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Abstract. Polymorphonuclear leukocytes (PMNs) mi- 
grate to sites of inflammation or injury in response to 
chemoattractants released at those sites. The presence 
of extracellular matrix (ECM) proteins at these sites 
may influence PMN accumulation at blood vessel 
walls and enhance their ability to move through tissue. 
Thrombospondin (TSP), a 450-kD ECM protein 
whose major proteolytic fragments are a COOH- 
terminal 140-kD fragment and an NH2-terminal 
heparin-binding domain (HBD), is secreted by plate- 
lets, endothelial cells, and smooth muscle cells. TSP 
binds specifically to PMN surface receptors and has 
been shown, in other cell types, to promote directed 
movement. TSP in solution at low concentrations 
(30-50 riM) "primed" PMNs for f-Met-Leu-Phe 
(fMLP)-mediated chemotaxis, increasing the response 
two- to fourfold. A monoclonal antibody against the 
HBD of TSP totally abolished this priming effect sug- 
gesting that the priming activity resides in the HBD of 
TSP. Purified HBD retains the priming activity of TSP 

thereby corroborating the antibody data. TSP alone, in 
solution at high concentrations (0.5-3.0 #M), stimu- 
lated chemotaxis of PMNs and required both the HBD 
and the 140-kD fragment of TSP. In contrast to TSP 
in solution, TSP bound to nitrocellulose filters in the 
range of 20-70 pmol stimulated random locomotion of 
PMNs. The number of PMNs migrating in response 
to bound TSP was approximately two orders of magni- 
tude greater than the number of cells that exhibited 
chemotaxis in response to soluble TSP or fMLP. ~ 
Monoclonal antibody C6.7, which recognizes an epi- 
tope near the carboxyl terminus of TSP, blocked 
migration stimulated by bound TSP, suggesting that the 
activity resides in this domain. Using proteolytic frag- 
ments, we demonstrated that bound 140-kD fragment, 
but not HBD, promoted migration of PMNs. There- 
fore, TSP released at injury sites, alone or in synergy 
with chemotactic peptides like fMLP, could play a 
role in directing PMN movement. 

p OLYMORPHONUCLEAR leukocytes (PMNs) ~ migrate, 
in response to chemoattractants, to sites of infection 
or injury where they may phagoeytose and destroy in- 

vading cells. Chemotaxis, the directional movement of cells 
along a soluble chemical gradient, is a receptor-mediated 
event that has been studied extensively in PMNs and other 
cell types (for reviews, see Zigmond, 1978; Schiffmann, 
1982; Devreotes and Zigmond, 1988). In contrast, locomo- 
tion induced by a gradient of substrate-bound attractant is 
termed haptotaxis (Carter, 1967; McCarthy et al., 1983) and 
has not been as extensively investigated. 

Thrombospondin (TSP), a multifunctional homotrimeric 
glycoprotein of approximately 450,000 M,, is an extracellu- 
lar matrix (ECM) protein that may be secreted at sites of in- 
jury or inflammation by platelets, endothelial cells, epithelial 
cells, smooth muscle cells, fibroblasts, monocytes, or PMNs 
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(Mosher et al., 1982; Raugi et al., 1982; Jaffe et al., 1983; 
Sage et al., 1983; Wikner et al., 1987; Jaffe et al., 1985; 
Kreis et al., 1989). Functional studies demonstrate that TSP 
can mediate attachment and spreading, chemotaxis, and 
haptotaxis in several different cell types. Specifically, TSP 
promotes the adhesion and/or spreading of human keratino- 
cytes, carcinoma cells, melanoma cells, endothelial cells, 
smooth muscle cells, and CHO cells (Varani et al., 1986; 
Roberts et al., 1987; Tuszynski et al., 1987; Varani et al., 
1988; Lawler et al., 1988; Kaesberg et al., 1989), the motil- 
ity of human keratinocytes (Nickoloff et al., 1988), and 
chemotaxis and haptotaxis of human carcinoma and mela- 
noma cell lines (Taraboletti et al., 1987). 

Although monocytes and PMNs synthesize and secrete 
TSP (Jaffe et al., 1985; Kreis et al., 1989), its function in 
these cells remains unresolved. We have recently demon- 
strated that PMNs have specific receptors for TSP and that 
TSP can "prime" PMNs for N-formyl methionyl-leucyl-phe- 
nylalanine (fMLP)-mediated superoxide generation (Suchard, 
S. J., L. A. Boxer, and V. M. Dixit, submitted for publication); 
i.e., TSP increases the amount of 02- produced by PMNs in 
response to fMLP without itself stimulating 02- production. 

PMNs may encounter TSP in solution, bound to endothe- 
lial cells, or bound to the subendothelial basement mem- 
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brahe at sites of injury, with TSP being derived from several 
possible sources: proliferating endothelial cells (Mumby et 
al., 1984), activated platelets (Murphy-Ullrich and Mosher, 
1987), or smooth muscle cells stimulated by platelet-derived 
growth factor (Majack et al., 1985). TSP at these sites may 
attract PMNs, promote their adhesion, and direct their mi- 
gration through basement membrane and interstitial ma- 
trices, requisite steps for diapedesis. Consistent with this hy- 
pothesis are the observations that TSP promotes in vitro 
attachment, spreading, chemotaxis, and haptotaxis of mela- 
noma and carcinoma cells (Roberts et al., 1987; Taraboletti 
et al., 1987; Varani et al., 1986). 

Other ECM proteins, particularly fibronectin and laminin, 
have been shown to stimulate or enhance PMN functions 
such as adhesion, degranulation, chemotaxis, phagocytosis, 
and superoxide generation (Pommier et al., 1984; Terranova 
et al., 1986; Bryant et al., 1987; Wachtfogel et al., 1988; 
Pike et al., 1989; Nathan, 1987, 1989). In human PMNs, 
soluble laminin primes for fMLP-mediated superoxide pro- 
duction and increases fMLP rer, eptor expression (Pike et al., 
1989). In addition, substrate-bound laminin, fibronectin, 
and vitronectin prime PMNs for a massive respiratory burst 
in response to fMLP or several cytokines (Nathan, 198% 
1989). 

