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Abstract

Background and Aims: The global prevalence of nonalco-
holic fatty liver disease (NAFLD) is 25%. This study aimed to 
explore differences in the gut microbial community and blood 
lipids between normal livers and those affected by NAFLD us-
ing 16S ribosomal deoxyribonucleic acid sequencing. Meth-
ods: Gut microbiome profiles of 40 NAFLD and 20 non-NAFLD 
controls were analyzed. Information about four blood lipids 
and 13 other clinical features was collected. Patients were 
divided into three groups by ultrasound and FibroScan, those 
with a normal liver, mild FL (FL1), and moderate-to-severe 
FL (FL2). FL1 and FL2 patients were divided into two groups, 
those with either hyperlipidemia or non-hyperlipidemia 
based on their blood lipids. Potential keystone species within 
the groups were identified using univariate analysis and a 
specificity–occupancy plot. Significant difference in biochem-
ical parameters ion NAFLD patients and healthy individuals 
were identified by detrended correspondence analysis and 
canonical correspondence analysis. Results: Decreased gut 
bacterial diversity was found in patients with NAFLD. Firmi-
cutes/Bacteroidetes decreased as NAFLD progressed. Faec-
alibacterium and Ruminococcus 2 were the most representa-
tive fatty-related bacteria. Glutamate pyruvic transaminase, 
aspartate aminotransferase, and white blood cell count were 
selected as the most significant biochemical indexes. Calcu-
lation of areas under the curve identified two microbiomes 
combined with the three biochemical indexes that identified 
normal liver and FL2 very well but performed poorly in di-
agnosing FL1. Conclusions: Faecalibacterium and Rumino-
coccus 2, combined with glutamate pyruvic transaminase, 

aspartate aminotransferase, and white blood cell count dis-
tinguished NAFLD. We speculate that regulating the health of 
gut microbiota may release NAFLD, in addition to providing 
new targets for clinicians to treat NAFLD.
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Introduction
With a global prevalence of 25%,1 nonalcoholic fatty liver 
disease (NAFLD), the liver component of a group of disor-
ders linked to metabolic dysfunction,2 is defined as the pres-
ence of steatosis in more than 5% of hepatocytes in the 
absence of heavy alcohol intake or other chronic liver illness-
es.3 NAFLD is currently slowly being recognized as a chronic 
disease. However, due to limited medical knowledge, most 
NAFLD patients ignore treatment of the disease.4,5 NAFLD is 
known to have a close, bilateral association with metabolic 
syndrome.6 Additionally, lipid abnormalities are linked to an 
increased risk of liver7 as well as cardiovascular disease.8 
Furthermore, some studies have conclusively shown cardio-
vascular disease to be the leading cause of death in NAFLD 
patients.9,10 Therefore, it is imperative to investigate the link 
between dyslipidemia and NAFLD.

Collectively, data from rodent studies support the hypoth-
esis that gut microbiota plays a role in the development of 
NAFLD.11–14 Additionally, changes in the gut microbiota can 
affect the gut–liver axis and are linked to the development 
of cirrhosis and NAFLD in human patients.15–19 Therefore, 
characterizing the bacterial populations implicated in dys-
biosis is critical as it may aid in the development of alterna-
tive disease management techniques. In most cases, NAFLD 
is diagnosed by imaging, and in routine practice, the most 
commonly used imaging technique is abdominal ultrasound.2 
However, whether the effects changes of the gut microbiota 
in FL can be diagnosed by ultrasound is up for debate. The 
controlled attenuation parameter (CAP) has been widely 
used to assess steatosis20,21 and reportedly has outstand-
ing performance in diagnosing more than 10% of hepatic 
steatosis instances.22,23 In this study, we used abdominal ul-
trasound and CAP to estimate the level of FL. We also noted 
that how the gut microbiota changes in patients with NAFLD 
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and hyperlipidemia remains an open question.
The primary objective of this investigation was two-fold, 

firstly, to establish a classification framework for distin-
guishing individuals afflicted with FL through the combined 
use of ultrasound and CAP, and secondly, to dissect dif-
ferences in the gut microbial composition in subjects with 
normal liver function and in those diagnosed with NAFLD, 
using 16S rDNA gene amplicon sequencing. Furthermore, 
this study delved into alterations of the gut microbiota of 
patients concurrently affected by NAFLD and hyperlipi-
demia. We used biochemical parameters such as alanine 
transaminase (ALT) and aspartate aminotransferase (AST) 
to identify significantly differences between NAFLD patients 
and healthy individuals.

