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The idea that events obey a definite causal order is deeply rooted in our understanding of the 
world and at the basis of the very notion of time. But where does causal order come from, and 
is it a necessary property of nature? Here, we address these questions from the standpoint of 
quantum mechanics in a new framework for multipartite correlations that does not assume 
a pre-defined global causal structure but only the validity of quantum mechanics locally. 
All known situations that respect causal order, including space-like and time-like separated 
experiments, are captured by this framework in a unified way. surprisingly, we find correlations 
that cannot be understood in terms of definite causal order. These correlations violate a ‘causal 
inequality’ that is satisfied by all space-like and time-like correlations. We further show that in 
a classical limit causal order always arises, which suggests that space-time may emerge from a 
more fundamental structure in a quantum-to-classical transition. 
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One of the striking features of quantum mechanics is that it 
challenges the view that physical properties are well defined 
before and independent of their measurement. This moti-

vates an operational approach to the theory, where primitive labora-
tory procedures, such as measurements and preparations, are basic 
ingredients. Although significant progress has recently been made 
in this direction1–8, most approaches still retain a notion of space-
time as a pre-existing ‘stage’ in which events take place. Even the 
most abstract constructions, in which no explicit reference to space-
time is made, do assume a definite order of events: if a signal is sent 
from an event A to an event B in the run of an experiment, no signal 
can be sent in the opposite direction in that same run. But are space, 
time and causal order truly fundamental ingredients of nature? Is it 
possible that, in some circumstances, even causal relations would  
be ‘uncertain’, similarly to the way other physical properties of  
quantum systems are9?

Here, we show that quantum mechanics allows for such a pos-
sibility. We develop a framework that describes all correlations 
that can be observed by two experimenters under the assumption 
that in their local laboratories physics is described by the standard 
quantum formalism, but without assuming that the laboratories 
are embedded in any definite causal structure. These include non-
signalling correlations arising from measurements on a bipartite 
state, as well as signalling ones, which can arise when a system is 
sent from one laboratory to another through a quantum channel.  
We find that, surprisingly, more general correlations are possible, 
which are not included in the standard quantum formalism. These 
correlations are incompatible with any underlying causal structure: 
they allow performing a task—the violation of a ‘causal inequal-
ity’—that is impossible if events take place in a causal sequence. 
This is directly analogous to the famous violation of local realism: 
quantum systems allow performing a task—the violation of Bell’s  
inequality10—that is impossible if the measured quantities have  
pre-defined local values. The inequality considered here, unlike 
Bell’s, concerns signalling correlations: it is based on a task that 
involves communication between two parties. Nevertheless, it 
cannot be violated if this communication takes place in a causal 
space-time. Previous works about relativistic causality in quantum 
mechanics focused on non-signalling correlations between space-
like separated experiments or on a finite speed of signalling11–19. 
In the present work, we go beyond such approaches as we do not 
assume the existence of a space-time (or more generally of a definite 
causal structure) on which the evolution of quantum systems and 
the constraints given by relativity are defined. One of the motiva-
tions for our approach comes from the problem of time in attempts 
to merge quantum theory and general relativity into a more funda-
mental theory20–25.

Results
Causal inequality. The general setting that we consider involves a 
number of experimenters—Alice, Bob and others—who reside in 
separate laboratories. At a given run of the experiment, each of them 
receives a physical system (for instance, a spin-1/2 particle) and 
performs operations on it (for example, measurements or rotations 
of the spin), after which she/he sends the system out of the laboratory. 
We assume that during the operations of each experimenter, the 
respective laboratory is isolated from the rest of the world—it is 
only opened for the system to come in and to go out, but between 
these two events it is kept closed. It is easy to see that, under this 
assumption, causal order puts a restriction on the way in which the 
parties can communicate during a given run. For instance, imagine 
that Alice can send a signal to Bob. (Formally, sending a signal 
(or signalling) is the existence of statistical correlations between a 
random variable that can be chosen by the sender and another one 
observed by the receiver.) As Bob can only receive a signal through 
the system entering his laboratory, this means that Alice must act 

on her system before that. But this implies that Bob cannot send a 
signal to Alice as each party receives a system only once. Therefore, 
bidirectional signalling is forbidden.

Consider, in particular, the following communication task to 
be performed by two parties, Alice and Bob. After a given party 
receives the system in her/his laboratory, she/he will have to toss a 
coin (or use any other means) to obtain a random bit. Denote the 
bits generated by Alice and Bob in this way by a and b, respectively. 
In addition, Bob will have to generate another random bit b′ , whose 
value, 0 or 1, will specify their goal: if b′  = 0, Bob will have to com-
municate the bit b to Alice, whereas if b′  = 1, he will have to guess 
the bit a. Without loss of generality, we will assume that the par-
ties always produce a guess, denoted by x and y for Alice and Bob, 
respectively, for the bit of the other (although the guess may not 
count depending on the value of b′ ). Their goal is to maximize the 
probability of success

p P x b b P y a bsucc := ( = | = 0) ( = | = 1) .1
2

′ + ′[ ]

If all events obey causal order, no strategy can allow Alice and 
Bob to exceed the bound

psucc ≤ 3/4.