In addition to the effects of intact ECM proteins on PMNs, 
proteolytic fragments of ECM components may promote 
PMN function. These proteolytic fragments may be gener- 
ated by proteases released by activated PMNs or other 
inflammatory cells found at sites of inflammation and may 
stimulate responses not observed with the intact molecule. 
For example, proteolytic fragments of fibronectin, but not in- 
tact fibronectin, are chemotactic for monocytes and stimu- 
late degranulation in PMNs (Norris et al., 1982; Clark et al., 
1988). 

Each chain of the homotrimeric TSP molecule contains a 
heparin-binding domain (HBD) at the NH2 terminus and a 
COOH-terminal 140-kD fragment (Galvin et al., 1985). The 
140-kD fragment can be further proteolyzed to 120- or 70- 
kD fragments. In melanoma cells, the HBD promotes chemo- 
taxes, whereas the 140-kD fragment promotes haptotaxis 
(Taraboletti et al., 1987). The haptotactic activity of the 140- 
kD fragment resides in the 18-kD COOH-terminal portion 
of the fragment, as indicated by a loss in haptotactic activity 
when the 140-kD fragment is further proteolyzed to the 120- 
kD fragment. These data indicate that different regions of 
TSP may be required for chemotaxis versus haptotaxis. 

Using a Boyden chamber assay, we found that soluble TSP 
at low concentrations primed PMNs for fMLP-mediated 
chemotaxis. In addition, soluble TSP at much higher con- 
centrations was itself chemotactic for PMNs. Finally, we de- 
termined that bound TSP stimulated the nondirectional 
migration of PMNs. In general, our studies indicate that the 
effect of TSP on PMN function can be dictated by both its 
conformation (either soluble or bound to a substrate) and the 
presence of other chemoattractants. Therefore, TSP working 
alone or in synergy with chemotactic peptides may play a 
role in directing PMNs to a site of injury. 

Materials and Methods 

Ce/ls 
Human PMNs were isolated from human peripheral blood as previously de- 

scribed (Curnutte and Eabior, 1974). Briefly, fresh whole blood was ob- 
tained by venipuncture from healthy volunteers and immediately added to 
acid citrate dextrose. The PMNs were purified by dextran sedimentation 
followed by hypotonic lysis to remove the majority of erythmcy~s and then 
centrifuged through Ficoll-Paque (Pharmacia Fine Chemicals, Piscataway, 
NJ) to remove contaminating mononuclear cells. PMNs were resuspended 
at 106/mi in MEM (Whiuaker Bioproducts, Inc., WalkersviBe, MD) with 
0.1% BSA (Sigma Chemical Co., St. Louis, MO), and gradually warmed 
to room temperature over a period of 1 h before migration assays were ini- 
tiated. 

Materials 
Human TSP was isolated from the supernatant of thrombin-activated plate- 
lets by affinity chromatography over gelatin-Sepharose and heparin- 
Sepharose (Pharmacia Fine Chemicals) followed by gel filtration (Bio-Gel 
A 0.5m; Bio-Rad Laboratories, Richmond, CA) as outlined in Dixit et al. 
(1984). TSP was concentrated in an ultrafiltration cell (Amicon Corp., Dan- 
vers, MA), and stored at -70°C. 

TSP fragments were generated by digestion with 16 U/rag thrombin for 
8 h at 37°C, after which digestion was stopped with 10 #g/rnl aprotinin and 
50 U hirudin. Fragments were isolated by passing the digest over a 2-ml 
heparin-Sepharose column. The 140-kD fragment was not retained by the 
column and was collected in the void volume. The 25-kD HBD was eluted 
from the heparin-Sepharose column with 0.6 M NaC1. Fragments were con- 
centrated by ultrafiltration (Amicon Corp.). The 140-kD fragment was fur- 
ther cleaved to the 120-kD fragment using chymotrypsin (1:100, wt/wt) for 
1.5 h at 37°C. The reaction was terminated with 1 mM PMSE The 70-kD 
TSP fragment was produced by chymotrypsin cleavage of TSP (1:100, wt/wt), 
for 0.5 h at 20°C in the presence of 5 mM ElYrA (Galvin et al., 1985). Intact 
TSP was also chymotrypsinized (1:100, wt/wD for 40 rain at 37°C and used 
without further fractionation. The extent of digestion and purity of TSP 
fragments were confirmed by SDS-PAGE using 5-20% mini-slab gels and 
the discontinuous buffer system of Laemmli (1970). 

Polyclonal antibodies to TSP and monoclonal antibodies A2.5, 134.6, 
A6.1, and C6.7 were produced as previously described (Dixit et al., 
1985a,b; 1986). Fab fragments were generated as follows: 1 mg rabbit anti- 
TSP IgG was incubated with 50 #1 of a 50% slurry of immobilized papain 
beads (Pierce Chemical Co., Rockford, IL) in 1.5 ml buffer for 5 h at 37°C. 
Fc fragments and intact IgG were removed using Protein A Afli-Gel (Bio- 
Pad Laboratories). The flow through fraction containing Fabs was dialyzed 
against PBS and concentrated using a Centricon 30 (Amicon Corp. ). A neu- 
tralizing antibody against hnrnan platelet-derived growth factor (anti- 
PDGF) was obtained from R & D Systems, Inc. (Minneapolis, MN). 

Iodination of TSP and Fragments 
TSP was iodinated using the iodogen method (Fraker and Speck, 1978) es- 
sentially as follows: 100-200 ~Ci of carrier-free Nat25I was added to 300 
/zl of 2 mg/ml TSP in an iodogen tube. After a 40-rain incubation at room 
temperature, unbound iodine was removed by passing the material over a 
Sephadex G25 column. HBD and the 140-kD fragment were iodinated 
using BoRon-Hunter reagent (New England Nuclear, Boston, MA). 