Methods

Human patients
A total of 60 patients were enrolled in our study between 
January 1 and November 30, 2021. The study was approved 
by the institutional ethics committee of Shenzhen People's 
Hospital. The approval number is LL-KY-2021637. The in-
clusion criteria for NAFLD patients were: (1) >18 years of 
age; (2) newly diagnosed with NAFLD during the selec-
tion period, and confirmed by abdominal ultrasound and 
FibroScan; (3) not being treated with any medication and 
had not gained any significant weight in the preceding 6 
months; (4) abdominal ultrasound and biochemical indexes 
were evaluated on the same day. The inclusion criteria of 
normal patients were (1) >18 years of age; (2). abdomi-
nal ultrasound was normal; (3) abdominal ultrasound and 
biochemical indexes were evaluated on the same day. The 
exclusion criteria for both NAFLD and normal patients were: 
(1) the presence of autoimmune hepatitis, primary biliary 
cholangitis, or primary sclerosing cholangitis; (2) hepatitis 
B or C viral infection; (3) antibiotics and other commonly 
used nonantibiotic medications, such as PPIs, laxatives, 
statins, antidepressants, and opioids used within the pre-
ceding month; (4) a malignancy diagnosis (<5 years); (5) 
human immunodeficiency virus infection; (6) chronic disor-
ders associated with lipodystrophy or immunosuppression; 
(7) drug-induced steatosis or liver injury; or (8) diabetes, 
gout, and/or other metabolic disease.

Ultrasound and FibroScan detection
All abdominal ultrasound examinations were performed us-
ing a Mindray Resona 7A (Mindray, Shenzhen, China) con-
vex array probe at a frequency of 1–6MHz. We also assessed 
liver disease severity using a FibroScan 502 Touch model (M 
Probe; XL Probe; Echosens, Paris, France), which included 
two functional examinations of liver stiffness and fat con-
tent, i.e., CAP and vibration-controlled transient elastogra-
phy. Patients, were divided into three groups, of 20 each, 
those with a normal liver (NL), mild FL (FL1), and moder-
ate-to-severe FL (FL2) according to the liver ultrasound per-
formance and CAP value based on the following criteria.24–26 
(1) Patients with a normal liver echogenic structure were 
included in the NL group. (2). When the diaphragm and 
the portal vein wall could be normally observed, but there 
was a small and generalized increase in liver echogenicity, 
the patients were included in the FL1 group. (3). Patients 
with moderate or markedly increased liver echogenicity and 
mild or severe impairment in the appearance of the por-
tal vein wall, diaphragm, and posterior right hepatic lobe 
were included in the FL2 group. Patients were divided into 
three groups according to the CAP value as follows:27 (1) NL 

group, CAP<240 dB/m; (2) FL1 group, 240 dB/m<CAP<265 
dB/m; and (3) FL2 group, CAP>265 dB/m.

Baseline assessment
Low-density lipoprotein, high-density lipoprotein, triglycer-
ides (TGs), total cholesterol, gamma-glutamyl transpepti-
dase, ALT, AST, alkaline phosphatase, albumin, direct biliru-
bin, total bilirubin, and white blood cell (WBC) and platelet 
counts were measured after an 8 h overnight fast. Body mass 
index (commonly known as BMI) was defined as the weight 
divided by height squared (kg/m2). Abdominal circumference 
was defined as the horizontal abdominal girth through the 
point of the iliac crest. Additionally, age and sex characteris-
tics were also collected in our study.

Hyperlipidemia definition
In this study, hyperlipidemia (HL) was defined as (1) total 
cholesterol >6.5 mmol/L] and (2) TGs>2.3 mmol/L.28 If the 
levels of the subject's blood lipid indicators were consistent 
with the above definitions, we classified the study partici-
pants as having hyperlipidemia.