Indeed, as argued above, in any particular order of events, there 
can be at most unidirectional signalling between the parties, which 
means that at least one of the following must be true: Alice cannot 
signal to Bob or Bob cannot signal to Alice. Consider, for example, 
a case where Bob cannot signal to Alice. Then, if b′  = 1, they could 
in principle achieve up to P(y = a|b′  = 1) = 1 (for instance, if Alice 
operates on her system before Bob, she could encode information 
about the bit a in the system and send it to him). However, if b′  = 0, 
the best guess that Alice can make is a random one, resulting in 
P(x = b|b′  = 0) = 1/2 (see Fig. 1a). Hence, the overall probability of 
success in this case will satisfy psucc≤3/4. The same holds if Alice 
cannot signal to Bob. It is easy to see that no probabilistic strategy 
can increase the probability of success.

Formally, the assumptions behind the causal inequality (2) can 
be summarized as follows:
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Figure 1 | Strategy for accomplishing communication task by using 
processes with definite and indefinite causal order. (a) There exists a 
global background time according to which Alice’s actions are strictly 
before Bob’s. she sends her input a to Bob, who can read it out at some 
later time and give his estimate y = a. However, Bob cannot send his bit b 
to Alice as the system passes through her laboratory at some earlier time. 
Consequently, she can only make a random guess of Bob’s bit. This results 
in a probability of success of 3/4. (b) If the assumption of a definite  
order is dropped, it is possible to devise a resource (that is, a process 
matrix W) and a strategy that enables a probability of success 
( )/2 2 4 > 3/4+  (see text).
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Causal structure. The main events in the task (a system enter-
ing Alice’s/Bob’s laboratory, the parties obtaining the bits a, b and 
b′, and producing the guesses x and y) are localized in a causal  
structure. A causal structure (such as space-time) is a set of event 
locations equipped with a partial order _ that defines the possible 
directions of signalling. If A_B, we say that A is in the causal past 
of B (or B is in the causal future of A). In this case, signalling from 
A to B is possible, but not from B to A. For more details on causal 
structures, see Supplementary Methods.

Free choice. Each of the bits a, b and b′ can only be correlated with 
events in its causal future (this concerns only events relevant to the 
task). We assume also that each of them takes values 0 or 1 with 
probability 1/2.

Closed laboratories. Alice’s guess x can be correlated with Bob’s  
bit b only if the latter is generated in the causal past of the system 
entering Alice’s laboratory. Analogously, y can be correlated with a 
only if a is generated in the causal past of the system entering Bob’s 
laboratory.

In the Supplementary Methods, we present a formal derivation 
of the inequality from these assumptions.

Interestingly, we find that if the local laboratories are described 
by quantum mechanics, but no assumption about a global causal 
structure is made (Fig. 1b), it is in principle possible to violate the 
causal inequality in physical situations in which one would have all 
the reasons to believe that the bits are chosen freely and the labo-
ratories are closed. This would imply that the assumption Causal 
structure does not hold.

Framework for local quantum mechanics. The most studied, 
almost epitomical, quantum correlations are the non-signalling 
ones, such as those obtained when Alice and Bob perform meas-
urements on two entangled systems. Signalling quantum correla-
tions exist as well, such as those arising when Alice operates on a 
system that is subsequently sent through a quantum channel to Bob 
who operates on it after that. The usual quantum formalism does 
not consider more general possibilities, as it does assume a global 
causal structure. Here, we want to drop the latter assumption while 
retaining the validity of quantum mechanics locally. For this pur-
pose, we consider a multipartite setting of the type outlined earlier, 
where each party performs an operation on a system passing once 
through her/his laboratory, but we make no assumption about the 
spatio-temporal location of these experiments, not even that there 

exists a space-time or any causal structure in which they could be 
positioned (see Fig. 2). Our framework is thus based on the cen-
tral premise of local quantum mechanics, which is to say the local 
operations of each party are described by quantum mechanics.

More specifically, we assume that one party, say Alice, can per-
form all the operations she could perform in a closed laboratory, 
as described in the standard space-time formulation of quantum 
mechanics. These are defined as the set of quantum instruments26 
with an input Hilbert space HA1 (the system coming in) and an out-
put Hilbert space HA2 (the system going out). (The set of allowed 
quantum operations can be used as a definition of ‘closed quantum 
laboratory’ with no reference to a global causal structure.) A quan-
tum instrument can most generally be realized by applying a joint 
unitary transformation on the input system plus an ancilla, fol-
lowed by a projective measurement on part of the resulting joint 
system, which leaves the other part as an output. (From the point 
of view of each party, the input/output systems most generally cor-
respond to two subsystems of the Hilbert space associated with the 
local laboratory, each considered at a different instant—the time  
of entrance and the time of exit, respectively—where the sub-
systems and the respective instants are independent of the choice 
of operation that connects them.) When Alice uses a given instru-
ment, she registers one out of a set of possible outcomes, labelled 
by j = 1,…,n. Each outcome induces a specific transformation from 
the input to the output, which corresponds to a completely posi-
tive (CP) trace-non-increasing map27 M L H L Hj

