
ARTICLE

Non-canonical function of DGCR8 in DNA double-
strand break repair signaling and tumor
radioresistance
Qinglei Hang 1, Liyong Zeng1, Li Wang 2, Litong Nie 1, Fan Yao1,5, Hongqi Teng1, Yalan Deng 1,

Shannon Yap1, Yutong Sun3, Steven J. Frank2, Junjie Chen 1,4 & Li Ma 1,4✉

In response to DNA double-strand breaks (DSBs), repair proteins are recruited to the

damaged sites. Ubiquitin signaling plays a critical role in coordinating protein recruitment

during the DNA damage response. Here, we find that the microRNA biogenesis factor

DGCR8 promotes tumor resistance to X-ray radiation independently of its Drosha-binding

ability. Upon radiation, the kinase ATM and the deubiquitinase USP51 mediate the activation

and stabilization of DGCR8 through phosphorylation and deubiquitination. Specifically,

radiation-induced ATM-dependent phosphorylation of DGCR8 at serine 677 facilitates USP51

to bind, deubiquitinate, and stabilize DGCR8, which leads to the recruitment of DGCR8 and

DGCR8’s binding partner RNF168 to MDC1 and RNF8 at DSBs. This, in turn, promotes

ubiquitination of histone H2A, repair of DSBs, and radioresistance. Altogether, these findings

reveal the non-canonical function of DGCR8 in DSB repair and suggest that radiation

treatment may result in therapy-induced tumor radioresistance through ATM- and USP51-

mediated activation and upregulation of DGCR8.
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Radiotherapy, the use of high-energy particles or waves such
as X-rays to cure or shrink tumors, has been a common
treatment for many patients with cancer1. Although both

normal and cancerous cells are damaged by radiation, the goal of
radiation therapy is to selectively destroy cancer cells, since
normal cells can often repair much of the damage caused by
radiotherapy2. Unfortunately, some tumors exhibit either intrin-
sic or therapy-induced radioresistance, and effective and safe
radiosensitizers are still lacking3–6.

DNA double-strand breaks (DSBs), which are generated by
endogenous agents and exogenous insults including ionizing
radiation (IR), are highly cytotoxic cellular lesions that, if not
properly repaired, can cause genomic instability, cell-cycle arrest,
and cell death7–10. To maintain genome stability, cells have
evolved a complex system called the DNA damage response
(DDR) system, and radioresistant tumor cells often exhibit
increased DDR and DNA repair ability3,10. In the DDR system,
genomic DSBs are sensed by the MRE11-RAD50-NBS1 complex,
which recruits the kinase ATM to the vicinity of DNA lesions.
The resulting phosphorylation of the histone variant H2AX by
ATM allows the accumulation of MDC1 protein and its binding
partners9,11–13. As the early event in a ubiquitination cascade,
phosphorylated MDC1 recruits RNF8, a RING-type ubiquitin
ligase that initiates mono-ubiquitination and K63-linked poly-
ubiquitination of H2A type histones at sites of DNA damage14–17.
Subsequently, another ubiquitin ligase, RNF168, is recruited to
the chromatin surrounding DNA damage sites to augment the
ubiquitination of histone H2A/H2AX. An alternative model,
however, proposes that RNF168 initiates H2A/H2AX ubiquiti-
nation on K13-15, while RNF8 extends the histone ubiquitination
by adding K63-linked ubiquitin chains18. Ultimately, H2A/H2AX
ubiquitination triggers a second wave of protein accumulation,
including DNA repair proteins BRCA1 and 53BP114–17,19–23.
Ubiquitination involved in DDR is subject to regulation at several
levels, and dysregulated histone ubiquitination leads to aberrant
transcriptional silencing, defects in DNA damage checkpoint
activation and cell-cycle arrest, and genomic instability24. In
addition to the ubiquitin ligases, several deubiquitinating
enzymes (DUBs), such as OTUB1, USP3, USP16, USP44, and
USP51, are also involved in DDR25–31. Altogether, these studies
underscore the importance of coordinated ubiquitination at DNA
damage sites during DDR. Despite these advances, how cells
precisely orchestrate the ubiquitination and deubiquitination
events and recruit the DNA repair proteins to the DNA lesions
has not been fully unraveled.

MicroRNAs (miRNAs) are endogenously expressed small non-
coding RNAs that regulate gene expression post-transcriptionally32.
In the nucleus, the microprocessor complex consisting of the RNase
Drosha and its binding partner DGCR8 cleaves the primary tran-
scripts of miRNAs (pri-miRNAs) to generate miRNA precursors
(pre-miRNAs). The pre-miRNAs are then exported by Exportin-5
to the cytoplasm, where they are cleaved by another RNase, Dicer,
to generate mature miRNAs33. We and others have demonstrated
that certain miRNAs participate in DDR and radiation
response34–40. Moreover, the miRNA biogenesis machinery has
been implicated in DNA repair outside of canonical miRNA-
mediated target mRNA cleavage and translational inhibition. For
example, Dicer and Drosha can generate dsRNAs that promote
DNA repair by facilitating the recruitment of DDR factors41–43 or
through the formation of DNA:RNA hybrids around DNA break
sites44. Moreover, both Dicer and DGCR8 have been reported to
regulate nucleotide excision repair of ultraviolet-induced lesions
(pyrimidine dimers and base modifications)45,46. However, the
precise function of miRNA biogenesis factors in DSB repair and
radiotherapy response remains unknown. In this study, we
uncovered a non-canonical function of DGCR8 in DSB repair

signaling and tumor radioresistance. In response to IR, the kinase
ATM and the deubiquitinase USP51 mediate the activation and
stabilization of DGCR8 through phosphorylation and deubiquiti-
nation. Once phosphorylated, DGCR8 and its constitutive binding
partner RNF168 in turn interact with MDC1 and RNF8 to promote
histone ubiquitination, DSB repair, and radioresistance.

Results
DGCR8 promotes tumor radioresistance independently of
Drosha binding. To examine the association between the key
miRNA biogenesis proteins and radioresistance, we stably
expressed Drosha, DGCR8, Exportin-5, or Dicer in LM2 cells
(Fig. 1a), a lung-metastatic subline of MDA-MB-231 human breast
cancer cells47. Only DGCR8, but not Drosha, Exportin-5, or Dicer,
increased clonogenic survival after X-ray IR (Fig. 1b). Moreover,
among these four proteins, only DGCR8 was substantially upre-
gulated upon IR treatment in a time-dependent manner (Fig. 1c).

Next, we compared the effects of wild-type (WT) DGCR8
and the Drosha binding-deficient mutant Δ692-DGCR8, which
lacks the Drosha-binding domain and RNA processing
ability48, on clonogenic survival of several cell lines after X-
ray radiation treatment. Overexpression of the Δ692-DGCR8
mutant in LM2, T47D, BT549, HCT116, HepG2, and HeLa cell
lines promoted radioresistance just like WT DGCR8 (Fig. 1d
and Supplementary Fig. 1a). Conversely, shRNA-mediated
knockdown of DGCR8 in LM2, MCF-7, and BT549 cell lines
sensitized the cells to X-ray treatment (Supplementary Fig. 1b);
this radiosensitizing effect could be reversed by ectopic
expression of either WT DGCR8 or Δ692-DGCR8 (Supple-
mentary Fig. 1c, d). Taken together, these results suggest
that DGCR8 positively regulates cancer cell radioresistance
independently of its Drosha-binding ability.

To determine whether DGCR8 is upregulated in radioresistant
tumor cells, we used X-ray IR to select radioresistant subpopula-
tions from LM2 and MCF-7 cell lines. After an 8-Gray (Gy) dose,
surviving cells formed colonies. We pooled the colonies and
repeated the dose twice (Fig. 1e). Cells derived from this selection,
named LM2-R and MCF-7-R cells, showed increased clonogenic
survival upon IR relative to the parental cells (Fig. 1f and
Supplementary Fig. 1e). We also compared levels of γH2AX, a
marker of DSBs, based on the knowledge that IR-induced DSBs
result in the formation of γH2AX foci, and that the persistence of
γH2AX foci indicates delayed repair and is associated with
radiosensitivity49–51. Notably, 12 h after irradiation, γH2AX levels
stayed high in parental LM2 cells but decreased substantially in
LM2-R cells (Fig. 1g), indicating that the LM2-R subline is more
able to clear DSBs. We then examined the protein levels of Drosha,
DGCR8, Exportin-5, and Dicer. Not only was DGCR8 markedly
upregulated in LM2-R cells compared with parental LM2 cells, but
it also showed a substantial increase after IR treatment (Fig. 1h).
Similarly, DGCR8 protein was also upregulated in MCF-7-R cells
compared with parental MCF-7 cells (Supplementary Fig. 1e).
Because DGCR8 was upregulated in the radioresistant cells, we
silenced its expression, which led to radiosensitization of both
LM2-R (Fig. 1i, j) and MCF-7-R (Supplementary Fig. 1e) cells.
Importantly, the inhibited clonogenic survival ability upon IR
could be rescued by ectopic expression of either WT DGCR8 or the
Δ692-DGCR8 mutant (Fig. 1i, j).

We further validated our findings in mice bearing LM2-R
xenograft tumors. When the tumor diameters reached 8 mm, we
irradiated the tumors with a 2-Gy fractionated dose of X-ray once
a day for 5 consecutive days a week, and the treatment lasted
2 weeks. As shown in Fig. 1k, knockdown of DGCR8, as well as
restoration of DGCR8 expression, had no substantial effect on
tumor growth without irradiation. In contrast, treatment with
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fractionated X-ray led to sustained growth inhibition of tumors
formed by DGCR8-knockdown cells, whereas tumors formed by
either control LM2-R cells or cells with re-expression of DGCR8
(either WT or the Δ692 mutant) showed an initial response and
then re-grew (Fig. 1k). Collectively, these findings indicate that
DGCR8 promotes the radioresistance of breast cancer cells
in vitro and in vivo independently of Drosha binding.