Microbiome analysis by 16S rDNA sequencing
Stool samples of the patients in our study were collected 
and stored in a freezer at −40°C. Following the extraction of 
16S rDNA and sample quality checks, variable regions V3–V4 
of bacterial 16S rRNA genes were amplified with degener-
ate PCR primers. An Agilent 2100 Bioanalyzer was used for 
quality inspection and the qualified library was sequenced by 
selecting the corresponding Illumina sequencing HiSeq 2500 
platform and PE300 (San Diego, CA, USA). Raw reads were 
filtered to remove adaptors and low-quality and ambiguous 
bases. Paired-end reads were then added to tags using the 
Fast Length Adjustment of Short Reads program (FLASH, 
v.1.2.11)29 to derive the tags. The tags were clustered into 
operational taxonomic units (OTUs) with a cutoff value of 97% 
using UPARSE software (v7.0.1090),30 and chimera sequenc-
es were compared with the Gold database using UCHIME 
(v4.2.40)31 to detect. Representative OTU sequences were 
taxonomically classified using Ribosomal Database Project 
Classifier v.2.2 with a minimum confidence threshold of 0.6 
and trained on the Greengenes database (v.201305) using 
QIIME (v.1.8.0).32 USEARCH_global33 was used to compare 
all of the tags back to the OTU to derive the OTU abundance 
statistics table for each sample. Details of the microbiome 
analysis are shown in the Supplementary File 1.

Statistical analysis
The statistical analysis was performed using R (https://
www.r-project.org). Differences in normally distributed nu-
merical variables were compared with t-tests, rank sum 
tests were used for non-normally distributed numerical vari-
ables, and a chi-squared tests were used for disordered clas-
sification variables. P-values <0.05 was used to determine 
whether the clinical indicators were associated with NAFLD 
or HL. The ace index was used to access the alpha diversity. 
Principal coordinate analysis was conducted to access beta 
diversity. Specificity–occupancy plots were used to identify 
potential keystone species.

Detrended correspondence analysis (DCA) was employed 
to identify broad structural changes in microbial communi-
ties. In correspondence analysis, the arch effect, where the 
data points are arranged in a horseshoe-like pattern, is re-
moved using detrending. The ordination method is known 
as DCA. Canonical correspondence analysis (CCA) was per-
formed to determine the most important biochemical index 

https://www.r-project.org
https://www.r-project.org
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shaping microbial community composition and organization. 
Thus, DCA and CCA were employed to select the most ideal 
biochemical indexes. Finally, areas under the receiver oper-
ating characteristic curve (AUCs) were compared to deter-
mine the efficacy of the gut microbiota and biochemical index 
for identifying significant FL.

Results

Baseline patient characteristics
This study included 20 patients with ultrasound-proven NL, 
20 patients with ultrasound-proven FL1, and 20 patients 
with ultrasound-proven FL2. The FL1 and FL2 patients were 
divided into two groups, an HL and a non-HL (NHL) group. 
Finally, there were a total of 40 NHL patients and 20 HL 
patients in our study. Table 1 and Supplementary Tables 1 
and 2 summarize the characteristics of each group. Among 
all the HL and NHL patients, only ALT was statistically sig-
nificant among the NL, FL1, and FL2 patients. Meanwhile, 
whether in all patients or the NHL patients, TGs, gamma-
glutamyl transpeptidase, direct bilirubin, platelet, and ab-
dominal circumference were statistically significant among 
the NL, FL1, and FL2 patients. Furthermore, only BMI was 
statistically significant among the NL, FL1, and FL2 patients, 
both in the HL and NHL groups. Age and weight were only 
statistically significant among the NL, FL1, and FL2 patients 
in the HL group.

