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Abstract: The use of mobile fitness apps has been on the rise for the last decade and especially during
the worldwide SARS-CoV-2 pandemic, which led to the closure of gyms and to reduced outdoor
mobility. Fitness apps constitute a promising means for promoting more active lifestyles, although
their attrition rates are remarkable and adherence to their training plans remains a challenge for
developers. The aim of this project was to design an automatic classification of users into adherent
and non-adherent, based on their training behavior in the first three months of app usage, for which
purpose we proposed an ensemble of regression models to predict their behaviour (adherence) in the
fourth month. The study was conducted using data from a total of 246 Mammoth Hunters Fitness
app users. Firstly, pre-processing and clustering steps were taken in order to prepare the data and to
categorize users into similar groups, taking into account the first 90 days of workout sessions. Then,
an ensemble approach for regression models was used to predict user training behaviour during the
fourth month, which were trained with users belonging to the same cluster. This was used to reach a
conclusion regarding their adherence status, via an approach that combined affinity propagation (AP)
clustering algorithm, followed by the long short-term memory (LSTM), rendering the best results
(87% accuracy and 85% F1_score). This study illustrates the suggested the capacity of the system to
anticipate future adherence or non-adherence, potentially opening the door to fitness app creators to
pursue advanced measures aimed at reducing app attrition.

Keywords: deep learning; regression; adherence; mHealth; eHealth; fitness app; physical activity

1. Introduction

Physical inactivity and sedentary behaviour have been described as a worldwide
pandemic [1]. More than a quarter of the world’s adult population is considered to be
physically inactive [2] and consequently at 20–30% increased risk of death, compared to
people who are sufficiently active [2]. Inactivity has been associated with at least 35 different
chronic conditions [3] and is considered a leading cause of mortality in non-communicable
diseases [1,2], with approximately 3.2 million deaths per year [4]. Parallel to health-related
concerns, this situation also has a direct economic global cost which was estimated at $54
billion per year, in the year 2013 [4], with an additional $14 billion attributable to lost
productivity [5].

Current WHO guidelines recommend that adults undertake 150–300 min of moderate
intensity activity per week which, in fact, is met by as little as 25% of the total world adult
population [4]. Physical activity should additionally be complemented by regular muscle
strengthening, a recommendation met by only 17.3% of adults in Europe [6], and by a
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reduction in sedentary behaviour [7]. Generally speaking, it is women and people living
in high-income countries who account for the worst share [2]. Recent data from Germany
has shown that ∼80% of adults fail to meet total activity and strengthening guidelines [6],
which would seem to be in line with the aforementioned statements. The healthcare
industry seems to now have realised the extent of the problem, which is proven by the
fact that prescribing physical activity is what is most often done by healthcare workers [8].
But in spite of this, and since 2001, adherence keeps declining by as much as 5% (years
2001–2016) in high-income countries [2]. In order to bring about a shift in this trend,
the WHO has made it a worldwide priority to reduce physical inactivity rates by 15%
by the year 2030 [4].

Some authors have pointed to high attrition rates as a key element in explaining
increased sedentary behaviour [9]. Given the widespread use of mobile technology, apps
constitute highly feasible means for delivering health interventions and may offer an op-
portunity to reach that part of the population that is predisposed to starting an exercise
programme [10]. Several studies, including some systematic reviews, have attempted to
analyse adherence to exercise apps. Nonetheless, in the early stages of our research [11,12],
we noticed a remarkable lack of consensus regarding the conceptualisation of this term.
Most commonly, adherence has been assessed in clinical research environments involving
individuals with health conditions that followed some type of therapeutic intervention.
To this extent, an expected “dosage” of exercise is typically prescribed, and adherence
is expressed in terms of frequency, with 80–99% of the recommended exercise dosage
being considered “satisfactory” or “adherent” [13]. “Yang et al.” determined that the
definition of adherence to physical activity apps could be categorized into 4 dimensions:
(i) frequency of app usage; (ii) intention/motivation to sustain use of the app; (iii) degree
of function use within the app; and (iv) duration of app usage [11]. Previous researchers
had, however, used the word “engagement” to refer to duration of usage, number of chal-
lenges/programmes started and number of physical activity log days [14]. Earlier in time,
a meta-analysis by Cugelman et al. concluded that the term adherence was the opposite
to attrition and therefore equalled the percentage of people who continue to use the app
over time [15]. They further called this “intervention adherence”. In contrast, they defined
“study adherence” as the proportion of participants in a study at a given time, compared
to baseline. Already back in 2011, authors agreed that coding “intervention adherence”
was more challenging as they used different criteria to measure it [15]. Adherence has also
been defined as the number of weeks before the participant becomes inactive for an entire
week [16], while other authors have chosen to call this “retention” [17].