To assess the clinical relevance of DGCR8 expression to
radiotherapy in patients, we analyzed a cohort of human breast
cancer patients in which transcriptomic profiling was obtained
from 286 tumor samples; 87% of these patients had received

radiotherapy52. This analysis revealed that patients with high
DGCR8 expression levels in their tumors had worse relapse-free
survival than those with low DGCR8 expression levels (Fig. 1l;
with two different probes), suggesting that overexpression of
DGCR8 may lead to radioresistance and eventually relapse in
patients with breast cancer.

DGCR8 promotes the recruitment of RNF168 to RNF8 and
MDC1 at DSBs, histone ubiquitination, and DNA repair after
irradiation. To understand the molecular basis of DGCR8-
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mediated radioresistance, we first examined γH2AX foci at dif-
ferent time points after X-ray IR, and we observed persistent
γH2AX signals after irradiation in DGCR8-knockdown LM2 and
BT549 cells, but not in the control cells (Fig. 2a, b). Importantly,
DGCR8 was localized to IR-induced foci that overlapped with
γH2AX-positive foci in a time-dependent manner (Fig. 2a).
Conversely, overexpression of either WT DGCR8 or Δ692-
DGCR8 in parental LM2 cells accelerated the clearance of γH2AX
after irradiation (Fig. 2c), suggesting that DGCR8 may empower
cells to repair DSBs in an RNA processing-independent manner.
Non-homologous end-joining (NHEJ) and homologous recom-
bination (HR) are two distinct DSB repair pathways in eukaryotic
cells53,54. We used a previously established fluorescence-based
reporter system that allows quantitative analysis of NHEJ and HR
in the same cells through the repair of two inverted endonuclease
I-SceI cuts55; by constructing a reporter cell line (LM2-DRR), we
found that depletion of DGCR8 significantly decreased HR and
NHEJ repair efficiency (Fig. 3a, b and Supplementary Fig. 2a).

To further investigate the molecular mechanism by which
DGCR8 regulates DNA repair, we attempted to identify DGCR8-
interacting DDR proteins with or without IR treatment of LM2 cells
by using a triple epitope (S-protein, FLAG tag, and streptavidin-
binding peptide)-tagged version of DGCR8 (SFB-DGCR8). We
performed tandem-affinity purification with streptavidin-sepharose
beads and S-protein agarose beads, followed by mass spectrometric
analysis, which identified several DGCR8-interacting DDR proteins
in both non-irradiated and irradiated LM2 cells; among these DDR
proteins, RNF168 was ranked the top one according to the intensity-
based absolute quantitation (iBAQ) value (Supplementary Fig. 2b).
On the other hand, another two DDR proteins, MDC1 and RNF8,
were the top two DGCR8-interacting DDR proteins identified only
in irradiated cells (Supplementary Fig. 2b). The cellular response to
DSBs involves activation of ATM and subsequent production of
γH2AX, which binds and recruits MDC1 to DNA damage sites56,57.
Then, the ubiquitin ligases RNF8 and RNF168 are recruited in an
MDC1-dependent manner20,21,58. Consistent with our mass spectro-
metry results, co-immunoprecipitation (Co-IP) assays showed that
IR treatment induced the interaction of DGCR8 with MDC1 and
RNF8 in both LM2 and HEK293T cells, whereas the DGCR8-
RNF168 interaction was constitutive (Fig. 3c and Supplementary
Fig. 2c). By performing glutathione S transferase (GST) pulldown
assays under cell-free conditions, we detected interaction between
purified DGCR8 and purified RNF168 (Supplementary Fig. 2d),
suggesting that RNF168 is DGCR8’s direct and constitutive binding
partner. Importantly, by performing Co-IP experiments to examine
the interactions between endogenous proteins, we found that

knockdown of DGCR8 in LM2 cells blocked IR-induced RNF168-
RNF8 and RNF168-MDC1 interactions, without inhibiting the
RNF8-MDC1 interaction (Fig. 3d), which suggests that DGCR8 is
required for recruiting RNF168 to MDC1 and RNF8 after
irradiation. Consistent with the DGCR8-knockdown effect (Fig. 3a,
b), knockdown of RNF168 also reduced HR and NHEJ repair
efficiency in LM2-DRR cells (Supplementary Fig. 2e–g).

Next, we performed chromatin extraction followed by IP,
with or without MNase treatment. As shown in Fig. 3e, the
recruitment of DGCR8, MDC1, RNF8, and RNF168 to chromatin
was induced by irradiation, and the interactions of DGCR8 with
RNF168, RNF8, and MDC1 were detected in chromatin extracts.
Interestingly, similar interaction patterns were observed with or
without MNase treatment (Fig. 3e). These results indicate that the
interactions of DGCR8 with RNF168, RNF8, and MDC1 occur on
chromatin, but these protein–protein interactions are not
mediated by chromatin. Importantly, immunofluorescent stain-
ing of irradiated LM2 cells showed that knockdown of DGCR8
did not affect the recruitment of MDC1 or RNF8 to DSBs, but
abolished the localization of RNF168, 53BP1, and BRCA1 to
DNA damage sites (Fig. 3f and Supplementary Fig. 3). Given that
RNF8 and RNF168 ubiquitinate H2A to drive DDR16,18,20, we
determined the effect of DGCR8 on RNF8- and RNF168-induced
ubiquitination of H2A. Upon IR, both RNF8 and RNF168 could
enhance mono-, di-, and poly-ubiquitination of H2A, which was
blocked by knockdown of DGCR8 (Fig. 3g). Taken together, these
results suggest that after radiation treatment, DGCR8 mediates
the recruitment of its binding partner RNF168 to MDC1 and
RNF8 at DSBs, leading to amplification of histone ubiquitination.

Radiation-induced USP51 mediates deubiquitination and sta-
bilization of DGCR8. We next sought to understand how radia-
tion leads to the upregulation of DGCR8 protein. Although X-ray IR
had little or no effect on DGCR8 mRNA levels (Supplementary
Fig. 4a), irradiation of both LM2 and MCF-7 cells markedly upre-
gulated DGCR8 protein to levels comparable to treatment with the
proteasome inhibitor MG132 (Fig. 4a and Supplementary Fig. 4b).
Moreover, we examined DGCR8 levels in the presence of the pro-
tein synthesis inhibitor cycloheximide (CHX) and found that
compared with parental LM2 and MCF-7 cells, DGCR8 stability was
much higher in the radioresistant sublines derived from X-ray
irradiation (Fig. 4b and Supplementary Fig. 4c, d). We then
examined proteolytic (K48-linked) and non-proteolytic (K63-
linked) ubiquitination levels of DGCR8. By using lysine mutants of
ubiquitin (K48, K63, K48R, and K63R), we observed a substantial
decrease in total and K48-linked ubiquitination of DGCR8 24 h after

Fig. 1 DGCR8 promotes tumor radioresistance independently of Drosha binding. a Immunoblotting of Dicer, Drosha, DGCR8, Exportin-5, and β-actin
in LM2 cells transduced with GFP, Drosha, DGCR8, Exportin-5, or Dicer. b Clonogenic survival assays of LM2 cells transduced with GFP, Drosha,
DGCR8, Exportin-5, or Dicer after X-ray ionizing radiation (IR) treatment. n= 3 wells per group. c Immunoblotting of DGCR8, Drosha, Exportin-5, Dicer,
γH2AX, H2AX, and β-actin in LM2 cells collected at the indicated times after X-ray IR treatment. Quantification results were normalized to β-actin.
d Immunoblotting of Drosha, DGCR8, and β-actin (left panel) and clonogenic survival assays (right panel) of LM2 stable cell lines overexpressing GFP,
wild-type (WT) DGCR8, or Δ692-DGCR8 (the Drosha binding-deficient mutant). n= 3 wells per group. e Schematic representation of the generation of
radioresistant sublines (LM2-R and MCF-7-R) from parental LM2 and MCF-7 breast cancer cell lines by three rounds of X-ray irradiation. f Clonogenic
survival assays of parental LM2 and LM2-R cells after X-ray IR treatment. n= 3 wells per group. g Immunoblotting of γH2AX, H2AX, and β-actin in parental
LM2 and LM2-R cells collected at the indicated times after IR. h Immunoblotting of DGCR8, Drosha, Dicer, Exportin-5, and β-actin in LM2 and LM2-R cells
collected at the indicated times after IR. LE long exposure, SE short exposure. Quantification results were normalized to β-actin. i, j Immunoblotting of
DGCR8 and β-actin (i) and clonogenic survival assays (j) of control or DGCR8-knockdown LM2-R cells transduced with GFP, WT DGCR8, or Δ692-
DGCR8. n= 3 wells per group. k Tumor size of mice bearing xenograft tumors formed by control or DGCR8-knockdown LM2-R cells transduced with WT
DGCR8 or Δ692-DGCR8, with or without fractionated doses of localized X-ray IR treatment (XRT) using an X-RAD 320 irradiator. n= 5 mice per group.
l Kaplan–Meier curves of relapse-free survival of breast cancer patients (dataset: GSE2034; n= 286 patients, 87% of whom received radiotherapy),
stratified by DGCR8 expression levels. Data were generated from the KM Plotter (probes: 64474_g_at in the left panel and 91617_at in the right panel). The
auto-select best cutoff was used in the analysis. Statistical significance was determined by a log-rank test. HR hazard ratio. Statistical significance in
b, d, f, j, and k was determined by a two-tailed unpaired t-test. Error bars are mean ± SEM. Source data are provided as a Source Data file.
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X-ray IR (Fig. 4c). These results suggest that radiation may stabilize
DGCR8 protein by reducing its proteolytic ubiquitination.

