets were abandoned before we obtained the
data presented in the diabetes example study below, due
to the detection of MS sensitivity-related problems. Repro-
ducibility of LC retention time, on the other hand, is
somewhat more challenging, the main issues being sam-
ple carry-over and gradient drift. Fortunately, the short
wash cycle between analyses greatly reduced carry-over,
without significantly increasing the time required per
sample analysis. Gradient drift can be harder to control.
However, improvement in the alignment algorithms cur-
rently implemented, have meant that, for the higher-end
LC systems commonly in use, this is rarely an issue, save
for a major breakdown in the LC-system.

Statistical data analysis using CorraStatistics.R
To be complete, any single platform for LC-MS data anal-
ysis would need to include statistical algorithms, appro-
priate for the analysis of LC-MS data, to generate measures
of significance for (peptide) features that appeared to be
differentially expressed or abundant between two or more
sample groups. Fortunately, many such algorithms have

been established for the analysis of genomic and microar-
ray data, now freely available via Bioconductor [20].
Corra thus includes Bioconductor R statistical packages
that are useful and appropriate for the interpretation LC-
MS data to meet this need, and which are contained in the
CorraStatistics.R module.

To perform statistical analyses, APML data sets are first
imported into CorraStatistics.R, which first parses APML's
dataset and sample information to create an annotated
sample and feature intensity data format in the Expres-
sionSet [31] object, the format required for application to
the R's statistical packages from Bioconductor. The imple-
mentation of CorraStatistics.R presented here, uses
LIMMA [21] for processing data without time course
information, and maSigPro [22] for data that does con-
tain time course information. Regardless of which is used,
the final output is always the same: a ranked list of fea-
tures that best discriminate between one or more biologi-
cal/physiological/clinical groups. This list can then be
used to generate an inclusion list for targeted MS/MS anal-
ysis and subsequent identification of the discriminatory
peptides/proteins of interest (see Figure 6). Finally, the
MS/MS spectra, and resultant peptide sequences identi-
fied etc., can be annotated back into the aligned APML file
for that particular data set.

One drawback of clustering analyses, and indeed many
other statistical methods that could be applied, is that
they can only use features that aligned across all LC-MS
runs. However, it is possible that a given feature may not
be present in one sample pool versus another due to a gen-
uine biological effect, rather than it being below the limit
of MS detection in one or more LC-MS runs, or due to an
error made by either the feature picking or alignment tool.
Thus, in order to work around the clustering limitations
for such real-life situations, we included an optional func-
tion within Corra (called 'n/a replace'), where the user can
replace missing intensity data (i.e. given features not
aligned across all LC-MS-runs) with the minimum meas-
ured intensity for the entire dataset (the default setting),
or a specified nominal value of their choosing. When
missing intensity values are not replaced, only features
that have intensities across all LC-MS runs will be used for
supervised or unsupervised clustering analyses. LIMMA
analysis of aligned features can then be performed to cal-
culate fold-changes in intensity for each aligned feature
across all LC-MS runs which, in turn, can be used to assign
a measure of statistical significance for the observed fold
changes, for the given dataset. When missing values are
replaced prior to clustering, this will produce highly artifi-
cial ratios, which can be very misleading if interpreted
improperly. Therefore, great care must be taken in apply-
ing this optional functionality prior to clustering analysis.
For example, if a given feature in the 'control' population
Page 13 of 22
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:542 http://www.biomedcentral.com/1471-2105/9/542
aligned across 19 of 20 runs, then replacing the missing
feature could be beneficial, since this is likely a 'real' fea-
ture that was missed in just one run by the MS or software
tools. However, it may be unwise to replace all 17 missing
features for another feature that aligned across only 3
runs.