Decreased gut bacterial diversity is present in pa-
tients with NAFLD
We compared the microbial diversity using data from 16S 
rDNA gene amplicon sequencing, based on patient liver ultra-
sound results and blood lipid levels. For comparison, the beta 
diversity, based on the Bray–Curtis distance, and the alpha 
diversity based on the ace metric were both plotted (Fig. 1). 
In all patients, 6% lower ace alpha diversity was found in 
cases of NAFLD; in NHL patients, 5% lower ace alpha diver-
sity was found in NAFLD cases. In terms of beta diversity, no 
significant differences were found in all patients (p=0.26), 
hyperlipidemia patients (p=0.356), or nonhyperlipidemic pa-
tients (p=0.337).

Top 10 bacteria in terms of OTU abundance differed 
slightly among the three groups
We evaluated the relative abundance of NL, FL1, and FL2 
based on various groupings and selected the 10 most abun-
dant levels (Fig. 2 and Supplementary Table 3). In the three 
groups, the top 10 phyla were Firmicutes, Bacteroidetes, 
Proteobacteria, Fusobacteria, Actinobacteria, Verrucomicro-
bia, unclassified, Synergistetes, Candidatus_Saccharibacte-
ria, and Cyanobacteria. However, the relative order of abun-
dance of Fusobacteria, Actinobacteria, and Verrucomicrobia 
were different. Among the three groups, from NL, FL1, and 
FL2, the proportion of Firmicutes gradually decreased while 
the proportion of Bacteroidetes gradually increased. That is, 
Firmicutes/Bacteroidetes decreased as NAFLD progressed.

Changes in FL-related microbiota are more prevalent 
in all patients and NHL patients than in HL patients
Univariate analysis was used to assess differences in various 
microbial taxa by fatty severity in all, NHL, and HL patients 
(Table 2 and Supplementary Tables 4–6). Comparison of NL, 
FL1, and FL2 patients, found Faecalibacterium, Lachnospira, 
and Lachnospiracea_incertae_sedis to differ in all patients 
and the NHL patient group. Fusicatenibacter, Lachnoan-

aerobaculum, and Victivallis were only found different in the 
all-patients group. Whether in the all-patients group or the 
NHL patients group, the relative abundance of Faecalibacte-
rium, Lachnospira, and Lachnospiracea_incertae_sedis in NL 
patients was the highest, indicating that the abundance of 
these three gut bacteria was reduced in patients with NAFLD, 
as well as in patients with NAFLD but without HL. Interest-
ingly, in both the all-patients group and the NHL patients 
group, the abundance of Faecalibacterium for FL2 patients 
was higher than that of FL1. This indicated that although the 
abundance of these bacteria was lower in NAFLD, the degree 
of reduction was inversely proportional to the severity of the 
disease. Conversely, the abundance of Lachnospiracea_in-
certae_sedis gradually decreased between the NL, FL1, and 
FL2 patients, signaling that the reduction in its abundance 
positively correlated with NAFLD progression.

Comparing FL1 and FL2 patients, Mogibacterium abun-
dance was different in the all-patients group and the NHL 
patients group, Ruminococcus 2 differed in the all-patients 
group and the HL patients group, Fusicatenibacter and 
Lachnoanaerobaculum abundance only differed among the 
all-patients group, and Cyanobacteria and Solobacterium 
only differed in abundance among the NHL patients group. 
In the three groups, the abundance of Cyanobacteria, Mogi-
bacterium, Lachnoanaerobaculum, and Solobacterium was 
close to 0. As such, the differences in abundance of the 
three bacteria may be unreliable. The abundance of Rumi-
nococcus 2 in the FL2 group was significantly higher than in 
the FL1 group both in the all-patient group and in the HL pa-
tients group, indicating that Ruminococcus 2 was associated 
with severe FL and HL. The abundance of Fusicatenibacter 
gradually decreased in NL, FL2, and FL1 patients. Moreo-
ver, Fusicatenibacter differed significantly in abundance be-
tween FL1 and FL2 in all patients as well as between the NL 
and FL1 in the all-patient group and the NHL patient group. 
But there was no difference between FL1 and FL2 in the NHL 
patient group and the HL patient group. This phenomenon 
may indicate that the change in abundance of Fusicateni-
bacter may be more strongly related to patients with mild 
rather than severe NAFLD.