DUBs are proteases that remove mono-ubiquitin or poly-
ubiquitin chains from substrate proteins59. We screened for
DGCR8-interacting DUBs by a pulldown assay using a panel
of 68 SFB-tagged human DUBs60. We co-transfected
MYC-DGCR8 and each SFB-tagged DUB into HEK293T cells,
pulled down the DUBs with S-protein beads, and detected
interaction of DGCR8 with six DUBs: USP10, USP36, USP39,
USP43, USP49, and USP51 (Fig. 4d), which was verified by a
confirmatory pulldown assay (Supplementary Fig. 4e). To
determine the effect of these DUBs on DGCR8 ubiquitination,
we co-expressed each SFB-tagged DUB with MYC-tagged
DGCR8 and HA-tagged ubiquitin in HEK293T cells, and

immunoprecipitation assays under denaturing conditions
revealed that ectopic expression of either USP36 or USP51
reduced the poly-ubiquitination of DGCR8 (Fig. 4e). Through
overexpression and knockdown of USP36 or USP51, we
observed that both DUBs positively regulated the levels of
endogenous DGCR8 protein in LM2 (Fig. 4f) and HEK293T
(Supplementary Fig. 4f) cells. Moreover, Co-IP assays con-
firmed that both USP36 and USP51 could be pulled down by
DGCR8 (Fig. 4g), and that both DUBs interacted with DGCR8
at endogenous levels in LM2 cells (Fig. 4h).

We then examined the subcellular localization of USP36, USP51,
and DGCR8. Consistent with previous reports31,48,61,62, we detected
USP36 specifically in the nucleolus, whereas both USP51 and
DGCR8 proteins were localized diffusely in the nucleus
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(Supplementary Fig. 4g, h). To validate the direct interaction
between USP51 and DGCR8, we expressed and purified SFB-USP51
and MBP-DGCR8 proteins, and in vitro pulldown assays demon-
strated that USP51 bound to DGCR8 (Fig. 4i), indicating that
DGCR8 may be directly regulated by USP51. To determine whether
USP51 regulates the stability of DGCR8, we performed CHX
treatment of the radioresistant LM2 (LM2-R) cells, finding that
DGCR8 was less stable upon knockdown of USP51 (Fig. 4j).

To determine the deubiquitinating ability of USP51 towards
DGCR8, we generated the catalytically inactive mutant of USP51,
C372S63. Overexpression of WT USP51, but not the C372S
mutant, removed K48-linked but not K63-linked poly-ubiquitin
chains of DGCR8 in HEK293T cells (Supplementary Fig. 4i). To
determine whether USP51 directly deubiquitinates DGCR8, we
incubated purified USP51 and ubiquitinated DGCR8 purified
from HEK293T cells in a cell-free system. Purified USP51, but not
the C372S mutant, strongly deubiquitinated DGCR8 in vitro
(Supplementary Fig. 4j), suggesting that DGCR8 is a substrate
of USP51.

Interestingly, USP51, but not USP36, was upregulated upon X-
ray radiation (Fig. 5a). In both LM2 and MCF-7 cells, IR-induced
upregulation of DGCR8 was reversed by shRNA-mediated
knockdown of USP51, but not by knockdown of USP36 (Fig. 5b
and Supplementary Fig. 5a). Moreover, the interaction between
DGCR8 and USP51 was enhanced in a time-dependent manner
after irradiation of LM2 cells (Supplementary Fig. 5b), and this
increased interaction was observed with endogenous proteins
(Fig. 5c). In addition, the K48 linkage-specific deubiquitination of
DGCR8 by USP51 was enhanced by IR treatment (Fig. 5d).
Altogether, these data suggest that radiation-induced USP51
mediates deubiquitination and stabilization of DGCR8.

Similar to the DGCR8-knockdown effects (Fig. 3a, b, f),
knockdown of USP51 not only decreased HR and NHEJ repair
efficiency in LM2-DRR cells (Fig. 5e and Supplementary Fig. 5c,
d), but also abrogated the recruitment of RNF168, 53BP1, and
BRCA1 to DSBs after radiation treatment, without affecting the
recruitment of MDC1 and RNF8 (Fig. 5f and Supplementary
Fig. 6). Moreover, the mono-, di-, and poly-ubiquitination of
H2A induced by RNF8 and RNF168 upon IR was abolished by
USP51 knockdown (Fig. 5g). Therefore, USP51 is required for the
recruitment of the DGCR8-RNF168 complex to DSBs, histone
ubiquitination, and DNA repair after irradiation.

To validate the association between DGCR8 and USP51 in
patients with breast cancer, we immunohistochemically stained
these two proteins in breast tumors (n= 139) from patients with
a long-term (~12 years) follow-up record (Supplementary Fig. 7a).

A positive correlation between USP51 and DGCR8 was observed
in these breast carcinomas, in which 73% (61 of 83) of the tumors
with moderate or weak DGCR8 expression exhibited moderate or
weak USP51 expression, and 75% (42 of 56) of the tumors with
strong DGCR8 expression showed strong USP51 expression
(Spearman correlation R= 0.48, P= 3 × 10−9; Supplementary
Fig. 7a, b). We also plotted the USP51 protein score versus the
DGCR8 protein score for individual patients, which revealed a
highly significant correlation (Pearson R2= 0.52, P < 1 × 10−15;
Supplementary Fig. 7c), indicating the relevance of the identified
regulatory mechanism in human cancer. Furthermore, Kaplan–
Meier analysis showed that high levels of DGCR8 (log-rank
P= 2 × 10−10) and USP51 (log-rank P= 0.0001) were signifi-
cantly associated with poor overall survival after surgery in
patients with breast cancer (Supplementary Fig. 7d, e).

ATM-mediated phosphorylation of DGCR8 promotes its
upregulation and function upon irradiation. We investigated
whether and how DGCR8 protein is regulated by upstream sig-
naling in DDR. By using a phospho-S/TQ (p-S/TQ) antibody, we
found that either WT DGCR8 or Δ692-DGCR8 was phos-
phorylated at ATM/ATR consensus motifs in LM2 and
HEK293T cells upon IR treatment (Fig. 6a and Supplementary
Fig. 8a), and that an ATM kinase inhibitor, Ku55933, abolished
radiation-induced S/TQ phosphorylation of DGCR8 (Fig. 6a and
Supplementary Fig. 8a), suggesting that DGCR8 is phosphory-
lated in an ATM-dependent manner after radiation. We also
detected the phospho-S/TQ signal of endogenous DGCR8 protein
in LM2-R cells, which exhibited higher basal levels of ATM
phosphorylation than parental LM2 cells, and the S/T-Q phos-
phorylation of endogenous DGCR8 was upregulated after IR
treatment of both LM2 and LM2-R cells (Fig. 6b). Analysis of the
DGCR8 protein sequence revealed one evolutionarily conserved
ATM phosphorylation site, serine 677 (S677; Fig. 6c and Sup-
plementary Fig. 8b). Importantly, mass spectrometric analysis
provided direct evidence that radiation treatment induced the
phosphorylation of DGCR8 at S677 (Fig. 6d, e). Consistently,
substitution of S677 with alanine or aspartic acid (S677A or
S677D) abrogated the S/T-Q phosphorylation of either WT
DGCR8 or Δ692-DGCR8 in irradiated HEK293T cells, further
validating that S677 is indeed the site of radiation-induced ATM-
dependent phosphorylation (Fig. 6f). To determine whether
DGCR8 is a substrate of ATM, we performed in vitro kinase
assays with purified proteins, finding that ATM phosphorylated
either full-length DGCR8 protein or Δ692-DGCR8, but not their
S677A mutants (Fig. 6g). In addition, radiation-induced S677