Cell Migration Assays 
Chemotax/s. Chemotaxis assays were conducted in modified Boyden cham- 
bers (manufactured by Guy Duremberg, Pasadena, CA; Boyden, 1962), 
using 3-#m-pore polyvinylpyrrolidone-free polycarbonate filters (Nucle- 
pore, Pleasanton, CA). Filters were soaked in MEM with 0.1% BSA for a 
minimum of 2 h before assays. Attractant (TSP or fMLP) was diluted in 
MEM with 0.1% BSA and placed in the lower webs of the Boyden chambers. 
An equimolar amount of HBD or 140-kD fragment (with respect to intact 
TSP) was added to Boyden chambers where indicated. Each upper well con- 
tained 3.3 x 10 s PMNs in 0.3 ml MEM with 0.1% BSA. Chambers were 
incubated for 30 min at 37°C in a humidified incubator with 5% COz. Fol- 
lowing each experiment, filters were fixed with propanol, stained with he- 
matoxylin, cleared with xylene, and mounted on slides. Three replicate 
filters were used for each treatment, and five replicate fields were scored 
for each filter. Filters were scored by counting the number of cells that 
migrated through the filter in each high power field. All results were ex- 
pressed as a migration index + SEM; the index being the score seen with 
a particular treatment (TSP or other attractant) divided by the score of the 
control (no attractant). 

Checkerboard assays were used to distinguish between chemotaxis 
(directed movement) and chemokinesis (random movement) (Zigmond and 
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Hirsch, 1973; Wilkinson and Allan, 1978). For this assay, varying concen- 
trations of TSP were placed in upper wells, lower wells, or both upper and 
lower wells of Boyden chambers to determine whether PMN migration was 
greater with a positive (chemotaxis) or negative (chemokinesis) gradient to 
TSP. As a negative control, TSP was denatured by boiling for 30 rain before 
addition to the wells. 

For "priming" experiments, TSP or equimolar amounts of purified HBD 
was added to cells in the upper well at the beginning of the assay with fMLP 
(Sigma Chemical Co.) in the lower well. To test specificity of priming and 
determine the active molecular domain, TSP was preincubated with 100 
t~g/ml ofanti-TSP monoclonal antibodies or heparin for 1 h at 37°C. In some 
experiments, TSP was incubated for 30 rain at 37°C with 10 #g/ml of rabbit 
anti-PDGF IgG and then tested for chemotactic and priming activity. 

Haptotax/s. Initially for haptotaxis experiments, 3-~m-pore nitrocellu- 
lose filters (Millipore Continental Water Systems, Bedford, MA) were as- 
sembled into modified Boyden chambers using the same conditions as the 
chemotaxis assays, but in the absence of cells, and incubated for 3 h at 37°C. 
The filters were then removed, rinsed five times with PBS, one time with 
MEM containing 0.1% BSA, blotted to remove excess fluid, and immedi- 
ately returned to the chambers. Since TSP and TSP fragments diffuse 
through and bind to these filters without reaching saturation, we were fairly 
confident that a gradient was established within the filters under these con- 
ditions. Subsequently, filters were either floated on or submerged in attrac- 
tant diluted in PBS with 1 mM calcium for 2 h at 37°C or overnight at 4°C 
(McCarthy et al., 1983). Filters incubated in this manner gave the same 
results as filters precoated in the chambers, and because of ease of prepara- 
tion, were used in the majority of experiments. TSP and TSP fragments 
were incubated with filters at equimolar concentrations. Filters were put in 
the chambers with the high concentration side down, representing a pre- 
sumed positive gradient, or up, representing a presumed negative gradient. 
Filters coated on both sides contained no gradient and did not require 
specific orientation. This method allowed us to distinguish between direct~l 
and random movement of PMNs. Lower wells contained only MEM with 
0.1% BSA. Each upper well contained 3.3 × 10 ~ PMNs at 106 cells/ml. 
Chambers were incubated for 2.5 h at 37°C in a humidified incubator with 
5% CO2. Filters were fixed, stained, and mounted as outlined above. 
Three replicate filters were used for each treatment, and five replicate fields 
were scored for each filter. Filters were scored both by the leading front 
method (Zigmond and Hirsch, 1973) and by counting the number of cells 
in each microscope field that had traveled 50 t~m into the filter. These two 
scoring methods gave similar results. 2 In this paper, we have reported the 
number of cells traveling 50/~m into the filter since this method reflects the 
behavior of the entire PMN population. All results were expressed as a 
migration index + SEM, the index being the score seen with a particular 
treatment (TSP or other attractant) divided by the score of  the control (no 
attractant). 

As a negative control, TSP was denatured by boiling 30 rain in 10% SDS. 
After incubation with denatured TSP, filters were rinsed 10 times to remove 
excess SDS. For assays in which anti-TSP antibodies were used, chambers 
were assembled with TSP-coated filters, high concentration side up, anti- 
bodies added to the upper wells, and filters incubated for I h at 37°C. After 
antibody preincubation, cells were added to a final concentration of 106/ml 
(3.3 x 105 PMNs in each well), and incubated for 2.5 h at 37°C. To rule 
out the participation of small quantities of TSP-associated PDGF in these 
assays, TSP-coated filters were incubated with rabbit anti-PDGF IgG (10 
#g/ml) as outlined above. 

Protein Diffusion and Binding Assays 
12~I-labeled TSP, '25I-labeled 140-kD fragment, and l~I-labeled HBD 
were placed in the lower wells of Boyden chambers to measure binding to 
and diffusion through nitrocellulose and polycarbonate filters. Labeled pro- 
teins were mixed with unlabeled proteins so that the specific activity re- 
mained constant at 5 t, Ci/mg. Chambers were assembled with filters and 
incubated in the absence of cells. Nitrocellulose filters were also incubated 
with ~25I-labeled TSP by floating or submerging filters to determine the 
amount of TSP bound under those conditions. Additionally, filters with 
bound 125I-TSP were incubated in Boyden chambers in the presence of cells 
to determine whether TSP was released from the filters during the ex- 

2. The number of cells at 50/~m was an appropriate scoring method because 
in no case during this study did the majority of cells travel beyond that dis- 
tance. Results obtained by the scoring combination of leading front and 
number of cells at 50 ~m were similar to counting all cells at 10- or 20-/~m 
intervals (locomotion index; Maderazo and Woronick, 1978) when tested 
for several filters. 

perimental time course. The amount of radioactivity bound to filters or 
present in wells was determined by counting samples (filters or media) on 
a Multiganuna gamma counter (1261; LKB Instruments, Inc., Bromma, 
Sweden). 