A A A: ( ) ( )1 2→ ,  
where L(HX), X = A1, A2, is the space of matrices over a Hilbert 
space HX of dimension dX. The action of each Mj

A on any matrix 
s ∈L H( )1A  can be written as27 Mj

A
k
m

jk jkE E( ) = =1s sΣ † , m d dA A= 1 2,  
where the matrices E jk

A A: 1 2H H→  satisfy Σk
m

jk jk
AE E=1

1† ≤1 , j.  
If the operation is performed on a quantum state described by a 
density matrix ρ, Mj

A( )r  describes the updated state after the  
outcome j up to normalization, whereas the probability to observe 
this outcome is given by P j

A
j
A( ) [ ]M M= ( )Tr r . The set of CP  

maps { }Mj
A

j
n
=1 corresponding to all the possible outcomes of a 

quantum instrument has the property that Σ j
n

j
A

=1M  is CP and 
trace-preserving (CPTP) or equivalently Σ Σj

n
k
m

jk jk
AE E=1 =1

1=† 1 ,  
which reflects the fact that the probability to observe any of the  
possible outcomes is unity. A CPTP map itself corresponds to an 
instrument with a single outcome that occurs with certainty.

In the case of more than one party, the set of local outcomes cor-
responds to a set of CP maps M Mi

A
j
B, ,. A complete list of prob-

abilities P i
A

j
BM M, ,…( ) for all possible local outcomes will be 

called process. (It is implicitly assumed that the joint probabilities 
are non-contextual, namely that they are independent of any variable 
concerning the concrete implementation of the local CP maps. For 
example, the probability for a pair of maps Mi

A, Mj
B to be realized 

should not depend on the particular set M M M1 ,..., ,...,A
i
A

n
A{ } of  

possible CP maps associated with Alice’s operation.) A process can be 
seen as an extension of the notion of state as a list of probabilities for 
detection results3 described by a positive operator-valued measure 
(POVM), which takes into account the transformation of the system 
after the measurement and can thus capture more general scenarios 
than just detection. Here, we will consider explicitly only the case of 
two parties (the generalization to arbitrarily many parties is straight-
forward). We want to characterize the most general probability dis-
tributions for a pair of outcomes i, j, corresponding to CP maps Mi

A, 
Mj

B, to be observed, that is, to characterize all bipartite processes.
In quantum mechanics, operations obey a specific algebraic 

structure that reflects the operational relations between laboratory 
procedures3. For example, a probabilistic mixture of operations  

MA
jA

 : L(HA1)  L(HA2)

M B
jB  : L(H B1)  L(H B2)

H B1

H B2

HA2

HA1

jB

jA

Figure 2 | Local quantum experiments with no assumption of a  
pre-existing background time or global causal structure. Although 
the global causal order of events in the two laboratories is not fixed in 
advance and in general not even definite (here illustrated by the ‘shifted’ 
relative orientation of the two laboratories), the two agents, Alice and 
Bob, are each certain about the causal order of events in their respective 
laboratories.
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is expressed as a linear convex combination of CP maps. It can 
be shown (see Methods) that the only probabilities P i

A
j
BM M,( )  

consistent with the algebraic structure of local quantum operations 
are bilinear functions of the CP maps Mi

A and Mj
B. Thus, the study 

of the most general bipartite quantum correlations reduces to the 
study of bilinear functions of CP maps.

It is convenient to represent CP maps by positive semi-defi-
nite matrices via the Choi-Jamiołkowsky (CJ) isomorphism28,29. 
The CJ matrix M i

A A A A1 2 1 2∈ ⊗( )L H H  coresponding to a lin-
ear map M L H L Hi

A A: 1 2( ) → ( ) is defined as I MM i
A A

i
1 2 := | |⊗ 〉〈( )





+ +j j
T

 

I MM i
A A

i
1 2 := | |⊗ 〉〈( )





+ +j j
T

, where | = |=1
1 1 1j +〉 〉 ∈ ⊗Σ j

dA A Ajj H H  
is a (not normalized) maximally entangled state, the set of 
states |

=1
1j

j

dA〉{ }  is an orthonormal basis of HA1, I is the iden-
tity map and T denotes matrix transposition (the transposi-
tion, absent in the original definition, is introduced for later 
convenience). Using this correspondence, the probability for 
two measurement outcomes can be expressed as a bilinear  
function of the corresponding CJ operators as follows:

P W M Mi
A

j
B A A B B

i
A A

j
B BM M, = ,1 2 1 2 1 2 1 2( ) ⊗( )





Tr

where W A A B B1 2 1 2  is a matrix in L H H H H( A A B B1 2 1 2⊗ ⊗ ⊗ ).
The matrix W should be such that probabilities are non-negative 

for any pair of CP maps Mi
A, Mj

B. We require that this be true also 
for measurements in which the system interacts with any system in 
the local laboratory, including systems entangled with the other lab-
oratory. This implies that W A A B B1 2 1 2 must be positive semidefinite 
(see Methods). Furthermore, the probability for any pair of CPTP 
maps MA, MB to be realized must be unity (they correspond to 
instruments with a single outcome). As a map MA is CPTP if and 
only if its CJ operator satisfies M MA A

A
A A A1 2

2
1 2 10 =≥ and Tr 1  

(similarly for MB), we conclude that all bipartite probabilities com-
patible with local quantum mechanics are generated by matrices W 
that satisfy

W A A B B1 2 1 2 0 [ ],≥ non negative probabilities-

Tr

Tr

W M M

M M M

A A B B A A B B

A A B B
A

A A

1 2 1 2 1 2 1 2

1 2 1 2
2

1 2

= 1,

, 0, =

⊗( )





∀ ≥ 11 1A
B

B B BM1
2

1 2 1, =

1

Tr

probabilities sum up to[ ].