Fig. 3 DGCR8 promotes the recruitment of RNF168 to RNF8 and MDC1 at DSBs, histone ubiquitination, and DNA repair upon irradiation.
a Immunoblotting of Drosha, DGCR8, and β-actin in the LM2-DRR (expressing the pLCN DSB Repair Reporter) cell line transduced with DGCR8 shRNA.
b Knockdown of DGCR8 decreased HR and NHEJ efficiency in LM2-DRR cells. Two days after co-transfection of I-SceI endonuclease and an exogenous
donor for HR (pCAGGS DRR mCherry Donor EF1a BFP) into the DGCR8-knockdown LM2-DRR cells, the percentages of GFP-positive and mCherry-positive
cells, gated on BFP-positive cells, were determined by flow cytometry. Repair by HR or NHEJ leads to mCherry or GFP expression. Data were normalized to
the control cells. n= 3 biological replicates. c MYC-DGCR8-overexpressing LM2 cells were treated with IR (8 Gy) and cultured for 1 h, followed by
pulldown with MYC beads and immunoblotting with the indicated antibodies. d Control and DGCR8-knockdown LM2 cells were treated with IR (8 Gy) and
cultured for 1 h, followed by immunoprecipitation with an antibody against RNF168 or RNF8 and immunoblotting with the indicated antibodies. e Chromatin
was extracted from LM2 cells that were treated with IR (8 Gy) and cultured for 1 h. The chromatin fractions, with or without MNase treatment, were
immunoprecipitated with a DGCR8-specific antibody and immunoblotted with the indicated antibodies. f Quantification of MDC1, RNF8, RNF168, 53BP1,
and BRCA1 foci in DGCR8-knockdown LM2 cells. Cells were incubated for 1 h after 2-Gy IR and immunostained with antibodies against γH2AX, MDC1,
RNF8, RNF168, 53BP1, and BRCA1 (see representative images in Supplementary Fig. 3). n= 3 biological replicates. g Control and DGCR8-knockdown LM2
cells with stable overexpression of FLAG-H2A and RNF8 or RNF168 were transfected with HA-ubiquitin (Ub), treated with IR (8 Gy), and cultured for 8 h,
followed by immunoprecipitation with anti-FLAG beads and immunoblotting with antibodies against HA and FLAG. Before immunoprecipitation, lysates
were heated at 95 °C for 5 min in the presence of 1% SDS (for denaturing), followed by a 10-fold dilution with lysis buffer and sonication. LE long exposure,
SE short exposure. Statistical significance in b and f was determined by a two-tailed unpaired t-test. Error bars are mean ± SEM. n.s. not statistically
significant. Source data are provided as a Source Data file.
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Fig. 4 USP51 binds and stabilizes DGCR8. a LM2 cells were treated with 10 μM MG132, irradiated with 8 Gy X-ray, and collected 6 h later. Lysates were
immunoblotted with antibodies against DGCR8 and β-actin. b Parental and radioresistant LM2 cells were treated with 100 μg/ml cycloheximide (CHX).
Cells were collected at different time points and immunoblotted with antibodies against DGCR8 and β-actin. c HEK293T cells were co-transfected with
MYC-DGCR8 and HA-ubiquitin (Ub) or its lysine-specific mutants (K48, K63, K48R, or K63R), followed by immunoprecipitation with anti-MYC beads and
immunoblotting with antibodies against HA and MYC. Cells were treated with IR (8 Gy), followed by treatment with 10 μM MG132 for 6 h. Before
immunoprecipitation, lysates were heated at 95 °C for 5 min in the presence of 1% SDS (for denaturing), followed by a 10-fold dilution with lysis buffer and
sonication. d SFB-tagged DUBs were individually co-transfected with MYC-DGCR8 into HEK293T cells, followed by pulldown with S-protein beads and
immunoblotting with antibodies against FLAG and MYC. e HEK293T cells were co-transfected with MYC-DGCR8, HA-ubiquitin, and a candidate DUB.
After treatment with MG132 for 6 h, cells were lysed, denatured, and subjected to immunoprecipitation with anti-MYC beads and immunoblotting with
antibodies against HA and MYC. f Immunoblotting of DGCR8, USP36, USP51, and β-actin in LM2 cells with overexpression or knockdown of USP36 or
USP51. g HEK293T cells were co-transfected with MYC-DGCR8 and SFB-tagged USP36 or USP51. After 48 h, cells were lysed, immunoprecipitated with
anti-MYC beads, and immunoblotted with antibodies against FLAG and MYC. h Co-IP of endogenous DGCR8 with endogenous USP36 and USP51. DGCR8
was immunoprecipitated from LM2 cells and immunoblotted with antibodies against USP36, USP51, and DGCR8. i USP51 binds DGCR8 in vitro. Left panel:
SFB-GFP or SFB-USP51 was retained on S-protein beads and incubated with purified MBP-DGCR8. The bound proteins were eluted by boiling in Laemmli
buffer and immunoblotted with antibodies against MBP and FLAG. Right panel: purified SFB-GFP, SFB-USP51, and MBP-DGCR8 proteins were analyzed by
SDS-PAGE and Coomassie blue (CB) staining. j Upper panel: LM2-R cells stably infected with USP51 shRNA were treated with 100 μg/ml CHX for the
indicated times. Lysates were subjected to immunoblotting with antibodies against DGCR8, USP51, and β-actin. Lower panel: DGCR8 levels were
quantitated and normalized to β-actin. Source data are provided as a Source Data file.
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phosphorylation of DGCR8 was further validated by using an
antibody against the phosphorylated S677 site of DGCR8 in both
HEK293T (Fig. 6h) and LM2 (Fig. 6i) cells.

We asked whether ATM regulates DGCR8 by phosphorylating it
at S677. Indeed, IR-induced upregulation of DGCR8 in LM2 cells
was blocked by either the ATM inhibitor Ku55933 (Fig. 7a) or
ATM shRNA (Fig. 7b), and similar effects were also observed in
BT549 cells (Supplementary Fig. 8c, d). In contrast, neither
treatment with the ATR inhibitor AZD6788 nor knockdown of
ATR affected DGCR8 protein levels upon IR treatment

(Supplementary Fig. 8e, f). Next, we stably expressed WT DGCR8,
the phosphodeficient mutant (S677A), or the phosphomimetic
mutant (S677D) in DGCR8-depleted LM2 and LM2-R cells
(Supplementary Fig. 8g, h). Without irradiation of LM2 cells, the
stability of WT DGCR8 was higher than that of the S677A mutant
but lower than that of the S677D mutant (Fig. 7c); after irradiation
of LM2 cells, the stability of WT DGCR8 was increased to a level as
high as that of the S677D mutant, whereas the S677A mutant was
much less stable (Fig. 7c). It should be noted that the S677A
mutant of DGCR8 exhibited a shorter half-life than WT DGCR8
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even without radiation treatment (Fig. 7c), which was likely due to
the basal S677 phosphorylation of DGCR8 (Fig. 6h, i). In the
radioresistant LM2-R cells, the stability of WT DGCR8 was much
higher than that of the S677A mutant but was comparable to that
of the S677D mutant (Fig. 7d). Therefore, ATM-dependent
phosphorylation of DGCR8 at S677 is important for the IR-
induced stabilization of DGCR8. Furthermore, we determined the
HR and NHEJ repair efficiency in the DGCR8-depleted LM2-DRR
reporter cell line with re-expression of WT DGCR8, the
phosphodeficient mutant (S677A), or the phosphomimetic mutant
(S677D), finding that the inhibited HR and NHEJ repair efficiency
caused by DGCR8 knockdown was completely rescued by WT
DGCR8 or the phosphomimetic mutant S677D, but not by the
phosphodeficient mutant S677A (Fig. 7e and Supplementary
Fig. 8i, j). In DGCR8-depleted LM2, LM2-R, and BT549 cells,
the phosphodeficient mutant S677A was less able to promote
radioresistance than WT DGCR8 or the phosphomimetic mutant
S677D (Fig. 7f and Supplementary Fig. 8k, l), suggesting that
ATM-mediated phosphorylation of DGCR8 is critical for its
regulation of radiation response.

To further explore the mechanism of S677 phosphorylation of
DGCR8 in DDR, we compared the interaction of WT DGCR8, the
phosphodeficient mutant (S677A), or the phosphomimetic mutant
(S677D) with MDC1, RNF8, RNF168, and USP51 at 1 or 8 h after
IR. At both time points, radiation-induced interaction of DGCR8
with MDC1 and RNF8 was abolished by the phosphodeficient
mutation S677A, whereas a phosphomimetic mutant of DGCR8
(S677D) showed constitutive interaction with MDC1 and RNF8,
either with or without IR treatment (Fig. 8a, b). Consistent with
the results in Supplementary Fig. 5b, the interaction between WT
DGCR8 and USP51 was enhanced at 8 h, but not at 1 h, after IR,
and this increased interaction was abolished by the phosphodefi-
cient mutation (S677A), but not by the phosphomimetic mutation
(S677D) (Fig. 8a, b). Moreover, USP51 markedly reduced the
ubiquitination of either WT DGCR8 or the S677D mutant, but
had little effect on the ubiquitination of the S677A mutant
(Fig. 8c). In addition, immunofluorescent staining showed that the
S677A mutation of DGCR8 did not affect the recruitment of
MDC1 or RNF8 to DSBs, but abolished the localization of
DGCR8, RNF168, 53BP1, and BRCA1 to damage sites, whereas
the S677D mutant of DGCR8 exhibited similar effects to WT
DGCR8 in irradiated cells (Fig. 8d and Supplementary Fig. 9).
Finally, we found that the enhanced mono-, di-, and poly-
ubiquitination of H2A by RNF8 and RNF168 upon IR was
blocked by the S677A mutation (Fig. 8e). Collectively, these results

suggest that after irradiation, ATM-dependent phosphorylation of
DGCR8 at S677 is crucial for the recruitment of the DGCR8-
RNF168 complex to MDC1 and RNF8 at DSBs, as well as the
subsequent interaction of DGCR8 with USP51, DGCR8 deubi-
quitination, histone ubiquitination, and DSB repair.

Discussion
DGCR8, a component of the microprocessor complex, is essential
for miRNA biogenesis and plays important roles in development,
oncogenesis, the exit of mouse embryonic stem cells from
pluripotency, and the maintenance of heterochromatin
organization64–68. Moreover, DGCR8 has been reported to reg-
ulate nucleotide excision repair of ultraviolet-induced lesions
(pyrimidine dimers and base modifications)46 as well as degra-
dation of double-stranded, structured RNAs69. In this study, we
discovered that DGCR8 acts as a regulator of DSB repair and X-
ray radiosensitivity independently of its Drosha-binding ability,
revealing a new non-canonical role of DGCR8.

Aberrations in DSB repair underlie resistance to radiotherapy
in patients with cancer. The RNF8/RNF168-mediated ubiquiti-
nation pathway governs the recruitment of DDR proteins to the
chromatin surrounding DNA damage sites, which has critical
roles in the repair of radiation-induced DSBs7. How RNF168 is
recruited to genomic lesions remains elusive, and an X factor is
hypothesized to be a missing link between RNF8 and RNF16818.
Recently, histone H170,71 and L3MBTL272 have been reported as
signaling intermediates between RNF8 and RNF168. Here we
identify DGCR8 as a previously undescribed molecular link
between RNF8 and RNF168. Upon IR, phosphorylation by ATM
and subsequent stabilization by USP51 promote the recruitment
of DGCR8 and its constitutive binding partner RNF168 to MDC1
and RNF8 at DSBs, resulting in amplified histone ubiquitination
and enhanced DSB repair (Supplementary Fig. 10). These find-
ings suggest that radiation treatment may lead to therapy-induced
radioresistance through DGCR8. It is worth mentioning that in
our study, depletion of RNF168 inhibited both HR and NHEJ
repair in LM2 cells; however, the effect of RNF168 on HR repair
seems to be complex and tissue type-dependent, since both HR-
promoting and HR-inhibiting effects were reported73–76. Thus,
future studies of the role of DGCR8 in HR repair in other tissue
types are warranted.