Our preliminary literature search revealed studies on adherence to PA guidelines,
but not specifically on user behaviour in fitness apps. Some of the studies retrieved in-
cluded biological age prediction, sports performance forecasting and human physical
activity recognition [18–21]. El-Kassabi et al. [19] proposed different DL models to forecast
an athlete’s performance in sports tournaments and to guide their strategies accordingly
to obtain improved results. They were able to evaluate the effectiveness of the athlete’s
training by predicting their race time results upon completing each additional training.
Their results showed that the DL model managed to improve race time prediction accuracy
over the baseline ML model, such as in the case of linear regression. In [21], the authors
proposed a model to predict physical activity based on an LSTM, with the aim of providing
personalized services based on data collected from mobile devices. To provide personal
services and to select the model variables, the characteristics and surrounding data cir-
cumstances were considered, and the following were some of the variables they took into
account in order to provide such customized services: sleep hours, travel distances, mean
heart rate, cadence, weather, temperature, mean daily temperature, humidity. The LSTM
was trained to learn the dynamic characteristics and to then predict users’ physical activity,
while the performance model was evaluated using the root mean square error (RMSE).
The model obtained good mean RSME results. Similarly, researchers in [20] used LSTM to
process raw data from gyroscope and accelerometer sensors, and to classify six activities
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involved in daily living. In [18], a deep convolutional LSTM approach was used to estimate
biological age in human adults.

Big data techniques could be valuable for the analysis of user behavioural features
and could lead to behavioural change encouraging actions. Deep learning (DL) has re-
cently outperformed other machine learning (ML) methods on many fronts, with image
recognition, audio classification and natural language processing being just a few of the
many examples [22–26]. For its part, Modern DL provides a powerful, adaptive and flex-
ible framework for supervised learning and can be considered as the way to automate
predictive analytics. By adding more components (layers and units within a layer) to
the network, DL is able to work with more complex problems [27]. Provided there is a
large number of training samples with their respective labels and sufficiently large and
well-designed model architecture, many of the tasks that were traditionally performed
by individuals (e.g., mapping input to output vectors) can now be developed through
DL [27]. Each algorithm hierarchically applies a non-linear transformation to its input
and uses what it learns to create an output, and then iterations continue until the output
has reached an acceptable level of accuracy. Once training has been completed (i.e., back
propagation has been repeatedly applied to update the weights in the model, so as to
achieve the desired accuracy with the training data), the resulting model can then be used
to make predictions with new data that the model has not been previously exposed to.
This all means that the DL approach will require much less feature engineering and be less
reliant on domain knowledge.

The major purpose of our study may be described as follows: “It is possible to predict
training adherence behaviour for a subsample of MH app users, over a given period of time,
by processing data from previous training sessions with artificial intelligence algorithms.”
User behaviour was analysed in terms of training behaviour, whereby a prediction was
established for the fourth month by taking into consideration user activity over the first
three months. Section 2 explains the materials and methods used to conduct the project,
Section 3 describes the experimental setup, along with the results obtained, and Section 4
provides a discussion of those results in terms of positive and negative highlights, as well
as future directions. Lastly, Section 5 offers the conclusions drawn from this pilot study.

2. Materials and Methods
2.1. Data Acquisition

This was an observational, retrospective pilot study. The research protocol observed
the principles set out in the Declaration of Helsinki and study approval was granted by the
Research Ethics Committee at the Ramon Llull University (nr.1920003P). 777 participants
who voluntarily agreed to participate and granted their informed consent were recruited
from the company Mammoth Hunters S.L.

MH is a smartphone application that provides physical workouts. Upon registration,
users are presented with a series of workouts that can form either part of a predefined train-
ing programme or personalized according to an individual’s characteristics and preferences.
Users do their workouts by following instructional videos on their screens, with indications
regarding performance of exercise and number of repetitions or time taken per exercise.
Upon completion of each workout, a summary of total repetitions and total workout time is
displayed on the screen. MH stores all training sessions in its databases, as seen in Figure 1.
It additionally sends information to an analytic platform called MixPanel, where additional
information (e.g., IP, operating system, phone device) is stored. MH obtained explicit
consent from all participants in this research project and ensured all registries remained
confidential by sharing only anonymized data for analysis. The description of the data
acquired from the MH app is shown in Table 1.
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Figure 1. Illustration of MH app usage.

Table 1. Data acquired using MH App.