Results 

Diffusion of TSP in Boyden Chambers 
Initially we conducted experiments to demonstrate that we 
could establish gradients of TSP in Boyden chambers and to 
determine the interaction of TSP with nitrocellulose and 
polycarbonate filters under the conditions of our assay sys- 
tem. ~2~I-labeled TSP, HBD, and 140-kD fragment were 
used to quantify the diffusion of these molecules through 
nitrocellulose or polycarbonate filters. Diffusion of TSP 
from the lower to upper wells of Boyden chambers was dose- 
dependent and relatively linear over the time course of our 
assays (Fig. 1). When using nitrocellulose filters, after 3 h 
'~3 % of the TSP present in the lower wells had diffused to 
the upper wells. TSP diffused more readily through polycar- 
bonate filters, with '~2 % diffusing from lower to upper wells 
during a typical 30-min incubation. Thus, when using poly- 
carbonate filters, 1 #M TSP added to the lower wells of Boy- 
den chambers resulted in 20 nM TSP being present in the up- 
per wells after a 30-min incubation (data not shown). Addi- 
tionally, the HBD and 140-kD fragment diffused through 
both nitrocellulose and polycarbonate filters more quickly 
than intact TSP; >20% diffused to the upper well after 3 h 
(data not shown). Diffusion of each fragment was dose- and 
time-dependent, and, in contrast to native TSP, was similar 
for both filter types. 

TSP-induced Chemotaxis 
Since diffusion of TSP in Boyden chambers was facilitated 
by using polycarbonate filters, these filters were used for all 
of the chemotaxis assays. TSP present in the lower wells of 
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Figure l. Time course o f  diffusion o f  TSP f rom lower to  upper  wells 
o f  Boyden chambers .  100 (4,  A) or  200 (o ,  e )  nM of  I~I-TSP was 
placed in the lower wells o f  Boyden chambers  fitted with either 
nitrocellulose (NC) or  polycarbonate (PC) filters. The  chambers  
were incubated at 37°C for 180 rain, and the upper  wells assayed 
for radioactivity at 30, 90, and 180 mill. The  curves represent  the 
concentrat ion o f  TSP that diffused f rom lower to upper  wells during 
the t ime course  of  the exper iment .  Values represent  the mean + 
SEM for triplicate samples. Representative of three experiments. 
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l~gure 2. PMN chemotaxis to TSP and TSP proteolytic fragments. 
TSP ([]), 140-kD fragment (o), or HBD (I) were added to the 
lower wells of Boyden chambers and polyearbonate filters were 
used to separate upper from lower wells. PMNs (3.3 x 105) were 
added to the upper wells and the chambers placed in a humidified 
incubator at 37"C with 5% CO2 for 30 rain. 10 nM fMLP was 
used as a positive control for chemotaxis. Data are expressed as 
mean migration index (number of PMNs migrating in response to 
attractant divided by the number of PMNs migrating in response 
to buffer) + SEM. The control value for buffer alone is defined as 
1.0 and is represented by the dashed line. The migration index for 
fiVILP was 7.78 + 1.11. Values represent the mean 5: SEM for tripli- 
cate samples. Representative of three experiments. 

Boyden chambers stimulated migration of PMNs (Fig. 2). 
The PMN response was dose-dependent with a maximal 
effect (3.5 times the control) observed at 3 #M. Since large 
quantities of TSP are difficult to obtain, only selected combi- 
nations of concentrations were included in the checkerboard 
analysis used to determine the random versus directed nature 
of PMN movement in response to TSP (Table I). The in- 
creasing values below the diagonal indicate that PMNs 
migrated in response to a positive gradient of TSP (i.e., 
chemotaxis). No increase in the values along and above the 
diagonal, from left to right, indicate that TSP was not 
chemokinetic for PMNs. These results verified that TSP was 
chemotactic and not chemokinetic for PMNs. Chemotaxis 
was specific for native TSP since heat denatured TSP did not 
promote cell migration (Table II). Interestingly, a chymo- 
trypsinized preparation of TSP containing both the I-1BD and 
140-kD fragment was about five times more potent than in- 

Table L Checkerboard Assay of PMN Chemotaxis 
to TSP 

TSP in TSP in upper well (nM) 
lower 
well (nM) 0 100 1,000 

0 

100 

1,000 

~ 0.74 4- 0.19 

4.56 4- 1.12 - ~ , , , , ~ 1  4- 0.20" 

Polycarbonate membranes were used in modified Boyden chambers. Results 
are expressed as a migration index that is defined as the number of cells migrat- 
ing in response to TSP divided by number of cells migrating in response to 
buffer. Values represent the mean -t- SEM for triplicate samples. For 10 nM 
fMLP, the migration index = 8.77 + 1.03. 

Table II. Chemotaxis of PMNs to Intact, Proteolyzed, 
and Denatured TSP and Isolated Proteolytic Fragments 

Intact TSP 2.76 + 0.86 
Chymotrypsinized TSP 17.51 + 7.43 
I-IBD 0.94 4- 0.22 
140-kD fragment 0.93 4- 0.22 
HBD + 140-kD fragment 11.68 4- 2.69 
TSP (100*C) 0.83 4- 0.04 

Results are expressed as a migration index defined as the number of cells 
migrating in response to TSP divided by the number of cells migrating in 
response to buffer. Values represent the mean + SEM for triplicate samples. 
TSP and fragments were present at 1 ~M in lower wells of Boyden chambers. 

tact TSP in stimulating chemotaxis (Table II). Neither puri- 
fied HBD nor the 140-kD fragment of TSP, in the same con- 
centration range, were chemotactic for PMNs (Table II, Fig. 
2). However, the addition of both purified fragments pro- 
voked a chemotactic response similar to that of chymotryp- 
sinized TSP (Table IT). These data indicated that binding of 
both TSP fragments to the PMN surface was required for 
chemotaxis. 