Posttranslational modifications of DGCR8, including phos-
phorylation and SUMOylation, have been shown to regulate
DGCR8’s stability and function77,78. However, the regulations

Fig. 5 Radiation-induced USP51 mediates deubiquitination of DGCR8, histone ubiquitination, recruitment of DDR proteins to DSBs, and DNA repair.
a Immunoblotting of USP36, USP51, and β-actin in parental and radioresistant LM2 cells with and without IR treatment (8 Gy followed by 24-h incubation).
b Immunoblotting of DGCR8, USP36, USP51, and β-actin in USP36-knockdown and USP51-knockdown LM2 cells with or without IR treatment (8 Gy
followed by 24-h incubation). c Co-IP of endogenous DGCR8 with endogenous USP51. LM2 and LM2-R cells were treated with 8-Gy IR. After 8 h, cells
were lysed, immunoprecipitated with a DGCR8-specific antibody, and immunoblotted with antibodies against USP51 and DGCR8. SE short exposure, LE
long exposure. d HEK293T cells with stable overexpression of MYC-DGCR8 were co-transfected with SFB-USP51 (wild-type or the C372S mutant) and
HA-tagged ubiquitin or the lysine-specific mutant (K48 or K63), and then treated with IR (8 Gy). After 8 h, cells were lysed, denatured, and subjected to
immunoprecipitation with anti-MYC beads and immunoblotting with antibodies against HA and MYC. e Knockdown of USP51 decreased HR and NHEJ
efficiency in LM2-DRR cells. Two days after co-transfection of I-SceI endonuclease and an exogenous donor for HR (pCAGGS DRR mCherry Donor EF1a
BFP) into the USP51-knockdown LM2-DRR cells, the percentages of GFP-positive and mCherry-positive cells, gated on BFP-positive cells, were determined
by flow cytometry. Repair by HR or NHEJ leads to mCherry or GFP expression. Data were normalized to the control cells. n= 3 biological replicates.
f Quantification of γH2AX, DGCR8, MDC1, RNF8, RNF168, 53BP1, and BRCA1 foci in USP51-knockdown LM2 cells. Cells were incubated for 1 h after 2-Gy IR
and immunostained with antibodies against γH2AX, DGCR8, MDC1, RNF8, RNF168, 53BP1, and BRCA1 (see representative images in Supplementary
Fig. 6). n= 3 biological replicates. g Control and USP51-knockdown LM2 cells with stable overexpression of FLAG-H2A and RNF8 or RNF168 were
transfected with HA-ubiquitin (Ub), treated with IR (8 Gy), and cultured for 8 h, followed by immunoprecipitation with anti-FLAG beads and
immunoblotting with antibodies against HA and FLAG. Before immunoprecipitation, lysates were heated at 95 °C for 5 min in the presence of 1% SDS (for
denaturing), followed by a 10-fold dilution with lysis buffer and sonication. Statistical significance in e and f was determined by a two-tailed unpaired t-test.
Error bars are mean ± SEM. Source data are provided as a Source Data file.
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and regulators of DGCR8 ubiquitination were largely unexplored.
Our study revealed the impact of phosphorylation and ubiquiti-
nation on DGCR8, and both modifications are regulated by
radiation. Importantly, we found that DGCR8 is phosphorylated
by ATM at serine 677, which is critical for DGCR8 stabilization
and the recruitment of DGCR8 to MDC1 and RNF8 at DSBs.
Moreover, by screening a DUB library, we identified USP51 and
USP36 as two DUBs that interact with DGCR8 and reduce its
poly-ubiquitination in cells. Although both DUBs positively
regulate DGCR8 protein levels, only USP51, but not USP36, is

upregulated upon radiation and is required for IR-induced
expression of DGCR8. The mechanism by which USP51 is
upregulated by radiation remains to be determined. Furthermore,
our results demonstrate that USP51 directly binds and deubi-
quitinates DGCR8 in a K48 linkage-specific manner, and that this
deubiquitination is enhanced by IR treatment. In addition, our
results demonstrate that USP51 facilitates histone ubiquitination
and DSB repair. On the other hand, Wang et al. showed that
USP51 can deubiquitinate H2A at later stages of DDR in U2OS
cells, and that from 4 h post-IR, the 53BP1 protein recruited to
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DSBs diminished at a slower rate in USP51-depleted U2OS cells
than in control cells31. Thus, future studies are needed to dissect
the different effects of USP51 on H2A ubiquitination at early and
late stages of DDR. In contrast to the reduction of proteolytic,
K48-linked ubiquitination of DGCR8 by radiation, IR leads to an
increase in non-proteolytic, K63-linked ubiquitination of
DGCR8, and this type of ubiquitination is not affected by USP51
(Fig. 5d). It is worth mentioning that our mass spectrometric
analysis identified several DGCR8-interacting ubiquitin ligases,
including RNF8, RNF168, CHIP, HUWE1, ZFP91, RBBP6, and
ZNF598. Future studies are needed to determine which E3 ligase
regulates K48-linked ubiquitination of DGCR8, whether non-
proteolytic ubiquitination of DGCR8 is involved in DDR, and
which E3 ligase and deubiquitinase regulate K63-linked ubiqui-
tination of DGCR8. Interestingly, the removal of K63-linked
poly-ubiquitination of certain proteins, such as TXNIP and RIP1,
can trigger K48-linked ubiquitination and degradation79,80. Thus,
the relationship between K63-linked and K48-linked ubiquitina-
tion of DGCR8 during DDR is worth further investigation.
Finally, our work calls for the development of small-molecule
inhibitors that target USP51’s DUB activity or its interaction with
DGCR8; such inhibitors have potential as tumor radiosensitizers.

Methods
Cell culture. The HEK293T, T47D, MCF-7, BT549, HepG2, HCT116, and HeLa
cell lines were from the American Type Culture Collection (ATCC) and were
cultured under conditions specified by the manufacturer. The LM2 cell line was
from Xiang Zhang (Baylor College of Medicine) and the HEK293A cell line was
from Junjie Chen’s lab stock; both cell lines were cultured in DMEM supplemented
with 10% fetal bovine serum and 1% penicillin and streptomycin. Short tandem
repeat profiling (for cell line authentication) and mycoplasma tests were done by
ATCC and MD Anderson’s Characterized Cell Line Core Facility.

Generation of radioresistant sublines. The radioresistant sublines were gener-
ated from parental LM2 and MCF-7 cell lines as described in our previous
publication5. Briefly, after an 8-Gy dose of X-ray irradiation, surviving cells formed
colonies. We pooled the colonies and repeated the dose two more times. The
radiosensitivity of the cells derived from this selection, named LM2-R and MCF-7-
R, was validated by clonogenic survival assays as described below. All experiments
using these cells were performed at early passages.

Chemicals. The chemicals used to treat cells were MG132 (Santa Cruz Bio-
technology, #sc-201270), cycloheximide (Sigma, #C7698), puromycin (Thermo-
Fisher Scientific, #A1113803), hygromycin B (ThermoFisher Scientific.,
#10687010), blasticidin (ThermoFisher Scientific, #R21001), G418 Sulfate (Ther-
moFisher Scientific, #MT30234CR), Micrococcal Nuclease (MNase)

(ThermoFisher Scientific, #88216), the ATM inhibitor Ku55933 (Sigma,
#SML1109), and the ATR inhibitor AZD-6738 (MedKoo, #206114).

Plasmids and shRNA. The DGCR8 (#10921), Drosha (#10921), Dicer (#10921),
Exportin-5 (#10921), HA-ubiquitin (WT: #17608; K48R: #17604; K48: #17605;
K63: #17606), RNF8 (#99396), FLAG-H2A (#63560), p53 (#81754), pLCN DSB
Repair Reporter (DRR) (#98895), and pCAGGS DRR mCherry Donor EF1a BFP
(#98896) constructs were from Addgene. The RNF168 plasmid was from DNASU
(clone ID: HsCD00832967). The pCBA-I-SceI plasmid was from Dr Junjie Chen’s
lab stock. Full-length DGCR8 and the Drosha-binding domain deletion mutant
(Δ692-DGCR8), as well as FLAG-H2A, were amplified by PCR and cloned into the
pDONR201 vector through the BP reaction. The S677A (serine to alanine) and
S677D (serine to aspartic acid) mutants of full-length DGCR8 and Δ692-DGCR8 in
the pDONR201 vector were generated by using the QuikChange® kit from Agilent
Technologies and validated by sequencing. Full-length DGCR8, Δ692-DGCR8, and
their S677A and S677D mutants, as well as FLAG-H2A, were subcloned into
pcDNA3.1-MYC, pCDH-MYC, pLenti-CMV-puromycin, pLenti-CMV-hygro-
mycin, pLX304, or MBP-tagged destination vectors through the LR reaction. The
MBP-p53 construct was generated from pDONR-p53 (Addgene, #81754) through
the LR reaction. The K63R mutant of HA-ubiquitin and the 68 human DUB ORFs
in the pBabe-SFB vector were described in our previous publication60. FLAG-ATM
and its kinase-dead mutant were described in our previous publication5. The GST-
USP51 and SFB-USP51-C372S plasmids were described in our previous
publication63. GFP and RNF168 were cloned into the GST-tagged destination
vector through the LR reaction. USP36 and USP51 were subcloned from the
pDONR201 vector into pLenti-CMV-puromycin and pLenti-CMV-hygromycin
destination vectors through the LR reaction. The pLKO.1- DGCR8 shRNA (clone
ID: NM_022720.5-2583s21c1 and NM_022720.4-575s1c1), USP51 shRNA (clone
ID: NM_201286.1-669s1c1 and NM_201286.1-1915s1c1), USP36 shRNA (clone
ID: NM_025090.3-4844s21c1 and NM_025090.3-1148s21c1), and RNF168 shRNA
(clone ID: NM_152617.2-757s1c1 and NM_152617.2-2122s1c1) constructs were
from Sigma. The pGIPZ- ATM shRNA (clone ID: V3LHS_350469 and
V3LHS_350471) and ATR shRNA (clone ID: V2LHS_94659 and V2LHS_94661)
constructs were from Dharmacon. RNAi-resistant DGCR8, Δ692-DGCR8, S677A-
DGCR8, and S677D-DGCR8 constructs were generated by using the QuikChange®

kit from Agilent Technologies and were then subcloned into the pLenti-CMV-
hygromycin destination vector through the LR reaction.