We will refer to a matrix W A A B B1 2 1 2  that satisfies these conditions 
as a process matrix. Conditions equivalent to equations (4) and (5) 
were first derived as part of the definition of a ‘quantum comb’30, 
an object that formalizes quantum networks. Combs, however, are 
subject to additional conditions fixing a definite causal order, which 
are not assumed here.

A process matrix can be understood as a generalization of a 
density matrix and equation (3) can be seen as a generalization of 
Born’s rule. In fact, when the output systems A2, B2 are taken to be 
one-dimensional (that is, each party performs a measurement after 
which the system is discarded), the expression above reduces to 
P W M Mi

A
j
B A B

i
A

j
BM M, = 1 1 1 1( ) ⊗( )





Tr , where now M Mi
A

j
B,  are  

elements of local POVMs and W A B1 1 is a quantum state. This implies 
that a quantum state rA B1 1 shared by Alice and Bob is generally 
represented by the process matrix W A A B B A B A B1 2 1 2 1 1 2 2= r ⊗1 .  
Signalling correlations can also be expressed in terms of process 
matrices. For instance, the situation where Bob is given a state rB1 

(3)(3)

(4)(4)

(5)(5)

and his output is sent to Alice through a quantum channel C, which 
gives P i

A
j
B

i
A

j
B BM M M C M, = 1( ) ( )



Tr   r , is described by 

W CA A B B A B A T B1 2 1 2 2 2 1 1= ( )1 ⊗ ⊗ r , where CB A2 1 is the CJ matrix 
of the channel C from B2 to A1.

The most general bipartite situation typically encountered in 
quantum mechanics (that is, one that can be expressed in terms 
of a quantum circuit) is a quantum channel with memory, where, 
say, Bob operates on one part of an entangled state and his output 
plus the other part is transferred to Alice through a channel. This 
is described by a process matrix of the form 1A A B BW2 1 1 2⊗ . Con-
versely, all process matrices of this form represent channels with 
memory30. This is the most general situation in which signalling 
from Alice to Bob is not possible, a relation that we will denote by 
A B in accord with the causal notation introduced earlier. Proc-
ess matrices of this kind will be denoted by WA B (note that for  
non-signalling processes, both A B and B A are true). As argued 
earlier, if all events are localized in a causal structure, and Alice 
and Bob perform their experiments inside closed laboratories, at 
most unidirectional signalling between the laboratories is allowed. 
In a definite causal structure, it may still be the case that the loca-
tion of each event, and thus the causal relation between events, is 
not known with certainty. A situation where B A with probability 
0≤q≤1 and A B with probability 1 − q is represented by a process 
matrix of the form

W qW q WA A B B B A A B1 2 1 2 = (1 ) .+ −

We will call the processes of this kind causally separable (note that 
the decomposition (6) need not be unique as non-signalling proc-
esses can be included either in WB A or in WA B). They represent 
the most general bipartite quantum processes for which the local 
experiments are performed in closed laboratories embedded in a 
definite causal structure. In particular, they generate the most gen-
eral quantum correlations between measurements that take place at 
definite (though possibly unknown) instants of time. Clearly, accord-
ing to the argument presented earlier, causally separable processes 
cannot be used by Alice an Bob to violate the causal inequality (2).

In the Supplementary Methods, we provide a complete charac-
terization of process matrices via the terms allowed in their expan-
sion in a Hilbert–Schmidt basis, which we relate to the possible 
directions of signalling they allow (see Fig. 3). We also provide pos-
sible interpretations of the terms that are not allowed in a process 
matrix (see Fig. 4 and Supplementary Fig. S1).

A causally non-separable process. The question whether all local 
quantum experiments can be embedded in a global causal structure 
corresponds to the question whether all process matrices are caus-
ally separable. Note that this is not a question about entanglement: 
all possible entangled states, and more generally all quantum cir-
cuits, correspond to matrices of the form WB A or WA B, whereas 
the non-separable processes we are looking for cannot be written 
as quantum circuits or even as probabilistic mixtures of different 
circuits. Surprisingly, an example of such a kind exists. Consider the 
process matrix

W A A B B A A B B
z
A

z
B

z
A

x
B

z
B1 2 1 2 1 2 1 2 2 1 1 1 2=

1

4

1

2
,1 + +( )





s s s s s

where A1, A2, B1 and B2 are two-level systems (for example, the spin 
degrees of freedom of a spin-1 2/  particle) and σx and σz are the Pauli 
spin matrices. It can be verified straightforwardly that conditions 
(4) and (5) are satisfied, hence (7) is a valid bipartite process. Having 
such a resource, Alice and Bob can play the game described above 