Potential keystone species within the group, identi-
fied using a specificity–occupancy plot
The OTU of species and phyla with total relative abundance 
above 0.01% were retained from the OTU table; then, the 
specificity and occupancy of each group were calculated sep-
arately according to the retained OTU table. Specificity was 
defined as the mean abundance of an OTU in the samples of 
a group. Occupancy was defined as the relative frequency 
of occurrence of the OTU in the samples of a group. These 
values were calculated as follows:34,35

Average relative abundance of an OTU across samples in a subgroupSpecificity
Sum of the average relative abundance of the OTU across all study subgroups
Number of samples detected by an OTU iOccupancy

=

=
n a subgroup

Number of samples detected across all study samples

To locate potential keystone species attributed to each 
group, we selected the specie showing an OTU with speci-
ficity and occupancy equal to or greater than 0.7 for each 
specific group. Firmicutes were found in the three groups, 
while Proteobacteria was found only in the FL1 group (Fig. 
3). At the genus level, there were a total of six specific ge-
nus species in the NL group, none of which were observed 
in the other two groups (Fig. 4). The six genus species were 
Faecalibacterium, Clostridium_XIVa, Streptococcus, Rumino-
coccus, Oscillibacter, and Flavonifractor. Klebsiella, and Veil-
lonella found in the FL1 group. Only Lachnospiracea_incer-
tae_sedis was found in the FL2 group.
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ALT and AST levels and WBC count were significant 
biochemical indexes for gut microbial community 
changes in all-patients group

To explore which clinical factors influenced changes in the 
gut microbial community, we first used DCA to calculate the 
values of four gradient lengths (Supplementary Table 7). 
We found that the largest value was greater than 4 and, 
accordingly, decided to use CCA (Fig. 5). The significance 
of clinical factors associated with gut microbial community 
composition was then assessed using Monte Carlo permuta-
tion tests (Supplementary Table 8). Finally, we found that 
ALT (p=0.001), AST (p=0.001), and WBC count (p=0.019) 
were significant biochemical indexes for microbial community 
changes in the all-patient group.

Microbiome combined with biochemical index re-
flects FL severity in the all-patient group

Based on the above results, Faecalibacterium and Rumino-

coccus 2 were selected as the most ideal and symbolic fatty-
related bacteria taxa. Furthermore, ALT, AST, and WBC count 
were chosen as the most significant biochemical indexes. To 
ascertain the discriminatory capability between NAFLD pa-
tients and healthy individuals, we opted for AUCs (Fig. 6), 
confirming the distinct classification potential of the two gut 
microbiota taxa and the three biochemical indices. While di-
agnosing NL patients, the AUCs of the biochemical index, 
bacteria taxa, and (bacterial + biochemical) were found to 
be 0.78, 0.77, and 0.86, respectively. When distinguishing 
FL1, the AUCs of the biochemical index, bacteria taxa, and 
(bacterial + biochemical) were 0.50, 0.61, and 0.51, respec-
tively. For diagnosing FL2, the AUCs of the biochemical index, 
bacteria taxa, and (bacteria + biochemical) were 0.78, 0.66, 
and 0.85, respectively.

Discussion
In this study, we found substantial variations in gut micro-

Fig. 1.  Comparison of the diversity of gut microbial communities in all, hyperlipidemia, and nonhyperlipidemia patient groups. (A–B) The alpha and beta 
diversity of A, all (n=60), B, nonhyperlipidemia (n=40), and C, hyperlipidemia (n=20) patients were divided according to their liver ultrasound performance and blood 
lipid levels. Alpha diversity was based on the ace metric. The box plots show the median, the boxes represent the 25–75th percentile, the black dots above the box plot 
represent discrete values, and the whiskers show the 10–90th percentile. The principal coordinates analysis maps were created using relative operational taxonomic 
unit abundance data and the Bray–Curtis distance, with the ellipse representing the 95% confidence interval. FL1, mild fatty liver; FL2, moderately severe fatty liver; 
NAFLD, nonalcoholic fatty liver disease; NL, normal liver.
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biota modifications based on NAFLD severity in all, NHL, and 
HL patients. We focused on two microorganisms, Faecalibac-
terium and Ruminococcus 2, as potential targets for distin-
guishing between FL and healthy individuals using univariate 
analysis and a specificity–occupancy plot. We also found that 
ALT, AST, and WBC count were the best biochemical indexes 
related to FL, based on the result of the CCA. Using the two 
microbiomes and the three biochemical indexes, NL and FL2 
patients could be easily identified. However, this approach 
performed poorly in diagnosing FL1.