Personal Data
Age Date of Birth

Gender Male or Female

city City and country
Fitness data

Weight Kg

Height Cm

Body fat Individual body fat estimation (%)

Body type Thin, normal or overweight
User goals

Body fat goal Desired body fat goal (%)

User goal
Lose weight
Stay healthy
Gain strength

Information application data
Profile creation Date

App downloads Date/s and number of downloads

App visits Number of visits (total, per day, per week, per month)

Training plan purchased Plan type

Training programme used Programme type

Total sessions performed Number of sessions
Degree of difficulty of the sessions

Total sessions completed Number of sessions

Completed sessions

Type of the most completed session
Type of the most discarded session
Number of sessions per week
Date and hour of session completion
Duration
Finished YES/NO

523 individuals in total met the inclusion criteria (i.e., MH app users older than
18 years old). These users were almost equally split between males and females, with an
average age of 40 years, an average weight of 71kg, average body mass index (BMI) around
25 and average body fat of 24%. Almost 85% of the participants were equally split between
a desire to lose weight and increase muscle mass, as shown in the following Table 2.

Based on previous literature [28–32] a period of four months was established as a
determining factor and only those participants who had been subscribed for at least four
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consecutive months after enrolment (n = 243) were ultimately considered eligible for the
prediction analyses.

Table 2. Characteristics of the participants who met the inclusion criteria.

Features Age Weight (Kgs) Height (cm) BMI Body Fat Objective of Body Fat

Mean 40 71.4 170.6 24.5 24.1 13.0

Standard Deviation 8 13.7 9.3 4.0 8.5 3.5

min 19 37.0 150.0 16.2 6.0 5.0

25% 34 62.0 164.0 22.0 20.0 10.0

50% 41 70.0 170.0 23.8 25.0 15.0

75% 47 79.9 177.5 25.9 30.0 15.0

Max 66 129.0 201.0 50.4 60.0 25.0

Table 3 shows the description of the per-month data for the 246 users. From this
analysis, it can be seen that the average duration of the training sessions is between 300
and 400 s per day/month. However, it is not possible to conclude anything with regard to
the mean, since standard deviation clearly indicates that the data is very dispersed. This
fact is ratified by the difference between the maximum and minimum values observed for
each month. Therefore, in order to have an idea of data distribution, we decided to obtain
the frequency of the data in time intervals, as described in Table 4.

Table 3. Descriptive data for monthly training sessions.

Features First Month Second Month Third Month Fourth Month

Mean [s] 398.95 393.74 377.83 318.73

Standard Deviation [s] 594.89 632.84 631.76 620.22

min [s] 0.00 0.00 0.00 0.00

25% 22.03 0.00 0.00 0.00

50% 161.38 60.45 14.23 0.00

75% 514.50 604.14 553.71 466.95

Max [s] 4106.47 3643.43 3522.57 4524.93

Table 4 shows the frequency of user numbers in ranges of exercise time per day,
over the four months. For example, column one shows that 41 users did not exercise on a
daily basis in the first month. It also reflects that the majority of users trained between the
ranges of 0 to 300 and 300 to 1800 s in the first month. In other words, most individuals
trained less than 30 min, and very few trained more than half an hour. It is worth stressing
that, on average, most users tended to do less exercise in the fourth month.

Table 4. Frequency of users in ranges of exercise time per day

Features Number of Users
First Month

Number of Users
Second Month

Number of Users
Third Month

Number of Users
Fourth Month

Time = 0 s 41 106 121 132

Time = [0 s–300 s] 102 49 40 45

Time = [300 s–1800 s] 96 81 74 61

Time = [1800 s–3600 s] 4 9 11 6

Time = [3600 s–7200 s] 3 1 0 2
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2.2. Proposed Framework

The goal of this study was to develop a model that was able to predict user adherence
(continuation of training sessions) to the MH fitness app, at month four. Figure 2 shows a
general diagram of our proposed framework, which is further explained in Figure 3.

Figure 2. Proposed framework to determine adherence to training in the MH fitness app.

Figure 3. Proposed architecture to determine user adherence to physical exercise in the MH fitness app.

Tables 5 and 6 below show the pseudocode of the algorithm that was used in this
study, while Table 5 shows the proposed framework for the training process, which can be
summarised by the creation of the regression ensemble models of the users who underwent
similar training in the first three months. Table 6 shows the proposed framework for testing
new users. This process can be summarised in terms of the determination of adherence or
non-adherence in the case of new users who sign up for the MH fitness app. In order to
achieve this, every new user is categorized into a cluster, and the mean of the ensemble
comprising people that similarly exercised during their first three months is set as the
output. Table 5 further explains this process.
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Table 5. Proposed framework algorithm: training.