(6)(6)

(7)(7)
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and exceed the bound on the probability of success (2) imposed by 
causal order. Indeed, if Bob measures in the z basis and detects one 
of the states |z ± 〉, the corresponding CJ operator contains the fac-
tor | | 1z z B

± ±〉〈 . Inserting this, together with equation (7), into the 
expression (3) for the probabilities, the term containing s x

B1 in the 
process matrix is annihilated and what remains corresponds to a 
noisy channel from Alice to Bob. If Alice encodes her bit in the z 
basis with the CJ operator | | 2z z A

± ±〉〈 , this channel allows Bob to 
guess Alice’s bit with probability P y a( = ) = 2 2 4( )/+ . If, on the 
other hand, Bob measures in the x basis, equation (7) is reduced 
to a similar noisy channel from Bob to Alice. Bob is thus able to 
activate a channel in the desired direction by choosing the measure-
ment basis (see Methods for a detailed calculation and analysis of 
the protocol). In this way they can achieve

psucc =
2 2

4
>

3

4
,

+

which proves that (7) is not causally separable. We see that, depend-
ing on his choice, Bob can effectively end up ‘before’ or ‘after’ Alice, 

(8)(8)

each possibility with a probability 2/2. This is remarkable, because 
if Alice and Bob perform their experiments inside laboratories that 
they believe are isolated from the outside world for the duration 
of their operations (for example, by walls made of impenetrable 
material), and if they believe that they are able to freely choose the 
bits a, b and b′  (for example, by tossing a coin), they will have to 
conclude that the events in their experiment do not take place in a 
causal sequence. Indeed, the framework only assumes that the local  
operations from the input to the output system of each party are 
correctly described by quantum mechanics, and it is compatible  
with any physical situation in which one would have all the  
reasons to believe that each party’s operations are freely chosen in  
a closed laboratory.

Interestingly, both the classical bound (2) and the quantum 
violation (8) match the corresponding numbers in the CHSH-Bell 
inequality31, which strongly resembles inequality (2). However, the 
physical situations to which these inequalities correspond is very 
different: Bell inequalities can be violated in space-like separated 
laboratories, while (8) cannot be achieved neither with space-like 
nor with time-like separated laboratories. It is an open question 
whether (8) is the maximal possible violation allowed by quantum 
mechanics.

Causal
order States

A1, B1, A1B1

A2 B1 A1 A2 B1

A1 B1 B2A1 B2

Channels
Channels with

memory

B     A

A1
B1

B1
B1

A2

A1

A2

A     B

Figure 3 | Terms appearing in a process matrix. A matrix satisfying condition (4) can be expanded as W w wA A B B A A B B1 2 1 2 1 2 1 2= ,mnlg mnlg m n l g mnlgs s s s∑ ⊗ ⊗ ⊗ ∈ ,  
where the set of matrices { } =0

2 1sm m
X dX − , with s0 =X X1 , Trs s dm n mn

X X
Xd=  and Trs j

X =0 for j dX= 1, 12… − , provide a basis of L(HX). We refer to terms of the form 

s i
A rest1 ⊗1  (i ≥1) as of the type A1, terms of the form s si

A
j
A rest1 2⊗ ⊗1  (i, j ≥1) as of the type A1A2 and so on. In the supplementary Information, we prove 

that a matrix satisfies condition (5) if it contains the terms listed in this table. Each of the terms can allow signalling in at most one direction and can be 
realized in a situation in which either Bob’s actions are not in the causal past of Alice’s (B A) or vice versa (A B). The most general unidirectional process 
is a quantum channel with memory. measurements of bipartite states that lead to non-signalling probabilities can be realized in both situations. The most 
general process matrix can contain terms from both rows and may not be decomposable into a mixture of quantum channels from Alice to Bob and from 
Bob to Alice.

Postselection Local loops

A2, B2, A2B2 A1 A2, B1B2 A1A2B1B2A1 A2 B2, A2B1B2

B2

B1 B1

B2 B2

Channels with
local loops Global loops

A1 A1

A2 A2 A2A2

Figure 4 | Terms not appearing in a process matrix. These terms are not compatible with local quantum mechanics because they yield non-unit 
probabilities for some CPTP maps. A possible interpretation of these terms within our framework is that they correspond to statistical sub-ensembles of 
possible processes. For example, terms of the type A2 can be understood as postselection. one specific case is when a system enters a laboratory in a 
maximally mixed state, is subject to the map M and, after going out of the laboratory, is measured to be in some state |ψ . The corresponding probability 

is given by Tr | |y y〉〈 [ ] M 1/d , generated in our formalism by W
d

A A
A

A1 2
1

2= | |
1 ⊗ 〉〈y y . notably, correlations of the type A1A2 have been exploited in 

models for describing CTCs43,45. The pictures are only suggestive of the possible interpretations.
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Classical processes are causally separable. It is not diffi-
cult to see that if the operations of the local parties are classical,  
they can always be understood as taking place in a global causal 
structure. Classical operations can be described by transition  
matrices M P jj

( 2 1)
2 1= ( , | )l l l l , where P(λ2,j|λ1) is the conditional 

probability that the measurement outcome j is observed and the 
classical output state λ2 is prepared given that the input state is λ1. 
They can be expressed in the quantum formalism as CP maps diago-
nal in a fixed (‘pointer’) basis, and the corresponding CJ operators 
are M Mj j

A A= | | | |
1 2

( 2 1)
1 1

1
2 2

2Σl l
l l l l l l〉〈 ⊗ 〉〈 . Thus, to express 

arbitrary bipartite probabilities of classical maps, it is sufficient to 
consider process matrices that are diagonal in the pointer basis. In 
the Supplementary Methods, we provide a detailed proof that all 
such processes are causally separable.