Nevertheless, there are clearly situations where the ability
to replace missing features with a nominal value are of
use, hence the provision of this function. An example of
such a case is given below, where LC-MS profiling was per-
formed on phosphopeptides isolated from a specific pro-
tein kinase knockout strain of yeast, in comparison to a
wild-type control strain. In this case, we expected missing
features in the knockout, when compared with the con-
trol. Thus, by using the missing feature replacement func-
tion wisely, we were able to successfully cluster the data to
identify phosphopeptides that were not present in the
profile from the knockout yeast strain. Similarly, in a typ-
ical biomarker discovery workflow, there may be markers
only present (or absent) in the disease samples, due to a
change in gene expression versus the control samples.
Thus if one were to observe features that aligned across all
(or most) cases, but not the controls, the judicious use of
this function would similarly help identify such features.
However, since the ratios it generates are highly artificial
and therefore open to misinterpretation, it is up to the
individual user to ensure that they use this particular func-
tion wisely, and to report it when they do so. Indeed, it
should be stressed that there are many ways in which
high-dimensional data, such as LC-MS data, can be validly
analyzed. Thus it is always incumbent on the individual
user to first consult with the literature, and/or a suitably
qualified biostatistician, before embarking on such com-
plex statistical analyses. Finally, the Bioconductor pack-
ages implemented so far were chosen for applicability to
our current proteomics research. However, alternative
approaches to both statistical data analysis and missing
feature replacement are enabled by Corra's open software
architecture. With the built-in converter to R's Expression-
Set file format, a user can readily extend or plug-in their
own Bioconductor packages of preference into the Corra
pipeline, as discussed under Methods above.

Examples of Corra application to biological studies
We next used Corra for the analysis of LC-MS data from
two biological pilot studies, as examples of commonly
performed proteomic LC-MS experiments. The first goal
of these biological studies was to validate the Corra plat-
form's capability to take LC-MS data all the way through
to the identification of statistically credentialed, differen-
tially abundant peptides for targeted MS/MS identifica-
tion. The second goal was to provide 'real life' examples of
discovery-based proteomic experiments to illustrate the
type of experiments Corra is useful for analyzing, and to

show the type of information it can provide for the biolo-
gist end user. These two studies were also chosen since
they separately highlight different aspects of, and the flex-
ibility of Corra.

The first of these is from a pilot type 2 diabetes biomarker
discovery project using human plasma. Here we wanted to
be able to initially classify the samples according to dis-
ease state via label-free LC-MS analysis, then subsequently
identify differentially abundant peptides via MS/MS. The
second is from a study to identify candidate protein kinase
substrates in vivo via LC-MS phosphopeptide profiling,
using kinase deletion strains of the yeast S. cerevisiae. Here
we show an example using a yeast deletion strain for the
kinase Ark1. In this case, unlike the type 2 diabetes study,
we expected the phosphopeptides of interest to be com-
pletely absent from the LC-MS profiles compared with a
wild-type strain, requiring a different analytical strategy
using Corra. Again, we subsequently identified the miss-
ing phosphopeptides of interest by MS/MS reanalysis of
the wild-type yeast strain.

Application of Corra to plasma biomarker discovery for 
human type 2 diabetes
The purpose of the pilot study presented here was to apply
current LC-MS quantitative proteomics technology to try
and identify potential type 2 diabetes candidate plasma
biomarkers via profiling of (formerly) N-glycosylated
peptides (N-glycosite peptides). To do this, N-glycosite
peptides were isolated from plasma samples collected
from control individuals with normal glucose tolerance
(NGT), as well as from newly diagnosed cases of type 2
diabetes (DB).

N-glycosite peptide isolates were thus prepared from 13
individual NGT plasma samples and 9 individual DB
plasma samples, as previously described [25] and summa-
rized above under Methods. The 22 samples were then
randomized for LC-MS analysis, followed by 2 additional
technical LC-MS replicate analyses of all 22, each with a
new randomization of sample run order to reduce poten-
tial bias, for a total of 66 LC-MS runs. Following conver-
sion of the raw data to mzXML format, the 66 data files
were input into Corra for feature picking and alignment
by SpecArray. The aligned datasets were then imported
into the CorraStatistics.R module for statistical analysis, as
described above.

Figure 7 shows an example of a Corra analysis output, in
this case the result of an unsupervised hierarchical cluster-
ing of the 66 LC-MS runs for the 13 NGT and 9 DB
patients. For this particular analysis, the clustering algo-
rithm utilized the 588 multiply charged features (i.e.
excluding 1+ ions) that had been aligned across all 66
runs. This unsupervised cluster dendrogram showed good
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separation between the two diagnostic groups. It also
showed that, as would be expected, the 3 replicate LC-MS
runs of each sample were consistently the most similar to
each other. The cluster also identified one particular out-
lier (indicated in Figure 7) that was explainable. The
plasma sample from this particular individual was also
annotated with a high blood triglyceride measurement.
Thus this person had likely not fasted, as required, before
the OGTT used to make the physiological state classifica-
tion, and thus the results of the OGTT are not reliable. The
cluster also shows that two additional NGT individuals
were misclassified. However, this is more likely to be due
to natural variation from one individual to the next when
trying to diagnose a physiological state via LC-MS profil-
ing alone, rather than due to the method of analysis. It is
also worth noting that the OGTT itself, used to define the

sample populations, while being the current 'gold-stand-
ard' test for diabetes, is itself < 70% reproducible [32].