Previous studies showed that the alpha diversity of gut 
microbiota was lower in FL cases,36,37 which was also found 
in this study. Whether with or without HL, the alpha diversity 
of NAFLD decreased and the ace index in the NHL patient 
group was 5% higher than in the all-patient group. That is, 
HL would further decrease the abundance of gut microbial 
communities in NAFLD patients. The results of this study are 
in accord with existing results indicating the influence of en-
vironmental variables over genetic traits in determining hu-
man intestinal microbiota.38

It was reported that an increased proportion of Firmicutes 
was dominantly linked with NAFLD in mice as well as hu-
mans.39–41 In this study, among the three groups, the speci-
ficity and occupancy of Firmicutes were ≥ 0.7. Remarkably, 
prominent associations with NAFLD in our study all derived 
from the Firmicutes phylum and, diversely, included Faec-
alibacterium, Lachnospiracea_incertae_sedis, Ruminococcus 
2, Fusicatenibacter, Gemmiger, and Roseburia. These results 
were also found to be the case in a large population sam-
ple.36

Much evidence suggests that the presence of Faecalibac-
terium is significantly lower in NAFLD than in non-NAFLD 
patients.15,42–45 Faecalibacterium prausnitzii, a species of 
the Faecalibacterium genus,46 as well as an oxygen-sensi-
tive, butyrate-producing bacterium, plays a significant part 

in maintaining a healthy gut.47 Faecalibacterium prausnitzii 
levels have been reported to be lower in patients with intes-
tinal and metabolic disorders, such as inflammatory bowel 
disease, irritable bowel syndrome, and celiac disease.48,49 It 
is therefore not surprising that Faecalibacterium decreased 
not only in NAFLD but also in HL patients in our study. Fur-
thermore, Faecalibacterium produce short-chain fatty acids50 
that have an anti-inflammatory function by regulating im-
mune cell chemotaxis, reactive oxygen species release, and 
cytokine release.51 Additionally, a clinical study demonstrat-
ed the direct anti-inflammatory activity of butyrate at the site 
of inflammation.52 Accordingly, a decrease in the amount of 
Faecalibacterium may lessen short-chain fatty acid levels in 
the gut, intensifying gut inflammation involved in the patho-
genesis of NAFLD.

Ruminococcus 2 has the genetic potential to worsen the 
onset of FL disease because it was more prevalent in the 
FL2 patients in our study. More importantly, the abundance 
of Ruminococcus 2 in FL2 patients was higher than in both 
all FL1 and HL patients, but not in NHL patients. A Chinese 
population study found that Ruminococcus 2 was positively 
correlated with serum lipids,53 and a survey showed that di-
etary fiber intervention for 4 days inhibited the growth of 
Ruminococcus 2.54 That is, Ruminococcus 2 may through 
influence human lipid metabolism rather than another way 
to aggravate FL. Furthermore, NAFLD patients may be able 
to adjust their diet to include more dietary fiber to combat 
the disease; however, further research is needed to establish 
whether this is possible.

In this study, oddly, Fusicatenibacter decreased in NAFLD 
cases but its abundance in FL1 patients was lower than that 
in FL2 patients. A study showed that the abundance of Fusi-
catenibacter decreased in the presence of NAFLD.55 Further-
more, Fusicatenibacter saccharivorans, the lone species in 
the Fusicatenibacter genus,56 decreased in cases of NAFLD 