Discussion
We have seen that by relaxing the assumption of definite global 
causal order and requiring that the standard quantum formalism 
holds only locally, we obtain the possibility for global causal rela-
tions that are not included in the usual formulation of quantum 
mechanics. The latter is reminiscent of the situation in general rela-
tivity, where by requiring that locally the geometry is that of flat 
Minkowski space-time, one obtains the possibility of having more 
general, curved space-times.

The natural question is whether ‘non-causal’ quantum cor-
relations of the kind described by our formalism can be found in 
nature. One can speculate that they may exist in unprobed physical 
regimes, such as, for example, those in which quantum mechanics 
and general relativity become relevant. Indeed, our result that clas-
sical theories can always be understood in terms of a global causal 
structure suggests the possibility that the observed causal order 
of space-time might not be a fundamental property of nature but 
rather emerge from a more fundamental theory32–34 in a quantum-
to-classical transition due to, for example, decoherence35 or coarse-
grained measurements36. Once a causal structure is present, it is 
possible to derive relativistic space-time from it under appropriate 
conditions37,38. Furthermore, as the conformal space-time metric is 
a description of the causal relation between space-time points39,40, 
one can expect that an extension of general relativity to the quantum 
domain would involve situations where different causal orders could 
coexist ‘in superposition’. The formalism we presented may offer a 
natural route in this direction: based only on the assumption that 
quantum mechanics is valid locally, it yields causal relations that 
cannot be understood as arising from a definite, underlying order.

It is also worth noting that exotic causal structures already appear 
in the classical theory of general relativity. For example, there exist 
solutions to the Einstein equation containing closed time-like 
curves (CTCs)41. In this context, it should be noted that any process 
matrix W in our framework can be interpreted as a CPTP map from 
the outputs, A2, B2, of the parties, to their inputs, A1, B1. In other 
words, any process can be thought of as having the form of a CTC, 
where information is sent back in time through a noisy channel (see 
also Fig. 1b). The existence of processes that do not describe definite 
causal order is therefore not incompatible with general relativity in 
principle. It is sometimes argued that CTCs should not exist as they 
generate logical paradoxes, such as an agent going back in time and 
killing his grandfather. The possible solutions that have been pro-
posed42–47, in which quantum mechanics and CTCs might coex-
ist, involve non-linear extensions of quantum theory that deviate 
from quantum mechanics already at the level of local experiments. 
Our framework, on the other hand, is by construction linear and in 
agreement with local quantum mechanics, and yet paradoxes are 
avoided, in accordance with the Novikov principle48, due to the 
noise in the evolution ‘backward in time’.

Finally, we remark that instances of indefinite causal orders may also 
emerge in situations closer to possible laboratory implementations.  

As already noted, our formalism describes more general correla-
tions than those that can be realized with a quantum circuit, that is, 
as a sequence of quantum gates. Recently, a new model of quantum 
computation that goes beyond the causal paradigm of quantum cir-
cuits by using superpositions of the ‘wires’ connecting different gates 
was proposed49. This possibility may allow breaking the assumption 
that events are localized in a causal structure. As the instant when 
a system enters a device depends on how the device is wired with 
the rest of the computer’s architecture, superpositions of wires may 
allow creating situations in which events are not localized in time 
(similarly to the way in which a quantum particle may not be local-
ized in space). Although it is an open question whether violating the 
causal inequality (2) can be achieved by similar means, the present 
work suggests that new quantum resources for information process-
ing might be available—beyond entanglement, quantum memories 
and even ‘superpositions of wires’—and the formalism introduced 
provides a natural framework for exploring them.

Methods
Definition of process matrices. In this section, we will derive the linear represen-
tation (3), as well as the conditions (4) and (5) that a process matrix has to satisfy.