An alternate Corra analysis output for this same data is
shown in Figure 8. In this case, a "volcano" plot was gen-
erated, using LIMMA, to show the detection of differential
abundance for the 4240 features that aligned across at
least 3 of the 66 LC-MS runs (3 being chosen, in this case,
since each individual sample was analyzed in triplicate).
In this plot, the aligned features are ordered by log Odds
(or B value) on the y-axis. The log Odds B value is, essen-
tially, a measure of probability that the feature is differen-
tially expressed/abundant (as opposed to being observed
so by random chance), i.e. the higher the log Odds for
each feature, the higher the probability that the feature is
genuinely differentially expressed/abundant.

Corra-generated hierarchical clustering of human type 2 diabetes plasma analysesFigure 7
Corra-generated hierarchical clustering of human type 2 diabetes plasma analyses. N-glycosite peptides were iso-
lated from human plasma samples and analyzed via LC-MS, as described under Methods. Randomized, triplicate analyses were 
performed for each of 22 human plasma samples, 13 controls (NGT: normal glucose tolerance) and 9 from newly diagnosed 
cases of type 2 diabetes (DB). The hierarchical cluster shown is for the 558 multi-charged features that aligned across all 66 
LC-MS runs. Randomly assigned patient numbers are included to show how the replicate MS analyses of the same samples clus-
tered together as the most similar, as expected. One of the misclassified DB patient samples was annotated as from a 'likely not 
fasted' subject, as required by the OGTT assay used to diagnose diabetes, according to documentation provided with the sam-
ples.
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We then ranked these 4240 aligned features according to
log Odds for differential abundance to generate a list of
the top 400 for targeted MS/MS, i.e. to identify the pep-
tides, hence proteins, that best discriminated between the
NGT and DB diagnostic groups. An inclusion list was thus
made for these 400 features and two samples, each a pool
of 4 randomly chosen plasma isolates for each disease
state, NGT and DB, were analyzed, separately, in triplicate,
for acquisition of MS/MS data on an FT-LTQ spectrome-
ter. In this way, we were able to assign peptide sequence
identity to over half of the 400 targeted features (data not
shown). Table 1 shows the top 20 most discriminatory
peptides (i.e. highest log Odds, using a cut-off of ≥ 2.5)
that were also successfully matched to a peptide sequence,
with a PeptideProphet score of ≥ 0.9 via MS/MS, which
corresponded to a false discovery rate of 2%. A log Odds

of 2.5 represents a minimum probability of 92.4% for
likelihood of non-random differential abundance for
these 20 peptides, which, in turn, had a minimum proba-
bility 91% for correct identification by MS/MS (as deter-
mined by PeptideProphet [29]).

Finally, it should be noted here that these data are from a
pilot study, and as such, none of the proteins identified
were, or should be considered as candidate markers for
diabetes without further studies. Nevertheless, they do
illustrate how the Corra framework was implemented to
determine, and then identify, targets of interest in any LC-
MS-based biomarker discovery workflow. In turn, it also
shows how Corra could be of use to biologists or other
researchers interested in LC-MS data analysis of any other,
similar comparison of related physiological states.

Application of Corra to phosphopeptide profiling of an 
Ark1 kinase knockout yeast strain
As a second example of Corra application, we analyzed
LC-MS profiles of phosphopeptides isolated from a wild-
type yeast strain, for comparison to those obtained from a
yeast strain lacking the protein kinase Ark1. The goal was
to see whether we could identify potential Ark 1 target
proteins, and phosphorylation sites, for this kinase.
Unlike for the human diabetes pilot study above, here we
fully expected to observe the 'missing features' effect in the
Ark 1 deletion strain. Additionally, these analyses were
performed on a very high mass accuracy OrbiTrap-LTQ
spectrometer, and the SuperHirn tool was instead used for
the feature picking and alignments within Corra.