TSP Priming of  fMLP-mediated Chemotaxis 

Having previously observed that TSP primed PMNs for 
fMLP-mediated superoxide production (Suchard, S. J., L. A. 
Boxer, and V. M. Dixit, submitted for publication), we 
wanted to determine whether TSP would also prime cells for 
fMLP-mediated chemotaxis. Chemotaxis in response to 
fMLP was significantly increased by the addition of 30-50 
nM TSP to the upper wells of Boyden chambers (Fig. 3). The 
effect was greatest at I0 nM fMLP where TSP increased the 
response by more than a factor of 4. In general, this enhance- 
ment ranged between two- to fourfold reflecting the variation 
observed among normal donors (compare the response in 
Fig. 3 with that in Table I/I). The effect of TSP was consid- 
ered a priming response since TSP alone, at these concentra- 
tions, had no effect on PMN motility. The priming of TSP 
for fMLP-mediated chemotaxis was inhibited by heparin and 
anti-TSP antibodies (Table m).  Both polyclonal anti-TSP an- 
tibody and heparin reduced chemotaxis to the control levels 
observed with fMLP alone. Monoclonal antibody A2.5, 
which recognizes the HBD of TSP, inhibited the TSP-in- 
duced enhancement of  chemotaxis by ~o75%. mAbs C6.7 
(recognizing an epitope near the carboxy terminus of TSP), 
IM.6 (recognizing the 50-kD fragment containing the fibrin- 
ogen-binding domain), and A6.1 (recognizing the trypsin- 
resistant 70-kD core) did not significantly affect TSP-in- 
duced priming (Table l.l/). The ability of the isolated HBD 
alone to prime for fMLP-mediated chemotaxis confirmed 
the results obtained with the anti'-TSP monoclonal antibodies 
(Table HI) indicating that the priming activity of TSP resides 
in this portion of the molecule. 

TSP Binding to l~lters 

Before conducting haptotaxis assays that rely on substrate 
bound attractant, we evaluated binding of TSP and its frag- 
ments to nitrocellulose and polycarbonate filters. 125I-labeled 
TSP, HBD, and 140-kD fragment were used to quantify pro- 
tein binding to filters under the same conditions that were 
used to prepare them for haptotaxis assays. The amount of 
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Figure 3. TSP priming for fMLP-mediated chemotaxis in 
PMNs. Various concentrations of fMLP were present in the 
lower wells of Boyden chambers and polycarbonate filters 
were used to separate the lower from upper wells. 50 nM 
TSP (a) or buffer control (zx) were added to PMNs in MEM 
+ 0.1% BSA immediately before their addition to the upper 
wells at the onset of the chemotaxis assay. Chambers were 
placed in a humidified incubator at 37°C with 5% CO~ for 
30 rain. Data are expressed as mean migration index 5: SEM. 
See Fig. 2 for an explanation of the migration index. Values 
represent the mean + SEM for triplicate samples. Represen- 
tative of three experiments. 

TSP bound to nitrocellulose filters was three to four times 
greater than the binding of either of its fragments (Fig. 4). 
Additionally, nitrocellulose filters bound "~10 times as much 
TSP as polycarbonate filters (Fig. 4), and binding was dose- 
dependent (data not shown). Binding of TSP to nitrocellu- 
lose filters did not saturate at concentrations up to 1 ~M 
(data not shown). The release of bound TSP from nitrocellu- 
lose filters was minimal during a 3-h incubation with ceils; 
<2% of the total TSP bound was released. Furthermore, 
SDS-PAGE analysis demonstrated that TSP was not degraded 
during filter preparation or incubation (data not shown). The 
combined effect of TSP binding and diffusion (Fig. 1) through 
nitrocellulose filters made it likely that a protein gradient had 
been established within these filters. The same results were 
obtained whether filters were prepared in modified Boyden 
chambers or by floating on protein solutions. 

Migration of PMNs Stimulated by Bound TSP 

We investigated the ability of bound TSP to induce PMN mo- 
tility for two reasons: (a) TSP stimulates haptotaxis in mela- 
noma cells and keratinocytes (Taraboletti et al., 1987; Nick- 

Table IlL Inhibition of TSP Priming for jMLP-Mediated 
Chemotaxis by Heparin, Polyclonal Anti-TSP Antibodies, 
and Monoclonal Anti-TSP Antibodies 

fMLP alone 1.00 + 0.37 
fMLP + TSP 2.08 -1- 0.24 
fMLP + HBD 2.29 5= 0.19 

Heparin 0.91 + 0.01 
Polyclonal anti-TSP 0.93 -1- 0.05 

Monoclonal antibodies 
A2.5 1.24 + 0.11 
IM.6 1.89 5= 0.18 
A6.1 2.26 + 0.24 
C6.7 2.32 + 0.21 

Values represent the mean + SEM for triplicate samples. The tMLP control 
is expressed as a value of 1,0, and the number of cells migrating within each 
treatment is divided by the number of ceils migrating to fMLP alone. 50 nM 
TSP was preincubated with 100/~g/mi heparin or antibody for 60 rain at 370C 
and placed in the upper wells of Boyden chambers with PMNs at the onset of 
the chemotaxis assay. For some experiments, 50 nM HBD was substituted for 
TSP in the upper wells. 10 nM fMLP was present in the lower wells. 

oloff et al., 1988), and (b) TSP promoted chemotaxis in 
PMNs. We determined that 20-70 pmol TSP bound to nitro- 
cellulose filters stimulated significant movement of PMNs 
with a maximal effect observed at 50 pmol (Fig. 5). A check- 
erboard assay for haptotaxis was performed using nitrocellu- 
lose filters that had either been floated on TSP solutions or 
submerged. The values below the diagonal reflect a presumed 
positive gradient while those above the diagonal reflect a pre- 
sumed negative gradient. The values along the diagonal indi- 
cate random motility to a uniform concentration of TSP 
bound to the filter. The results from this assay indicated that 
TSP stimulated random locomotion rather than directional 
haptotaxis (Table IV). Filters with 3-100 pmol bound that 
were uniformly coated or coated on one side and placed with 
the coated surface up stimulated significant movement of 
cells, while filters coated on one side and placed with the 
coated surface down only caused significant movement of 
cells at 100 pmol bound. Although migration was not direc- 
tional, the number of cells migrating in response to 30-50 
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Figure 4. Binding of TSP or TSP proteolytic fragments to nitrocel- 
lulose and polycarbonate filters. Data are expressed as pmol t2~I- 
TSP, m2sI-140-kD fragment, or t25I-I-IBD bound to filters. Filters 
were incubated with 200 nM labeled protein at 37°C for 30, 90, or 
180 min. After incubation, filters were rinsed 5 times with PBS, 
excess fluid removed by blotting, and radioactivity determined by 
gamma counting. Values represent the mean + SEM for triplicate 
samples. Representative of three experiments. 
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Figure 5. PMN migration in response to TSP or TSP proteo- 
lyric fragments bound to nitrocellulose filters. Nitrocellulose 
filters were floated for 2 h at 37°C in various concentrations 
of TSP (t~), 140-kD fragment (e), or HBD (,,), rinsed five 
times in PBS, and placed coated-surface up in Boyden cham- 
bers. Lower wells contained butter, and upper wells con- 
tained PMNs (3.3 × l0 s) in buffer. Chambers were in- 
cubated for 2.5 h at 37°C in a humidified incubator with 5% 
CO~. Protein bound (in pmol) was determined as described 
in Fig. 4. 10 nM fMLP in the lower well, in the absence of 
a TSP-coated filter, was used as a positive control for cell 
movement. See Fig. 2 for an explanation of the migration in- 
dex. The migration index for the buffer control was 1.0, and 
for fMLP was 4.67 + 0.83. Values represent the mean + 
SEM for triplicate samples. Representative of three experi- 
ments. 