Linearity of probabilities. A quantum instrument26 is defined as a set { } =1Mj j
n  of 

CP maps such that M M= =1Σ j
n

j is a CPTP map. Our main assumption is that the 
description of the operations in the individual laboratories is in agreement with 
quantum mechanics. In particular, we derive linearity from the quantum mechani-
cal representation of probabilistic mixtures and of coarse-graining of operations. 
Consider first an instrument { } =1Mj j

n˜  defined as the randomization of two different 
instruments { } =1Mj j

n  and { } =1N j j
n , where the first is performed with probability p 

and the second with probability (1 − p). The probability to observe the outcome j is, 
by definition, P(M̃j) = pP(Mj) + (1 − p)P(Nj). In quantum mechanics, randomiza-
tion is described as a convex linear combination, M̃j = pMj + (1 − p)Nj. We can 
then conclude that the probability must respect linear convex combinations: 
P(pMj + (1 − p)Nj) = pP(Mj) + (1 − p)P(Mj). Consider then the coarse-graining of 
an instrument { } =1Mj j

n . This is realized when two or more outcomes, for example, 
those corresponding to the labels j = n − 1 and j = n, are treated as a single one. In 
the resulting instrument ˜{ } =1

1Mj j
n− , all non-coarse-grained outcomes correspond 

to the original CP maps M̃j = Mj for j = 1,…n − 2, whereas the probability of the 
coarse-grained outcome is given by P(M̃n − 1) = P(Mn − 1) + P(Mn). In quantum 
mechanics, the CP map corresponding to the coarse graining of two outcomes 
is represented by the sum of the respective CP maps, M̃n − 1 = Mn − 1 + Mn, 
from which it follows that P(Mn − 1 + Mn) = P(Mn − 1) + P(Mn). Randomiza-
tion and coarse graining together impose linearity. The argument can be repeated 
for two (or more) parties, yielding the conclusion that all bipartite probabilities 
compatible with a local quantum mechanical description are bilinear functions, 
P i

A
j
B

i
A

j
BM M M M, = , [0,1]( ) ( )∈w , of the local CP and trace-non-increasing maps 

Mi
A, Mj

B.
Thanks to the CJ isomorphism, it is possible to represent 

bilinear functions of CP maps as bilinear functions of matrices: 
w w↔ ⊗ × ⊗ → : ( ) ( )1 2 1 2L H H L H HA A B B . In general, multilinear func-
tions on a set of vector spaces V1×V2×… are isomorphic to linear functions 
on V V1 2⊗ ⊗…, hence the probabilities can be written as linear functions on 
L H H H H( )1 2 1 2A A B B⊗ ⊗ ⊗ . Using the Hilbert–Schmidt scalar product, we 
can identify each real linear function with an element of the same space, 
w ↔ ∈ ⊗ ⊗ ⊗W A A B B A A B B1 2 1 2 1 2 1 2( )L H H H H , arriving at the representation (3).

Non-negativity and normalization of probabilities. The requirement that the 
probabilities are non-negative for any pair of CP maps MA and MB imposes 
the restriction that W is positive on pure tensors50 with respect to the partition 
A1A2 − B1B2. These are matrices such that

Tr W M M

M M

A A B B A A B B

A A B B

1 2 1 2 1 2 1 2

1 2 1 2

0,

0, 0.

⊗( )



 ≥

∀ ≥ ≥

The condition has to be imposed for arbitrary positive semidefinite matrices  
M A A1 2 and MB B1 2 because these are the CJ matrices of CP maps.

We additionally assume that the parties can share arbitrary (possibly 
entangled) ancillary states independent of the process, and use them in their 
local operations. The latter means that each party can extend the input space 
of her/his operations to the ancillas, which we denote by ′A1  and ′B1 for Alice 
and Bob, respectively, and apply arbitrary quantum operations with CP maps 
M L H H L H M L H H L HA A A A B B B B: ( ) ( ) : ( ) ( )1 1 2 1 1 2′ ′⊗ → ⊗ →, . (One can simi-
larly extend the output systems, but this is not necessary for our argument.) The 
assumption that the ancillary systems contain a joint quantum state independent 

(9)(9)
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of the process means that if separate operations are applied on the ancillas and the 
original systems, the joint probability distribution for the outcomes is a product of 
two distributions—one for the outcomes on the ancillas, which is the same as one 
arising from a measurement on a quantum state r A B′ ′1 1, and another one for the 
outcomes on the original systems, which is given by equation (3) with the original 
W A A B B1 2 1 2. These requirements imply that the extended process matrix is given by 
W WA A A B B B A B A A B B′ ′ ′ ′ ⊗1 1 2 1 1 2 1 1 1 2 1 2= r . If we then require that the probabilities for 
extended operations are non-negative, one has

Tr r ′ ′ ′ ′

′

⊗ ⊗( )



 ≥

∀

A B A A B B A A A B B B

A A A

W M M

M M

1 1 1 2 1 2 1 1 2 1 1 2

1 1 2

0,

, ′′ ′ ′ ≥B B B A B1 1 2 1 1 0, .r

It was shown50 that condition (10) is satisfied if and only if W A A B B1 2 1 2 is positive 
semidefinite (a class strictly smaller than positive on pure tensors), which is  
condition (4).

Additionally, probabilities must be normalized: 
1 = , = ,ij i

A
j
B

i i
A

j j
B∑ ∑ ∑( ) ( )w wM M  M  M , which means

w( , )=1, CPTPA B A BM M M M∀ , .

Condition (5) can be deduced from equation (11) simply by noticing 
that for a CPTP map M the corresponding CJ matrix satisfies the condition 
Tr Tr Tr

T T
A

A A
A A

AM2
1 2

2 2= (| |) = ( (| |)) =I M I M⊗ 〉〈( ) ⊗ 〉〈 
+ + + +j j j j 1 11.  