Lentiviral transduction. Virus-containing supernatant was collected 48 h after co-
transfection of the viral vector and packaging plasmids (psPAX2 and pMD2.G)
into HEK293T cells, and was then added to the target cells. The infected cells were
selected with puromycin, hygromycin B, blasticidin, or G418 for 3–14 days after
infection.

Immunoblotting. Western blot analysis was performed with precast gradient gels
(Bio-Rad) using standard methods. Briefly, cultured cells were lysed in RIPA buffer
(Millipore, #20-188) containing protease inhibitors (GenDEPOT, #P3100) and
phosphatase inhibitors (GenDEPOT, #P3200). Proteins were separated by SDS-
PAGE and blotted onto a nitrocellulose membrane (Bio-Rad). Membranes were
blocked and then probed with the specific primary antibodies, followed by
peroxidase-conjugated secondary antibodies. The bands were visualized by che-
miluminescence (Denville Scientific). The following antibodies were used: anti-
bodies against DGCR8 (1:2000, Abcam, #ab191875), Dicer (1:1000, Cell Signaling

Fig. 6 DGCR8 is phosphorylated by ATM at S677 upon radiation. a MYC-GFP-, DGCR8-, and Δ692-DGCR8-overexpressing LM2 cells with or without
ATM inhibitor (ATMi) Ku55933 pretreatment (10 μM, 1 h) were treated with IR (8 Gy) and cultured for 30min, followed by pulldown with anti-MYC beads
and immunoblotting with antibodies against p-S/TQ and MYC. LE long exposure, SE short exposure. b LM2 and LM2-R cells were treated with IR (8 Gy)
and cultured for 30min, followed by immunoprecipitation with a DGCR8-specific antibody and immunoblotting with antibodies against p-S/TQ and
DGCR8. c Consensus ATM phosphorylation site on human DGCR8 (S677) and alignment with the conserved site on Dgcr8 from other species.
d Annotated tandem mass spectrometry (MS/MS) spectrum of the peptide encompassing phosphorylated serine 677 (QLASphosQKILQLLHPHVK) of
DGCR8. MYC-DGCR8-overexpressing LM2 cells with or without IR (8 Gy followed by 1-h incubation) were lysed, denatured, and subjected to
immunoprecipitation with anti-MYC beads, followed by MS analysis. PH indicates phosphorylation. NH3, H2O, and ++ indicate ammonia, water, and
double charges, respectively. The graph shows the mass-to-charge ratios (m/z) of the doubly charged precursor peptide ions. The x and y axes represent
m/z and relative ion intensity, respectively. e The extracted ion chromatograms for S677phos (peptide QLAS(phos)QKILQLLHPHVK) in non-irradiated and
irradiated LM2 cells based on high-performance liquid chromatography (HPLC)-MS/MS analysis. The x and y axes represent the retention time of HPLC/
MS analysis and the MS intensity, respectively. The area under the curve is used to indicate the relative abundance of S677phos with or without IR
treatment. f HEK293T cells were transfected with DGCR8 (full-length or Δ692), S677A, or S677D mutant, treated with IR (8 Gy), and cultured for 30min,
followed by immunoprecipitation with anti-MYC beads and immunoblotting with antibodies against p-S/TQ and MYC. g In vitro kinase assay. Purified WT
DGCR8 and Δ692-DGCR8 or their S677A mutants were incubated with purified wild-type ATM or the kinase-dead mutant in kinase buffer. After the
reaction, proteins were resolved by SDS-PAGE and subjected to immunoblotting with the indicated antibodies. Purified MBP-p53 was used as a positive
control for ATM kinase activity. h, i HEK293T (h) and LM2 (i) cells were transfected with MYC-tagged WT DGCR8 or the S677A mutant, treated with IR
(8 Gy), and cultured for 30min, followed by immunoprecipitation with anti-MYC beads and immunoblotting with antibodies against p-DGCR8 (S677),
DGCR8, and MYC.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24298-z

12 NATURE COMMUNICATIONS |         (2021) 12:4033 | https://doi.org/10.1038/s41467-021-24298-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


a 

b 

c 

d 

sh-Control 

sh-DGCR8#1 

sh-DGCR8#2 

sh-DGCR8#2 + WT DGCR8 

sh-DGCR8#2 + S677A-DGCR8 

sh-DGCR8#2 + S677D-DGCR8 R
el

at
iv

e 
re

pa
ir 

ef
fic

ie
nc

y 

0.0 

0.5 

1.0 

1.5 

HR NHEJ 

P = 0.0003 

P = 0.002 

P = 0.001 

P = 0.001 

P = 0.002 

P = 0.001 
e 

f 

DGCR8 

-actin 

Vehicle 

IR - 24  8 - 24  h 8 

Hours post IR (8 Gy) 

ATMi 

100 

40 
LM2 

p-ATM 

ATM  

260 

260 

KDa 

DGCR8 

-actin 

IR - 24  8 - 24  8 

Hours post IR (8 Gy) 

100 

40 

sh-Control sh-ATM#1 

- 24  h 8 

sh-ATM#2 

260 

ATM 

p-ATM  

260 

LM2 KDa 

0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.2 

0 4 8 12 24 

CHX (h) 
R

el
at

iv
e 

D
G

C
R

8 
le

ve
ls

 

WT DGCR8 

S677A-DGCR8 

S677D-DGCR8 

No IR 

0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.2 

0 4 8 12 24 

CHX (h) 

R
el

at
iv

e 
D

G
C

R
8 

le
ve

ls
 

WT DGCR8 

S677A-DGCR8 

S677D-DGCR8 

8 Gy IR 

LM2 

WT S677A S677D 

-      4      8    12    24 

DGCR8 
No IR 

8 Gy IR 

CHX   -      4      8    12    24 -     4      8     12    24   h 

-actin 

-actin 

DGCR8 

DGCR8 

100 

40 

WT S677A S677D 

-     4      8    12    24 CHX  -     4      8     12    24 -     4      8     12    24   h 

DGCR8 

100 

40 

KDa 

KDa 

0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.2 

0 4 8 12 24 

CHX (h) 

R
el

at
iv

e 
D

G
C

R
8 

le
ve

ls
 

WT DGCR8 

S677A-DGCR8 

S677D-DGCR8 
LM2-R 

WT S677A S677D 

-      4      8    12    24 

DGCR8 

CHX   -      4      8     12    24 -      4      8     12    24   h 

-actin 

DGCR8 

100 

40 

KDa 

LM2-R 

P
 =

 0
.0

01
 

S
ur

vi
va

l f
ra

ct
io

n 
(%

) 
 

IR (Gy) 
0 2 4 6 

0.1 

100 

10 

WT DGCR8 
S677A-DGCR8 
S677D-DGCR8 

1 P
 =

 0
.0

00
3 

Fig. 7 ATM-mediated S677 phosphorylation of DGCR8 is crucial for DGCR8 stability, DSB repair, and radiation response. a LM2 cells were pretreated
with ATMi (Ku55933, 10 μM for 1 h), followed by IR treatment (8 Gy). Lysates were collected at the indicated times and immunoblotted with antibodies
against DGCR8, p-ATM, ATM, and β-actin. b Immunoblotting of DGCR8, p-ATM, ATM, and β-actin in control and ATM-knockdown LM2 cells collected at
the indicated times after IR. c Upper panels: DRCR8-knockdown LM2 cells with ectopic expression of WT DGCR8, the S677A mutant, or the S677D mutant
were treated with CHX with or without IR, collected at different time points, and immunoblotted with antibodies against DGCR8 and β-actin. Lower panels:
DGCR8 protein levels were quantitated and normalized to β-actin. d Left panel: DRCR8-knockdown LM2-R cells with ectopic expression of WT DGCR8, the
S677A mutant, or the S677D mutant were treated with CHX, collected at different time points, and immunoblotted with antibodies against DGCR8 and
β-actin. Right panel: DGCR8 protein levels were quantitated and normalized to β-actin. e The effect of S677 DGCR8 phosphorylation on HR and NHEJ
efficiency in LM2-DRR cells. Two days after co-transfection of I-SceI endonuclease and an exogenous donor for HR (pCAGGS DRR mCherry Donor EF1a
BFP) into DGCR8-knockdown and DGCR8-, S677A-DGCR8-, and S677D-DGCR8-rescued LM2-DRR cells, the percentages of GFP-positive and mCherry-
positive cells, gated on BFP-positive cells, were determined by flow cytometry. Repair by HR or NHEJ leads to mCherry or GFP expression. Data were
normalized to the control cells. n= 3 biological replicates. f Clonogenic survival assays of DRCR8-knockdown LM2-R cells with ectopic expression of WT
DGCR8, the S677A mutant, or the S677D mutant after X-ray IR treatment. n= 3 wells per group. Statistical significance in e and f was determined by a
two-tailed unpaired t-test. Error bars are mean ± SEM. Source data are provided as a Source Data file.
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Technology, #5362S), Drosha (1:1000, Cell Signaling Technology, #3364S),
Exportin-5 (1:1000, Cell Signaling Technology, #12565), γH2AX (1:1000, Cell
Signaling Technology, #9718S), H2AX (1:1000, Cell Signaling Technology,
#2595S), H2A (1:1000, Cell Signaling Technology, #2578S), p-CHK1 (1:1000, Cell
Signaling Technology, #12302S), CHK1 (1:1000, Cell Signaling Technology,
#2360S), p-CHK2 (1:1000, Cell Signaling Technology, #2661S), CHK2 (1:1000, Cell
Signaling Technology, #6334S), p-ATM (1:1000, Cell Signaling Technology,
#5883S), ATM (1:1000, Cell Signaling Technology, #2873S), p-ATR (1:1000, Cell
Signaling Technology, #2853S), ATR (1:1000, Cell Signaling Technology, #2790S),
p-S/TQ (1:1000, Cell Signaling Technology, 2851S), MBP (1:1000, Cell Signaling
Technology, 2396S), GST (1:1000, Cell Signaling Technology, #2622S), MDC1