pmol bound TSP was approximately two orders of magnitude 
greater than the number of cells that chemotaxed in response 
to soluble TSP or fMLP (Table IV and Fig. 5). The locomo- 
tory response was specific for native TSP since denatured 
TSP did not support cell migration (data not shown). The 
migration index was 2.6 for bound denatured TSP (not sig- 
niticantly different from buffer controls) as compared to 46.0 
for bound native TSP. 

Anti-TSP polyclonal antibody and its Fab fragments (100 
#g/ml), but not control IgG or anti-human serum albumin 
Fab fragments, significantly inhibited the movement of 
PMNs stimulated by bound TSP (>80% inhibition; Table 
V). Antibodies against human PDGF, in quantities sufficient 
to inhibit PDGF-mediated PMN chemotaxis, did not affect 
the activity of TSP in this or the other functional assays. 

These data demonstrate that the locomotory response is 
specific for TSP. Of the four monoclonal antibodies tested, 
mAb C6.7, which recognizes an epitope near the carboxy ter- 
minus of TSP, inhibited TSP-induced migration to the 
greatest extent (Table V). Monoclonal antibody A2.5, which 
recognizes an epitope on the HBD, also inhibited migration 
but to a lesser extent. However, heparin did not inhibit TSP- 
induced movement (data not shown) suggesting that mAb 
A2.5 may have caused conformational changes in the TSP 
molecule that influenced function, rather than directly 
blocking the involvement of the HBD. mAbs A6.1 and 134.6, 
which recognize the central core domain of TSP, were not 
effective in inhibiting PMN movement. Control mouse IgG 
also did not inhibit cell movement (Table V). 

The results obtained with mAbs led us to use proteolytic 

Table IV. Checkerboard Assay of PMN Migration Stimulated by TSP Bound to Nitrocellulose Filters 

TSP at top of filter (pmol) 
TSP at bottom 
of filter (pmol) 0 1 3 10 30 100 

0 1 . 0 0 ~  1.50 4.20 32.50 123.30 39.80 
" ~ 0 . 1 3  ± 0.59 ± 8.06 ± 33.40 ± 2.97 

1 1 . 7 1  ~ , , , ~  1 . 5 4 ~  . . . .  
±o.os  - - - -  - - - 

3 1.62 - ~ 2 . 5 0 ~  - - - 

± 0 . 3 8  - - - 

10 1.42 - - ~ 5 . 2 9 ~ .  - - 

± 0 . 4 8  - - - 

30 1.46 - - - ~ 106.10" ,~  - 

± 0 . 4 2  - - - ~ ~ 

42.80 - - - - " ~  39.5 
+ 1.98 ,. - - - 4- 3.77 

1130 

Results are expressed as a migration index that is defined as the number of cells traveling 50 #m in response to TSP divided by the number of cells traveling 
50 tan in response to buffer. Values represent the mean ± SEM for triplicate samples. The concentration of TSP (pmol) indicated in the checkerboard represents 
the amount of protein bound to filters, determiuedas described in Fig. 4. For comparison, 10 nM fMLP has a chemotactic migration index of 6.58 :t: 2.06, and 
3 t~M soluble TSP has a chemotaedc migration index of 3.64 + 0.78. 
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Table V. Inhibition of PMN Migration to Bound TSP by 
Anti-TSP Polyclonal and Monoclonal Antibodies 

Antibody 
concentration 

Treatment (l~g/ml) Control (%) 

Polyclonals 
TSP, no antibody 100 + 40.0 

Polyclonal anti-TSP 100 1 + 0.0 
Fab anti-TSP 100 20 -/- 13.0 
Nonspecific rabbit IgG 100 86 + 15.0 
Fab anti-HSA 100 78 ± 5.4 

Monoclonals 
TSP, no antibody 100 ± 16.0 

C6.7 20 25 ± 2.7 
A2.5 20 57 ± 8.5 
D4.6 20 79 ± 2.6 
A6.1 20 69 ± 6.1 

Nonspecific mouse IgG 20 116 ± 22.0 

Nitrocellulose filters were soaked in 225 ~g/ml TSP, and then exposed to vari- 
ous antibodies. No other attractant was present in Boyden chambers. Filters 
were scored by counting number of cells traveling 50/~m. The response of 
PMNs to TSP alone is defined as 100%. Values represent the mean + SEM 
for triplicate samples. 

fragments of TSP to establish which domain of TSP was 
responsible for the observed locomotory activity. Migra- 
tion was promoted by the bound 140-kD fragment, but not 
the I-1BD (Fig. 5). Comparing activity of bound 140-kD 
fragment versus bound TSP on a mole:mole basis, the 140- 
kD fragment was found to be more effective at stimulat- 
ing PMN movement than intact TSP (Fig. 5). Random mi- 
gration in response to bound 140-kD fragment peaked at 
,°20 pmol while the response to intact TSP peaked at ,050 
pmol. 