We therefore prepared total phosphopeptide isolates from
the two yeast strains, as previously described [27] and
summarized under Methods. The two samples were then
analyzed on an OrbiTrap-LTQ spectrometer, in triplicate
(6 LC-MS runs in total), limiting the LC-retention time
range for data analysis to the 20 to 90 minute window,
since this was the region where the peptides eluted for
these analyses. On average, SuperHirn detected ~23,300
features per LC-MS run, with 54,059 total detected fea-
tures. Of these, 6,840 aligned across all six LC-MS runs,
with 22,562 that aligned across three or more LC-MS runs.

Since there were 2 biological samples, each analyzed in
triplicate, we took the 22,562 features that aligned across
three or more runs for importing into the CorraStatistics.R
module, to search for the differentially abundant features
between the control and the kinase knockout yeast strains.
In this study, we were especially interested in phos-
phopeptides not detected in the knockout strain versus the
control strain, since these would represent potential tar-
gets for the missing kinase. Thus to do this, we utilized the
'n/a replace' (for missing values) functionality within
Corra to set missing features between all 6 runs to the

Corra-generated volcano plot of human type 2 diabetes plasma analysesFigure 8
Corra-generated volcano plot of human type 2 diabe-
tes plasma analyses. N-glycosite peptides were isolated 
for human plasma samples and analyzed via LC-MS, as 
described under Methods. Randomized, triplicate analyses 
were performed for each of 22 human plasma samples, 13 
controls (NGT: normal glucose tolerance) and 9 from newly 
diagnosed cases of type 2 diabetes (DB). Volcano plot dis-
plays the 4,240 features that aligned across a minimum of 3 
LC-MS runs. The x-axis shows observed log fold change in 
aligned feature mean intensities between the two sample 
groups, NGT and DB. The y-axis shows B statistics log Odds 
for non-random differential abundance obtained for each 
aligned feature. Red colored dots represent the 400 top-
ranked features (in terms of log Odds) that were subse-
quently targeted for MS/MS identification. A log Odds value 
of 0 corresponds to a 50% probability non-random differen-
tial abundance, and a log Odds of 2.2 to a 90% probability.
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5.29 0.95 1274.91 3 1274.92 3 R.GNEANYYSN#ATTDEHGLVQFSIN#TTN
VMGTSLTVR.V

IPI00478

5.09 1.00 1178.53 2 1178.55 2 R.GLTFQQN#ASSMCVPDQDTAIR.V IPI00479

3.95 0.91 758.05 3 758.05 3 K.TVLTPATNHMGN#VTFTIPANR.E IPI00164

3.58 0.99 952.44 2 952.45 2 R.FSDGLESN#SSTQFEVKK.Y IPI00032

3.24 0.94 598.77 2 598.78 2 R.DIENFN#STQK.F IPI00019

2.82 1.00 799.43 2 799.43 2 V.LHPN#YSQVDIGLIK.L IPI00431

2.69 1.00 1183.55 2 1183.56 2 K.STGKPTLYN#VSLVMSDTAGTCY.- IPI00385
IPI00784

2.50 1.00 634.29 2 634.29 2 K.LGN#WSAMPSCK.A IPI00298

B (log Odds) indicates Odds of the peptide/proteins are differentially expressed between NGT and DB groups. PeptideProphet [29] probability (Prob.
MS spectra to the given peptide. To be listed here, a peptide first had to score log Odds of ≥ 2.5 for differential abundance, and then ≥ 0.9 by Peptide
assignment. We also give the m/z value and charge state (z) for both the feature initially detected by MS1, as well for the peptide subsequently identifi
identifications, N# is used to indicate the predicted position of the modified asparagine residues, resulting from their conversion to aspartic acid durin
preparation. The consensus sequence for N-glycosylation is -N-X-S/T- where X is any amino acid except proline, and S/T is serine or threonine. The IP
sequences are also listed. The log Odds B value is a statistical measure of the likelihood that a given feature is genuinely differentially expressed/abund
increased probability of such. Log Odds can be converted to a probability. In this case, where we used a log Odds cut-off of ≥ 2.5, the probability that a
is: exp(2.5)/(1+exp(2.5)) = 0.924, (i.e. 92.4% likely that the observed differential abundance was non-random). Thus a log Odds value of 0 corresponds
differentially abundant.

Table 1: Top 20 most discriminatory peptides for diabetes identified by follow-up targeted MS/MS analysis. (Continued)
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minimum intensity value detected for the entire dataset.
While we recognized that this would generate artificial
ratios when we performed the analysis, it nevertheless
provided us with the information we needed, since we
were, ultimately, only interested in peptide identity here,
and not a quantitative measure of differential abundance.