Fig. 2.  Top 10 bacteria in all patients, hyperlipidemic, and nonhyperlipidemic patient groups. (A–C) The top 10 bacteria of A, all (n=60), B, nonhyperlipidemia 
(n=40), and C, hyperlipidemia (n=20) patients were stratified by liver ultrasound performance and blood lipid levels. FL1, mild fatty liver; FL2, moderately severe fatty 
liver; NL, normal liver.
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Fig. 3.  Specificity–occupancy plot of the phyla identified in the all-patient group. Specificity–occupancy plots show the relative abundance above 0.01% 
for the operational taxonomic units (OUTs) in each group; the x-axis represents occupancy, i.e. how well an OTU is distributed across all three groups [normal 
liver and mild fatty liver [FL)], and moderately severe FL; the y-axis represents specificity, i.e. whether they were also found in other groups (A1, B1, C1). Pie 
charts show the number of OTUs representing keystone phylum species in each group (A2, B2, C2). FL1, mild fatty liver; FL2, moderately severe fatty liver; NL, 
normal liver.
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with coronary artery disease57 but increased in cases of 
NAFLD in obese youth.58 An early-life nutrition study found 
this species to be associated with a diet high in processed 
foods.59 Although the difference in the ages of FL1 and FL2 
patients was not statistically significant (p=0.1), the mean 
age of FL1 patients was 50.65 and that of FL2 patients was 
44.65 years. Younger people tend to eat more processed 
foods. Therefore, we hold the hypothesis that although Fusi-
catenibacter decreased in NAFLD patients, those with severe 
NAFLD tend to be more obese or eat more processed foods, 
thereby increasing its abundance to a higher level than in FL1 
patients. Further study is needed to support this.

ALT and AST levels are common biomarkers of liver inju-
ry.60 Although both were increased in the patients with NAFLD 
among the three groups in our study, the changes between 
them can be considered mild increases in aminotransferase 

levels (increases of <5 times the upper reference limit).61–63 
In the Western world, NAFLD is the most common cause of 
minor changes in liver enzyme levels.60 Furthermore, the 
liver enzyme levels in HL patients were higher than in NHL 
patients. It was reported that metabolic syndromes, such as 
HL, increased the suspicion of the presence of NAFLD.64,65 
Thus, in our study, the levels of ALT and AST in NAFLD cases 
with HL participants were pronouncedly increased.

White blood cell count is a reliable, easily accessible, and 
low-cost inflammatory marker,66 as well as an important pre-
dictor of NAFLD in Chinese people.67,68 There are two pos-
sible avenues for WBC involvement at the start of NAFLD.69 
NAFLD is viewed as a liver-based manifestation of metabolic 
syndrome.70,71 As a relationship between WBC count and 
metabolic syndrome components has been documented in 
previous studies,71,72 metabolic syndrome may link WBC 

Fig. 4.  Specificity–occupancy plot of genera identified in the all-patient group. The specificity–occupancy plots show the relative abundance above 0.01% for 
operational taxonomic units (OTUs) in each group; the x-axis represents occupancy, i.e. how well an OTU is distributed across all three groups [(normal liver, mild fatty 
liver (FL)], and moderately severe FL; the Y-axis represents specificity, i.e. whether they are also found in other groups (A1, B1, C1). Pie charts show the number of 
OTUs representing keystone genus species in each group (A2, B2, C2). FL1, mild fatty liver; FL2, moderately severe fatty liver; NL, normal liver.
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count and NAFLD. In our study, WBC count was selected as 
one of the most significant biochemical indexes associated 
with NAFLD. That may help reduce the medical burden on 
society because of its low cost, but further research on this 
is necessary. Furthermore, WBC count is commonly used to 
determine inflammatory state73 and, accordingly, may be 
related to NAFLD. There are several limitations to our study. 
First, this was a small case study that included only one 
Chinese population, which may have led to bias. Secondly, 
the levels of NAFLD were classified by ultrasound but not 
pathology.

Conclusions

This study identified two bacteria, Faecalibacterium and 
Ruminococcus 2 as being associated with NAFLD. The two 
bacteria, combined with three biochemical indexes, ALT, AST, 
and WBC count, helped to better distinguish moderate-to-
severe NAFLD and healthy individuals. We speculate that 
regulating the health of gut microbiota may help to overcome 
NAFLD and provide new targets for clinicians to treat NAFLD.
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