To determine whether the PMN response to bound 140-kD 
fragment was directional, filters were coated with 140-kD 
fragment on one side, and the filters mounted in Boyden 
chambers with either the high concentration up or the high 
concentration down. PMN migration was greatest for a pre- 
sumed negative gradient of the 140-kD fragment (data not 
shown). Thus, as was seen with intact TSP, directional 
migration (haptotaxis) was not stimulated by the 140-kD 
fragment. The 140-kD fragment was further proteolyzed to 
120/18 or 70-kD fragments, the fragments bound to filters 
and evaluated for their ability to stimulate PMN motility. 
Filters were submerged in a 200 nM solution of each protein 
and the results normalized for the amount of protein bound 
to each filter. The HBD was used as a negative control in 
these assays. TSP, the 140-kD fragment, and the 120/18-kD 
fragment stimulated migration to a similar extent (Fig. 6). 
This stimulatory activity was lost following further proteoly- 
sis to the 70-kD fragment indicating that the migration 
promoting activity of TSP resides in the COOH terminus 
distal to the 70-kD core domain. 

Discuss ion  

Unlike other ECM proteins, TSP is normally at low levels 
in the plasma and may only be a transitory component of the 
extracellular matrix (Lawler, 1986; Murphy-Ullrich and 
Mosher, 1985). However, when platelets are activated the 
concentration of TSP in the plasma can be elevated to levels 

within the nanomolar range (Lawler, 1986). In addition, 
once TSP has been released at a specific site it may be rapidly 
removed and degraded by surrounding cells through recep- 
tor-mediated endocytosis (Murphy-UUrich and Mosher, 1987; 
McKeown-Longo et al., 1984), thereby making it a transient 
component of an inflammatory response: Consistent with 
this hypothesis is the observation that TSP is present at injury 
sites within the first 2 d of wounding but disappears as wound 
healing progresses (Raugi et al., 1987). Additionally, plate- 
lets in the damaged area release factors other than TSP, such 
as PDGF, that may be involved in the initial recruitment of 
PMNs to the damage site (Deuel et al., 1982). Henry (1965) 
observed that in vivo PMNs accumulate in clots that are 4-13 
h old. In situ PMNs are recruited to blood clots early and 
appear to be involved in the removal of both TSP and fibrin 
from these clots (Murphy-UUrich and Mosher, 1985). As 
shown in the present study, TSP may be an important media- 
tor of PMN function at sites of inflammation or tissue injury. 
The potency of TSP in stimulating PMN motility appears to 
depend on the presence or absence of other chemoattractants 
and whether it is in solution or bound to a substrate. 

We have demonstrated that PMNs incubated with TSP, at 
concentrations that do not alone stimulate locomotion 
(30-50 nM), have a two- to fourfold greater chemotactic re- 
sponse to fMLP. This priming effect is not restricted to 
fMLP-mediated chemotaxis since we have observed a simi- 
lar priming effect of TSP on fMLP-generated 02- (Suchard, 
S. J., L. A. Boxer, and V. M. Dixit, submitted for publica- 
tion). Our ability to abolish the priming effect of TSP for 
chemotaxis with either heparin or an mAb against the HBD, 
and to generate a priming response with purified HBD indi- 
cates that this response is mediated through the HBD of TSP. 
Recently, we have shown that there are specific receptors on 
PMNs that recognize the HBD of TSP and that the binding 
of TSP to these receptors is required for the priming of 
fMLP-mediated 02- production (Suchard, S. J., L. A. 
Boxer, and V. M. Dixit, submitted for publication). 

Laminin (50-75 t~g/ml) also primes for fMLP-mediated 
superoxide production in human PMNs but requires a 30-45 
min preincubation (Pike et al., 1989), in contrast to the 
3 min preincubation required for TSP priming of fMLP- 
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l~gure 6. PMN migration stimulated by TSP or TSP proteolytie 
fragments bound to nitrocellulose filters. Methods were identical 
to those for Fig. 5. Filters were submerged in 200 nM TSP or TSP 
fragments for 2 h at 370C. The results were normalized for the 
amount of protein bound to each filter. See Fig. 2 for explanation 
of migration index. The migration index for the buffer control was 
1.0. Values represent the mean + SEM for triplicate samples. Rep- 
resentative of three experiments. 
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mediated 05- production (Suchard, S. J., L. A. Boxer, and 
V. M. Dixit, submitted for publication). The requirement for 
a long preincubation period observed with laminin may 
reflect the time required for increased fMLP receptor ex- 
pression, an event coupled to the enhanced fMLP response 
(Pike et al., 1989). Fibronectin both enhances the respira- 
tory burst in monocytes (Kuroiwa et al., 1988) and stimu- 
lates phagocytosis in PMNs first activated with fMLP or C5a 
(Pommier et al., 1984). These studies, along with the pres- 
ent study, suggest that ECM proteins may be instrumental in 
modulating PMN functional responses to other agonists. 

In contrast to the priming effect, we have demonstrated 
that a 2-10-fold higher concentration of substrate-associated 
or soluble TSP can stimulate significant migration of PMNs. 
When checkerboard analyses were performed to determine 
whether or not the migration of PMNs was directional, it be- 
came clear that soluble TSP stimulated directed migration 
(chemotaxis) whereas bound TSP stimulated random migra- 
tion. The concentration of TSP in the lower wells of Boyden 
chambers necessary to promote chemotaxis of PMNs was 
0.5-3 #M (0.225-1.35 mg/ml). Chemotaxis in human mela- 
noma cells is stimulated by somewhat lower concentrations 
of TSP, in the range of 100-160 nM (",,45-70 gg/ml) initial 
TSP concentration (Taraboletti et al., 1987). Under the con- 
ditions of our assay, the concentration of soluble TSP actu- 
ally reaching the cells in the upper wells was ,o10-60 nM. 
TSP levels in plasma are generally 0.2-0.4 nM (equivalent 
to 100-160 ng/ml) rising to a maximum of 70 nM in serum 
after activation of platelets (Saglio and Slayter, 1982; 
Lawler, 1986). Therefore, it is possible that localized sites 
along blood vessel walls contain concentrations of TSP high 
enough to initiate chemotaxis of PMNs. 