To see that this is also a sufficient condition for a map to be trace-preserving, it is 
enough to consider the inverse direction of the CJ isomorphism, 

M( ) := .1
1

1 1 2r rA
A

A A AMTr
T





( )

Violation of the causal inequality. The process described by equation (7) can be 
exploited for the task described above in the following way. Alice always measures 
the incoming qubit in the z basis, assigning the value x = 0 to the outcome |z + 〉 and 
x = 1 to |z − 〉. She then reprepares the qubit, encoding a in the same basis, and sends 
it away. It is easy to see that the CP map corresponding to the detection of a state 
|ψ〉 and repreparation of another state |φ〉 has CJ matrix | | | |1 2y y j j〉〈 ⊗ 〉〈A A  .  
Accordingly, the possible operations performed by Alice can be represented com-
pactly by the CJ matrix

x s sA A x
z

A a
z

A
x a1 2 1 2( , ) = 1

4
( 1) ( 1) .1 1+ −  ⊗ + − 

Bob adopts the following protocol. If he wants to read Alice’s bit (b′ = 1), he 
measures the incoming qubit in the z basis and assigns y = 0, y = 1 to the outcomes 
|z + 〉, |z − 〉, respectively (the repreparation is unimportant in this case). If he wants 
to send his bit (b′ = 0), he measures in the x basis, and if the outcome is |x + 〉, he 
encodes b in the z basis of the outgoing qubit as 0→|z + 〉, 1→|z − 〉, whereas if the 
outcome is |x − 〉, he encodes it as 0→|z − 〉, 1→|z + 〉. The CJ matrix representing 
Bob’s CP map is

h h hB B B B B By b b b y b b y b1 2
1

1 2
2

1 2( , , ) = ( , ) ( 1) ( , ),′ ′ + ′⊕

h s r1
1 2 1 2( , ) = 1

2
( 1) ,B B y

z
B By b 1+ −  ⊗

h s s2
1 2 1 2( , ) = 1

4
( 1) ( 1) ,B B y

x
B b y

z
B

y b 1 1+ −  ⊗ + −





+

where rB2  is the arbitrary state prepared when b′ = 1 (with Trr B2 =1) and  
 denotes the sum modulo 2. Note that in equation (16), Bob’s assignment  
|x + 〉→y = 0, |x − 〉→y = 1 for the outcome of his measurement is arbitrary, because 
for b′ = 0 he is not trying to correlate y with a.

The probabilities for different possible outcomes, when the described 
protocol is applied to the process (7), are given, according to (3), by 
P xy abb W x a y b bA A B B A A B B( | ) = ( , ) ( , , )1 2 1 2 1 2 1 2′ ′( )



Tr x h . To calculate the success 

probability, we need as intermediate steps P y ab b P xy ab bx( | , =1) = ( | , =1)′ ′Σ  and 
P x ab b P xy ab by( | , = 0) = ( | , = 0)′ ′Σ . Notice that when the outcome of one party is 
ignored, it is always possible to identify a specific state in which the other party 
receives the qubit. For example, to average out Alice’s outcomes one has to calculate

x

A A B B A A B B

B B
B B

W x a y b b

y b

∑ ′( )



Tr

Tr

1 2 1 2 1 2 1 2

1 2
1 2

( , ) ( , , )

= ( ,

x h

h ,, ) ( , )1 2
1 2 1 2 1 2′


































∑b W x aA A

A A B B

x

A ATr x ..

(10)(10)

(11)(11)

(12)(12)

(13)(13)

(14)(14)

(15)(15)

(16)(16)

The process observed by Bob is therefore described by the reduced matrix

W a W x aB B
A A

A A B B

x

A A1 2
1 2

1 2 1 2 1 2( ) := ( , ) .Tr ∑






















x

The matrix Σx
A A x ax 1 2 ( , ) represents the CPTP map performed by Alice 

when the outcomes of her measurement are ignored (the explicit depend-
ence on a accounts for the possibility of signalling). Using (13), we find 

Σx
A A A a

z
A

x ax s1 2 1 2( , ) = 1 2 ( 1)( / )1 1⊗ + −  , which, plugged into equation (17) 
together with equation (7), gives

W aB B a
z

B
B1 2

1
2( ) = 1

2
( 1) 1

2
.1 1+ −





⊗s

When this is measured with the map (15), we find

P y ab b y b W aB B B B y a
( | , =1) = ( , ) ( ) = 1

2
1 ( 1)

21
1 2 1 2′ 



 + −










+
Tr h


,

from which we obtain P y a b( = | =1) = 2 2 4′ +( )/ .
Consider now the case when b′ = 0. When Bob’s outcomes are ignored, he  

performs the CPTP map described by Σy
B B b

x
B

z
By bh s s1 2 1 2( , ) = 1 2 ( 1)( / ) 1+ −



 .  

From this we can calculate, as in the previous case, the effective state received by 
Alice, which is

W b bA A b
z

A
A1 2

1
2( , = 0) = 1

2
( 1) 1

2
,′ + −





⊗1 1s

from which we find P x b b( = | = 0) = 2 2 4′ +( )/ . In conclusion, the protocol 
described yields the probability of success (8), which proves that the process in 
equation (7) is not causally separable. 
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