Figure 9 shows a clustering analysis for all 22,562 features
that aligned across 3 or more runs, and demonstrated
that, as expected, the aligned features distinguished very
well between the two yeast strains. The excellent separa-
tion observed between the replicate analyses of each sam-
ple was clearly enhanced by the large, artificial, ratios
generated via use of the 'n/a replace' function. A volcano
plot, shown in Figure 10, shows the log Odds distribution
for differential abundance, for the same 22,562 features
aligned in 3 or more runs. Those with a log Odds value of
≥ 2.2 (i.e. > 90.0% chance of non-random observation of
differential abundance), and for which the 'n/a replace'
function was used, are colored red. The smaller number of
blue-colored features represent those also with a log Odds
value of ≥ 2.2, but for which the 'n/a replace' was not
required, and thus these generally showed lower ratios of
differential abundance (i.e. not artificial) than the red-
colored features. In comparing Figures 8 and 10, we can
also make a couple of general observations. In the yeast

study, we observed much larger ratios, almost certainly
due to the replacement of missing features. On the other
hand, in the human diabetes study shown in Figure 8, we
observed much larger log Odds values (i.e. increased con-
fidence in differential abundance). This is almost certainly
due to the much larger sample size (66 LC-MS analyses vs.
6 in the yeast study), therefore leading to better statistical
confidence.

From these data analyses, as with the diabetes study
above, we next made an inclusion list for targeted MS/MS,
to try and identify some of the phosphopeptides lost in
the Ark1 knockout yeast versus the control. Table 2 lists the
top 12 most discriminatory peptides, with a log Odds of ≥
2.2, and that also matched a peptide sequence by MS/MS,

Corra-generated hierarchical clustering of yeast phos-phopeptide analysesFigure 9
Corra-generated hierarchical clustering of yeast 
phosphopeptide analyses. Phosphopeptides were isolated 
from two yeast strains, one wild type, and the other an Ark1 
protein kinase knockout, and analyzed in triplicate on a very 
high mass accuracy LC-MS platform, as described under 
Methods. The 22,562 Corra-detected features that aligned 
across 3 or more LC-MS runs were used to produce this 
hierarchical cluster that well distinguished between the two 
samples, as expected.

Corra generated volcano plot of yeast phosphopeptide analy-sesFigure 10
Corra generated volcano plot of yeast phosphopep-
tide analyses. Phosphopeptides were isolated from two 
yeast strains, one wild type, and the other an Ark1 protein 
kinase knockout, and analyzed in triplicate on a very high 
mass accuracy LC-MS platform, as described under Methods. 
Volcano plot displays 22,562 features that aligned across 3 or 
more LC-MS runs. The x-axis shows observed log fold 
change in aligned feature mean intensities between the two 
yeast strains. The y-axis shows B-statistics log Odds for non-
random differential abundance obtained for each aligned fea-
ture. Red colored dots indicate features with a log Odds 
value of ≥ 2.2 (which translates to a posterior probability of 
90% chance of non-random differential abundance) and that 
also utilized the 'n/a replace' capability in Corra (for missing 
values). Blue colored dots indicate features with a log Odds 
value of ≥ 2.2, but did not require use of the 'n/a replace' 
function. A log Odds value of 0 corresponds to a 50% proba-
bility of non-random differential abundance, and a log Odds 
of 2.2 to a 90% probability.
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with a PeptideProphet score of ≥ 0.7 (representing a false
discovery rate of 5%). Ark1 is known to be involved in
endocytosis and actin reorganization, as also are 4 other
proteins from Table 2 (YOL109W, YBL037W, YMR109W,
and YJR083C), demonstrating that Corra successfully ena-
bled the generation of potentially biologically relevant
information. Finally, for confirmation purposes, Figure
11 shows extracted ion chromatograms, for all 6 LC-MS
runs, for the identified YDR293 peptide, RHS*LGLNEAKK
(where S* represents phosphoserine) at m/z = 444.895
[M+3H]3+, confirming it's detection in all 3 replicate anal-
yses of the control strain, and its absence in all 3 replicate
analyses of the Ark1 knockout strain.