(1:1000, R&D Systems, #MAB6497), RNF8 (1:1000, Millipore, #09-813), RNF168
(1:1000, Millipore, #ABE367), USP36 (1:1000, a gift from Dr Masayuki Komada at
Tokyo Institute of Technology), USP51 (1:3000, a gift from Dr Sharon Dent at MD
Anderson Cancer Center), β-actin (1:1000, Santa Cruz Biotechnology, #sc-47778),
FLAG (1:5000, Sigma, #F3165, clone M2), HA (1:2000, Santa Cruz Biotechnology,
#sc-7392), and MYC (1:2000, Santa Cruz Biotechnology, #sc-40, clone 9E10). The
antibody against phospho-DGCR8 (pS677; 1:500) was generated at Biomatik. The
ImageJ program (version 1.53g) was used for densitometric analysis of western
blots, and the quantification results were normalized to an internal control.
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Immunoprecipitation and pulldown assays. Cells were lysed in NETN buffer
(20 mM Tris-HCl, pH 8.0, 100 mM NaCl, 1 mM EDTA, 0.5% Nonidet P-40) or
CHAPS buffer (25 mM Tris-HCl, pH 7.5, 120 mM NaCl, 1 mM EDTA, 0.33%
CHAPS) containing protease inhibitors and then sonicated. The chromatin fraction
was isolated using a Chromatin Extraction Kit (Abcam, #ab117152), according to
the manufacturer’s protocol, followed by sonication and with or without MNase
treatment. For immunoprecipitation of endogenous proteins, cell extracts (lysed in
CHAPS buffer) were pre-cleared with protein-A/G PLUS beads (Santa Cruz Bio-
technology, #sc-2003) and IgG at 4 °C for 30 min, followed by incubation with an
antibody against RNF8 (Proteintech, #14112-1-AP), RNF168 (Proteintech, #21393-
1-AP), or DGCR8 (Bethyl Laboratories, #A302-468A) or IgG at 4 °C for 1 h, and
were then incubated with protein-A/G PLUS beads at 4 °C overnight. The beads
were washed with Tris-buffered saline containing 0.05% Tween-20 and CHAPS
buffer. The bound proteins were eluted by incubation with 2× Laemmli buffer at
room temperature for 10 min with mixing. For immunoprecipitation of tagged
proteins, cell extracts were pre-cleared with protein-A/G PLUS beads and incu-
bated with anti-MYC agarose beads (Millipore, #A7470) at 4 °C for 2 h. For
pulldown of SFB-tagged proteins, cell extracts were incubated with S-protein beads
(Millipore, #69704) at 4 °C for 2 h.

In vitro binding assay. For DGCR8-RNF168 binding, bacterially purified MBP-
DGCR8 was eluted with maltose and then incubated with glutathione beads (GE
Healthcare, 17-0756-01) conjugated with bacterially purified GST-GFP or GST-
RNF168 at 4 °C overnight. For DGCR8-USP51 binding, bacterially purified MBP-
DGCR8 was incubated with mammalian purified SFB-USP51 or SFB-GFP from
transfected HEK293T cells, followed by pulldown with S-protein beads at 4 °C
overnight. The beads were washed with NETN buffer four times and the bound
proteins were eluted by boiling in 2× Laemmli buffer and subjected to western blot
analysis.

Immunofluorescence. For immunostaining of γH2AX, DGCR8, MDC1, RNF8,
RNF168, BRCA1, and 53BP1, cells were cultured in chamber slides (ThermoFisher
Scientific) overnight, followed by X-ray irradiation. For immunostaining of
DGCR8, USP36, and USP51, HEK293A cells were co-transfected with MYC-
DGCR8 and SFB-tagged USP36 or USP51 and were cultured in chamber slides
(ThermoFisher Scientific) overnight. The cells were washed with phosphate-
buffered saline (PBS), fixed with 4% paraformaldehyde, permeabilized with 0.1%
Triton X-100 in PBS, blocked with 3% bovine serum albumin in PBS, and incu-
bated with antibodies against γH2AX (1:100, Cell Signaling Technology, #9718S),
γH2AX (1:100, BD Biosciences, #560443), DGCR8 (1:100, Abcam, #ab191875),
MDC1 (1:200, Bio-Rad, #AHP799), RNF8 (1:200, Proteintech, #14112-1-AP),
RNF168 (1:100, Millipore, #ABE367), BRCA1 (1:20, Santa Cruz Biotechnology,
#sc-6954), 53BP1 (1:100, Novus Biologicals, #NB100-304), FLAG (1:500, Sigma,
#F7425), and MYC (1:500, Santa Cruz Biotechnology, #sc-40, clone 9E10) at 4 °C
overnight, followed by incubation with Alexa Fluor 488 goat anti-rabbit IgG
(1:1000, Invitrogen, ThermoFisher Scientific, #A-11008), Alexa Fluor 647 donkey
anti-sheep IgG (1:1000, Invitrogen, ThermoFisher Scientific, #A-21448), Alexa
Fluor 488 goat anti-mouse IgG (1:1000, Invitrogen, ThermoFisher Scientific, #A-
11001), Alexa Fluor 594 goat anti-rabbit IgG (1:1000, Invitrogen, ThermoFisher
Scientific, #A-11012), and/or Alexa Fluor 594 goat anti-mouse IgG (1:1000, Invi-
trogen, ThermoFisher Scientific, #A-11005) at room temperature for 1 h. Cover-
slips were mounted on slides by using anti-fade mounting medium with 4′,6-
diamidino-2-phenylindole (DAPI, Vector Laboratories, #H-1200). Immuno-
fluorescence images were acquired on a Zeiss LSM880 confocal microscope or
Olympus FV1000 confocal microscope. Zen 2.6 (Zeiss) software was used for
confocal image processing.

RNA isolation and qPCR. Total RNA was isolated using TRIzol reagent (Invi-
trogen) and was then reverse transcribed with an iScript complementary DNA

(cDNA) Synthesis Kit (Bio-Rad, #1708891). The resulting cDNA was used for real-
time PCR with the iTaq Universal SYBR Green Supermix (Bio-Rad, #1725124).
GAPDH was used as an internal control. Real-time PCR and data collection were
performed on a CFX96 instrument (Bio-Rad). The primer sequences are listed in
Supplementary Table 1.

Mass spectrometry. To identify DGCR8-interacting proteins in LM2 cells with or
without IR treatment, we performed the tandem-affinity purification and mass
spectrometry as follows. LM2 cells were transfected with SFB-tagged DGCR8.
Forty-eight hours after transfection, the cells were cultured for 1 h after release
from 8 Gy X-rays. Expression of the transfected protein was confirmed by
immunoblotting. For affinity purification, a total of ten 15-cm dishes of LM2 cells
expressing SFB-DGCR8 were lysed in NETN buffer (200 mM Tris-HCl, pH 8.0,
100 mM NaCl, 0.05% Nonidet P-40, 1 mM EDTA) containing protease inhibitors
at 4 °C for 20 min and then sonicated. Crude lysates were cleared by centrifugation,
and the supernatants were incubated with 300 µl streptavidin-sepharose beads (GE
Healthcare, #17511301) at 4 °C for 2 h. The beads were washed three times with
NETN buffer, and the bound proteins were eluted with NETN buffer containing
2 mg/ml biotin (Sigma, #B4501) at 4 °C for 2 h. The eluates were incubated with
100 µl S-protein agarose beads (Millipore, #69704) at 4 °C for 2 h, and the beads
were washed three times with NETN buffer. The bound proteins were eluted by
boiling in 2× Laemmli buffer, resolved by SDS-PAGE, visualized by Coomassie
blue staining, and subjected to in-gel digestion81.

For identifying the phosphorylation site(s) on DGCR8 upon IR, MYC-tagged
DGCR8 protein immunoprecipitated from non-irradiated or irradiated LM2 cells
was resolved by SDS-PAGE and visualized by Coomassie Brilliant Blue staining.
DGCR8 bands were excised, destained with 50% ethanol, and dehydrated with
acetonitrile. After reduction and alkylation with dithiothreitol and iodoacetamide,
bands were then subjected to in-gel digestion with trypsin (enzyme:protein= 1:50)
at 37 °C for 8 h. The tryptic peptides were extracted with water and acetonitrile
from the gel after digestion. The extracted peptides were dried by Speed-Vac and
then subjected to high-performance liquid chromatography-tandem mass
spectrometry analysis as follows. Tryptic peptides from in-gel digestion were
dissolved in HPLC solvent A (0.1% formic acid in 2% acetonitrile and 98% H2O),
injected onto a manually packed reversed-phase C18 column (170 mm × 79 μm,
3-μm particle size, Dikma, China) coupled to an Easy-nLC 1200 chromatography
system (ThermoFisher Scientific). Peptides were eluted using a 1-h gradient of
8–80% solvent B (0.1% formic acid in 90% acetonitrile and 10% H2O) in solvent A
at a flow rate of 300 nl/min. Peptides eluted from HPLC were ionized with a
nanospray source and analyzed in an Orbitrap HF-X mass spectrometer
(ThermoFisher Scientific).

For the identification of the DGCR8 phosphorylation site, acquired MS raw files
were transformed into MGF format using the Proteome Discoverer software
(version 2.2, ThermoFisher Scientific). Proteins were identified by comparing the
fragment spectra against those in the UniProt database using Mascot v.2.6.01
(Matrix Science Ltd., London, UK). For the identification of DGCR8-interacting
proteins, acquired MS raw files were searched against the human proteome
database from UniProt (January 26, 2019, updated, 93,798 sequences) using
MaxQuant software (version 1.6.7.0), with a reversed decoy database by
Andromeda search engine82. The default parameters for label-free quantification
(LFQ) were applied82. Matching between runs was performed, and LFQ was
performed with a minimum ratio count of 283. The iBAQ values were used to
calculate the absolute protein abundance84,85.