When proteolytic fragments of TSP were used to deter- 
mine which portion of the molecule contained the chemotac- 
tic activity for PMNs, we found that neither the HBD nor 
the 140-kD fragment could stimulate chemotaxis. However, 
preparations containing both of these fragments stimulated 
chemotaxis to an even greater extent than intact TSP, in- 
creasing the response about fivefold. These results indicated 
that the binding of both the HBD and the 140-kD fragment 
were required for chemotaxis. This finding is different from 
that of Taraboletti et al. (1987) who have shown that the HBD 
of TSP is as potent a chemoattractant for melanoma cells as 
the intact molecule. 

The observation that human PMNs display chemotactic 
behavior in response to TSP is interesting since other ECM 
proteins do not appear to stimulate chemotaxis in these cells. 
Laminin from 10 to 50 gg/ml stimulates chemotaxis in rab- 
bit peritoneal PMNs (Terranova et al., 1986), but concentra- 
tions up to 100 t~g/ml do not promote the same response in 
human peripheral PMNs (Basara et al., 1985). Vitronectin 
and fibronectin also give negative results at 100 gg/ml 
(Basara et al., 1985). In addition, the 120-kD fragment of 
fibronectin, which is chemotactic for monoeytes, does not 
attract PMNs at concentrations up to 10 t~M (Clark et al., 
1988), although it does stimulate degranulation (Wachtfogel 
et al., 1988). It should, however, be noted that the concentra- 
tions of ECM proteins tested in these other studies were 
much lower than TSP concentrations required for activity in 
the present study. Therefore, we cannot rule out the possibil- 
ity that higher concentrations of laminin, fibronectin, or 
vitronectin could stimulate chemotaxis in human PMNs. 

As an alternative to chemotaxis, migration due to sub- 
strate-bound TSP could represent the movement of PMNs on 
blood vessel walls before diapedesis. Mumby et al. (1984) 
found that more TSP is produced by subconfiuent cultures 
of endothelial ceils than by confluent cultures. They specu- 
lated that subconfluent cultures might represent injured en- 
dothelium where cell--cell contacts are reduced. Thus, during 
and following injury, platelets, endothelial cells, and smooth 
muscle cells may secrete TSP which then binds to endo- 
thelial cells or denuded matrix where it may be encountered 
by PMNs and promote increased levels of PMN movement. 

The accelerated random migration observed with bound 
TSP is similar to that observed for melanoma cells in re- 
sponse to bound laminin and fibronectin (McCarthy and 
Furcht, 1984). However, unlike melanoma cells, PMNs do 
not appear to exhibit an additional directional component to 
their movement in response to TSP. In contrast to chemotaxis, 
locomotion of PMNs in response to bound TSP was stimu- 
lated by relatively low concentrations (<300 pmol bound). 
Both the distance traveled and, to an even greater extent, the 
number of cells migrating were increased ,x,100-fold by TSP 
bound to filters as compared to either soluble TSP or fMLP. 
Haptotaxis in G361 melanoma cells (Taraboletti et al., 1987) 
appears to occur at lower concentrations of bound TSP than 
required for a PMN response. Polycarbonate filters soaked 
in as little as 20 nM TSP promote melanoma cell haptotaxis. 
However, it should be pointed out that these authors incubated 
filters in protein solution overnight at 37°C, significantly 
different conditions than those used in the present study. 

An anti-TSP polyclonal antibody and its Fab fragments, 
but not rabbit IgG, inhibited TSP-mediated cell movement 
indicating that this response was specific for TSP. More im- 
portantly, using monoclonal antibodies to specific regions of 
the TSP molecule, we were able to determine which portion 
of the molecule was responsible for stimulating PMN motil- 
ity. Monoclonal antibody C6.7 was the most effective inhibitor 
of cell movement, consistent with the hypothesis that the ac- 
tive cell-binding site is near the carboxy terminus, on the 18- 
kD fragment. While mAb A2.5, which recognizes the HBD, 
also slightly inhibited cell movement (to a lesser extent than 
mAb C6.7), this antibody has been shown to alter TSP con- 
formation so that sites on the carboxy terminus are affected 
(Galvin et al., 1985). The antibody data indicated that, in 
contrast to TSP priming of fMLP-mediated chemotaxis (where 
activity was located in the I-IBD), PMN migration in re- 
sponse to bound TSP was stimulated by the 140-kD COOH 
terminal fragment. 

As expected, bound 140-kD fragment promoted move- 
ment similar in magnitude to bound intact TSP confirming 
that the activity was localized to the COOH terminus of the 
molecule. Interestingly, bound 120/18-kD fragment was 
equipotent to the 140-kD fragment in stimulating migration. 
Since the 18-kD fragment retains the C6.7 antibody binding 
site and is disulfide-linked to the 120-kD fragment after 
chymotrypsin cleavage (Dixit et al., 1985a), it is not surpris- 
ing that the 120/18-kD fragment retains activity. Similar to 
our results, Taraboletti et al. (1987) found that the 140-kD 
fragment is as effective as intact TSP in stimulating hap- 
totaxis in melanoma cells. However, in their system the 120- 
kD fragment has no activity. Cleaving the 140-kD fragment 
to a 120/18-kD fragment also destroys the attachment and 
spreading activity of TSP for melanoma cells and keratino- 
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cytes (Roberts et at., 1987; Varani et at., 1988). The differ- 
ences observed in the activity of the 120flB-kD between this 
study and others might reflect variations in fragment prepa- 
ration leading to a slightly altered conformation of TSP pro- 
teolytic fragments. Alternatively, a different site on the TSP 
molecule may be involved in PMN migration than is required 
for melanoma cell haptotaxis or adhesion. 

The effectiveness of the inflammatory response depends 
on the presence of substances that can direct PMNs to a 
specific site, mediate their adhesion to endothelial cells, 
and/or subendothelial matrix, and promote transendothelial 
cell migration. Our results demonstrate that TSP meets sev- 
eral of the criteria of an inflammatory mediator. TSP can en- 
hance the chemotactic response of PMNs for formylated 
chemotactic peptides, TSP can itself stimulate PMN chemo- 
taxis, and when bound to a substrate, TSP can increase cell 
movement at or within sites of injury or infection. Therefore, 
TSP secreted luminally by endothelial cells in response to in- 
jury or other inflammatory mediators may participate in the 
recruitment of PMNs to a site of infection. Future studies in 
our laboratory will focus on the elements of signal transduc- 
tion that may be unique for TSP. 
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