Conclusion
Here we present Corra, a complete, free and open source
computational platform that enables LC-MS-based pro-

teomic workflows, and as such, addresses an unmet need
in the LC-MS proteomics field. The Corra framework
extends and adapts existing algorithms used for LC-MS-
based proteomics, as well as existing statistical algorithms
from the microarray community suitable for the analysis
of high-dimensional LC-MS data, with a view to control-
ling false-discovery rates. Corra also adapts additional
software engineering technologies, such as distributed
processing and Google Web Toolkit. Corra enables the use
of an array of LC-MS data alignment tools, integrating
them with various forms of statistical analyses via Biocon-
ductor, for the generation of statistically validated lists of
differentially abundant peptide features for subsequent
targeted LC-MS/MS identification, all within a single com-
putational platform. Corra is not intended as an alterna-
tive to pre-existing LC-MS analytical tools, such as
SpecArray [12], SuperHirn [15], msInspect [8,13], PEPPeR
[10], and others, but rather provides a framework for
using such tools in a way that can overcome some of their
limitations, such as the ability to process datasets of large
size, via Corra's distributed computation process. Corra
effectively obviates cross-tool incompatibilities through
the use of a new common data format, AMPL, that allows
for rich data annotation from multiple experimental
workflows, as well as a set of parsers between different
data input/output formats, including R's ExpressionSet
format for statistical data analysis. Finally, in part through
its implementation via a web-based GUI, Corra fills a
noticeable gap in the field of LC-MS, or 'label-free' quan-
titative proteomics, in that it provides for biologists and
other researchers, not just those trained in bioinformatics,
to process, visualize and analyze their data in the manner
of their choosing, all within a single application, and on
their own workstation.

In the version of Corra presented here, two of the afore-
mentioned LC-MS tools, SpecArray and SuperHirn were
implemented, as were the Bioconductor packages LIMMA
and maSigPro for statistical analysis. However, with the
description of the a common file format for LC-MS data,
APML, and with the parsers and documentation also pro-
vided with Corra, the ability to incorporate additional
software tools and statistical algorithms for additional
workflows is fully supported. This allows for a user with
appropriate bioinformatics training to set up Corra on any
Linux server, either as is, or customized for their own per-
sonal or groups workflows. Finally, Corra is provided as
open source (Apache 2.0), and may be downloaded,
along with all relevant documentation [17]. Corra is also
available from Sourceforge.net (keyword search: Corra).
Further development of Corra and APML remain ongoing.
Upcoming releases of Corra will include an APML-ready
version of the LC-MS analysis tool msInspect [8], addi-
tional functionality to allow for the extraction and quan-
tification of LC-MS data that includes the incorporation of

Verification of a Corra-identified Ark1 kinase substrate pep-tide/proteinFigure 11
Verification of a Corra-identified Ark1 kinase sub-
strate peptide/protein. Following targeted MS/MS identifi-
cation of the top-ranked Corra-identified discriminatory 
features (see Figure 10 and Table 2) ion chromatograms 
were extracted from all LC-MS runs for the peptide 
RHS*LGLNEAKK (m/z = 444.895 [M+3H]3+), where S* rep-
resents phosphoserine. This peptide was derived from the 
protein YDR293C, and was confirmed as present in all 3 con-
trol sample analyses, but absent in all 3 Ark1 knockout analy-
ses, as would be expected. For all six plots, a relative 
abundance of 100% was manually set to 107 ion counts so 
that all were on the same scale.
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stable isotope labels, and providing Corra outputs in a
format suitable for downstream interaction with selected
reaction monitoring-based workflows.
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trometry; LIMMA: linear models for microarray data; MS/
MS: tandem mass spectrometry; NGT: normal glucose tol-
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flight; XML: extensible markup language.
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B (log Odds) Prob. MS1 m/z z MS1 MS2 m/z z MS2 Peptide Sequence SGD ID Protein
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[29] probability (Prob.) indicates the probability of correctly assigning MS/MS spectra to the given peptide. We also give the m/z value and charge 
state (z) for both the feature initially detected by MS1, as well for the peptide subsequently identified by MS/MS (MS2). For peptide sequence 
identifications, S* and T* indicate the predicted position of the modified (phosphorylated) serine or threonine residues reported by SEQUEST 
search and manual/visual inspection of the MS/MS spectra. The yeast SDG database accession numbers matched to the sequences are also listed, 
along with their corresponding SGD systematic protein names. The log Odds B value is a statistical measure of the likelihood that a given feature is 
genuinely differentially expressed/abundant, where higher log Odds values represent increased probability of such. Log Odds can be converted to a 
probability. In this case, a log Odds of 4 corresponds exp(4)/(1+exp(4)) = 0.982 (i.e. 98.2% likely that the observed differential abundance was non-
random).
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