In vivo and in vitro deubiquitination assays. For in vivo deubiquitination,
HEK293T cells were harvested 48 h after transfection with the indicated plasmids.
For denaturing, lysates were heated at 95 °C for 5 min in the presence of 1% SDS,
followed by a 10-fold dilution with lysis buffer (to 0.1% SDS) and sonication as
described in our previous publication60. The cell lysates were incubated with S-

Fig. 8 S677 DGCR8 phosphorylation is critical for the recruitment of RNF168 to RNF8 and MDC1, DGCR8-USP51 interaction, DGCR8 deubiquitination,
and histone ubiquitination upon irradiation. a, bMYC-GFP-, WT DGCR8-, S677A-DGCR8-, and S677D-DGCR8-overexpressing LM2 cells with or without
IR treatment (a, 8 Gy followed by 1-h incubation; b, 8 Gy followed by 8-h incubation) were subjected to pulldown with MYC beads and immunoblotting
with the indicated antibodies. c HEK293T cells with stable overexpression of MYC-tagged WT DGCR8, S677A-DGCR8, or S677D-DGCR8 were co-
transfected with SFB-USP51 (WT or the C372S mutant) and HA-tagged ubiquitin, and then treated with IR (8 Gy). After 8 h, cells were lysed, denatured,
and subjected to immunoprecipitation with anti-MYC beads and immunoblotting with antibodies against HA and MYC. d Quantification of γH2AX,
DGCR8, MDC1, RNF8, RNF168, 53BP1, and BRCA1 foci in DRCR8-knockdown LM2 cells with ectopic expression of WT DGCR8, S677A-DGCR8, or S677D-
DGCR8. Cells were incubated for 1 h after 2-Gy IR and immunostained with antibodies against γH2AX, DGCR8, MDC1, RNF8, RNF168, 53BP1, and BRCA1
(see representative images in Supplementary Fig. 9). n= 3 biological replicates. Statistical significance was determined by a two-tailed unpaired t-test.
Error bars are mean ± SEM. e DRCR8-knockdown LM2 cells with ectopic expression of WT DGCR8 or the S677A mutant were transduced with FLAG-H2A
and RNF8 or RNF168. The cells were then transfected with HA-ubiquitin (Ub), treated with IR (8 Gy), and cultured for 8 h, followed by immunoprecipitation
with anti-FLAG beads and immunoblotting with antibodies against HA and FLAG. Before immunoprecipitation, lysates were heated at 95 °C for 5 min in the
presence of 1% SDS (for denaturing), followed by a 10-fold dilution with lysis buffer and sonication. LE long exposure, SE short exposure. Source data are
provided as a Source Data file.
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protein or anti-MYC beads for 2 h, and then the beads were washed with lysis
buffer three times and subjected to western blot analysis with the indicated anti-
bodies. For in vitro deubiquitination, HEK293T cells were transfected with HA-
ubiquitin and MYC-DGCR8 plasmids; 48 h after transfection, MYC-DGCR8 was
immunoprecipitated with anti-MYC beads and incubated with purified SFB-USP51
protein (WT or the C372S mutant) at 37 °C for 3 h in deubiquitination buffer
(50 mM Tris-HCl, pH 8.0, 50 mM NaCl, 10 mM dithiothreitol, 1 mM EDTA, 5%
glycerol). After the reaction, the beads were washed with deubiquitination buffer,
and the bound proteins were eluted by boiling in 1× Laemmli buffer and subjected
to western blot analysis with the indicated antibodies.

HR and NHEJ repair assays. HR and NHEJ repair assays were performed as
described previously55. Briefly, LM2 cells were infected with pLCN DRR lentivirus.
After G418 selection for 14 days, a single clone was established as the DRR cell line
(named LM2-DRR). The LM2-DRR cells were transduced with lentivirus expres-
sing control shRNA or shRNA targeting DGCR8, RNF168, or USP51. After pur-
omycin selection for 2 days, the DGCR8-knockdown cells were transduced with
RNAi-resistant DGCR8, S677A-DGCR8, or S677D-DGCR8, and then selected for
another 7 days. The cells were co-transfected with I-SceI endonuclease (pCBA-I-
SceI, to induce DSBs) and pCAGGS DRR mCherry Donor EF1a BFP (an exo-
genous donor for HR). The cells were harvested 2 days after transfection and
subjected to flow cytometric analysis (Attune NxT Flow Cytometer, Invitrogen,
ThermoFisher Scientific) to determine the percentage of mCherry-positive and
GFP-positive cells resulting from HR- and NHEJ-based repair, respectively. The
ratio of mCherry-positive or GFP-positive cells to BFP-positive cells was used as a
measure of HR or NHEJ repair efficiency. Attune™ NxT software (version H.0) was
used for flow cytometry data collection and analysis. A representative gating
strategy for flow cytometric analysis is shown in Supplementary Fig. 11.

Clonogenic survival assay. Equal numbers of cells were plated in 6-well plates or
10-cm tissue-culture dishes in triplicates at a clonogenic density and irradiated by
using an X-RAD 320 irradiator with the indicated doses. The medium was replaced
24 h later and the cells were then incubated for 12–18 days. The resulting colonies
were fixed and stained with crystal violet. Colonies containing more than 50 cells
were counted. The survival fraction was calculated as: (number of colonies/number
of cells plated)irradiated/(number of colonies/number of cells plated)non-irradiated.

In vitro kinase assay. HEK293T cells were transfected with 12 µg of WT FLAG-
ATM or the kinase-dead mutant and then irradiated. Activated or kinase-dead
ATM was immunopurified from the cell extracts with anti-FLAG beads (Ther-
moFisher Scientific, #A36797). Recombinant MBP-tagged full-length DGCR8 or
Δ692- DGCR8, their S677A mutants, and p53 were expressed in bacteria and
purified with maltose. The recombinant proteins were mixed with purified ATM
protein and ATP (Cell Signaling Technology, #9804) in kinase buffer (Cell Sig-
naling Technology, #9802). The samples were incubated at 30 °C for 15 min in a
hybridization oven-shaker (ThermoFisher Scientific). The reactions were termi-
nated by boiling, and the proteins were subjected to western blot analysis with
antibodies against p-S/TQ, p-ATM, ATM, and MBP.

Tissue microarray and immunohistochemical analysis. Human breast tumor
tissue microarrays containing 139 analyzable cases of breast carcinoma were
purchased from US Biolab (#HBreD139Su01). Tissue specimens were processed as
described in our previous publication5. The primary antibodies used for immu-
nohistochemical analysis were antibodies against DGCR8 (1:250, Abcam,
#ab90579) and USP51 (1:250, Abcam, #ab121147). Whole-slide images were
captured using an Aperio CS2 slide scanner system (Leica Biosystems, Wetzlar,
Germany) at a 40× magnification. Immunohistochemical staining was analyzed by
using the immunoreactive score (IRS) system. The percentage of positive cells was
scored on a scale of 0–4: 0 if 0% of tumor cells were positive, 1 if 1–10% of cells
were positive, 2 if 11–50% were positive, 3 if 51–80% were positive, and 4 if
81–100% were positive. Staining intensity was scored on a scale of 0–3 (3 is the
strongest). Final IRS score= (score of the staining intensity) × (score of the per-
centage of positive cells). Score= 0–6 was considered moderate or weak expression
and score= 8–12 was considered strong expression.

Tumor radiosensitivity study. Animal experiments were performed as described
previously86, in accordance with a protocol approved by the Institutional Animal
Care and Use Committee of MD Anderson Cancer Center. Mice were housed at
70–74 °F (set point: 72 °F) with 40–55% humidity (set point: 45%). The light cycle
of animal rooms is 12 h of light and 12 h of dark. Mice were euthanized when they
met the institutional euthanasia criteria for tumor size or overall health condition.
Solitary tumor xenografts were produced in the muscle of the right hind limbs of
10-week-old female nude mice (from MD Anderson Cancer Center’s internal
supply) by inoculation of 3 × 106 control, DGCR8-knockdown, or DGCR8-restored
(with either WT DGCR8 or Δ692-DGCR8) LM2-R cells. Mice were randomly
assigned to no treatment or treatment groups consisting of ten mice per group.
Radiation treatment was initiated when tumors grew to approximately 8.0 mm in
diameter. Fractionated doses of X-rays (2 Gy per fraction, once daily for 5 con-
secutive days a week × 2 weeks) were delivered to the tumor-bearing limbs by using

an X-RAD 320 irradiator. During irradiation, unanesthetized mice were
mechanically immobilized in a jig such that the tumor was exposed in the radiation
field and the animal’s body was shielded from radiation exposure. Three mutually
orthogonal diameters of the tumor were measured every other day with a Vernier
caliper, and the mean value was calculated and used as the tumor diameter. The
investigator (L. W.) who measured tumor size was blinded to the group allocation
during animal experiments and outcome assessments.

Statistics and reproducibility. Each experiment was independently repeated three
times, except for the animal study (one time), DUB screening (one time), tissue
microarray and immunohistochemical analysis (one time), and mass spectrometric
analysis (two times); the representative data are shown. Unless otherwise noted,
data are presented as mean ± SEM of three biologically independent samples.
Statistical significance was determined by Student’s t-test (two-tailed, unpaired), χ2

test, Pearson analysis (two-sided), or log-rank test as indicated, using GraphPad
Prism 8.0 or SPSS 25.0. The statistical analysis for each plot was described in figure
legends. P < 0.05 was considered statistically significant.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw data and processed data for mass spectrometric analysis of DGCR8-interacting
proteins and DGCR8 phosphorylation sites have been deposited to the MassIVE database
with the identifier MSV000087301. UniProt is a free public resource of protein sequence
and functional information (https://www.uniprot.org/). The uncropped gels and blots are
shown in Supplementary Fig. 12. Source Data are provided with this paper.
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