1. Prepare the data: pre-processing, cleaning, scaling, splitting

2. Train clustering algorithms with all users with workout sessions over first three months

3. For each user in all users:

3.1. Configure architecture and set parameters to tune

3.2. For each parameters combination in the grid:

3.2.1. Train regression algorithms (LSTM, SVR)

3.2.2. Select the best model based on Mean absolute error (MAE)

3.2.3. Save the best model

4. Build ensemble of clusters with the best regression algorithms for each user, and with
the corresponding clusters built in step 2

Table 6. Proposed framework algorithm: testing new users.

1. Prepare new user data: pre-processing, cleaning, scaling, splitting

2. Obtain user features from workouts sessions of first three months

3. Select the corresponding ensemble of models according to clustering result

4. For each model in ensemble:

4.1. Predict data of fourth month with the trained models

4.2. Save prediction

5. Obtain the result of workout in fourth month by calculating the mean of
all predictions

6. Apply rule to determine adherence

7. Classify user adherence to MH fitness app

2.2.1. Input Data

The raw data received from the MH app contained user information on age, gender,
city, weight, height, body fat, body type, body fat target, individual’s goal, profile creation,
programmes, current programme and sessions, as shown in Table 1. To meet our study
goals, we needed historical data, so as to be able to design an intelligent system that could
learn from past workout behaviour and would then be able to forecast future ones. We
selected the data about sessions, given that it provided us with time-dependent information
from the time the user performed their first training session. The original data contained in
this field corresponded to a JSON file and contained several workout details.

2.2.2. Pre-Processing

In data analytics, and in the case of intelligent systems, it is very important to identify
any incorrect or corrupted data, as this could significantly affect the decision-making
process. There is already plenty of evidence from fields such as finance, business, health
systems and smart cities to suggest that incorrect or inaccurate decisions may have unfor-
tunate consequences [33]. In order to identify corrupted or duplicate data and to build
a reliable dataset, several techniques (e.g., data cleaning) could be used. In this paper,
a pre-processing stage was first developed, in order to create new variables that allowed
us to represent user evolution over time (i.e., determining the length of a workout session
from start to finish). Upon completion of the pre-processing stage, a new dataset was built
with the duration of training sessions, and so this variable contained the accumulated
workout time, in seconds. It should be noted that the information corresponded to the
duration of the actual workout session, as opposed to the time spent on the app.

Given the differences between users in app registry duration (some users had been
active for two years, others for six months, etc.), the next step required was to determine
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a longitudinal time period. In previous literature, we found that other authors had used
periods of 12 or 16 weeks for their PA-related research [28–32] and so, based on their
findings, we decided to focus our system on a period of 16 weeks. From these, the first
12 weeks were used to train the system and the last four weeks were used to predict the
workout sessions. A summary of the data can be seen in Table 7.

Table 7. Summarised input data.

Value Description

Total users 246 Total number of users, with at least 4 months of data

Longitudinal Period selected 120 [days] Longitudinal period of training sessions based on state of the art

Days selected for training 90 [days] Days selected to train the artificial intelligence system

Days selected for testing 30 [days] Days selected to test the artificial intelligence system

Scores Sessions [s] Array with training session data for users over 4 months

Output class 1 112 Users who are adherent during the fourth month

Output class 0 134 Users who are not adherent during the fourth month

2.2.3. Clustering

The clustering block represents an approach which was chosen in order to categorize
users into groups, based on their training frequency during the first three months. Instead
of using all the models trained with the entire group of user’ sessions, the clustering
approach grouped models trained with data from users with similar exercise features.

Three clustering approaches were used: K-means, Balanced Iterative Reducing and
Clustering using Hierarchies (BIRCH), and Affinity Propagation (AP).

• K-means: K-means is one of the preferred methods in unsupervised ML strategies.
It is widely used in manufacturing, education and business [34], and is based on
minimization of the sum of distances between each object and the centroid of its
group or cluster. Once the number of clusters (K) is chosen, the first initialisation
step is to establish K centroids among the data. Then, samples are assigned to their
closest centroids. Next, the positions of the centroids are updated, so that the distances
between the elements of each cluster may be minimized. The assignment and update
process is then repeated until no points change clusters, or equivalently, until the
centroids stay the same. In order to assign a point to the closest centroid, a proximity
measure that quantifies the notion of closest is required. Commonly, it is the Euclidean
distance that is used for this, and so the goal is to find the objective function which
minimizes the squared distance of each point to its closest centroid [35]. The sum of
squared errors (SSE) calculates the error of each point (i.e., Euclidean distance from
each point to the closest centroid) [35,36]. The SSE is defined by the Equation (1):

SSE =
k

∑
i=1

∑
x∈Ci

dist(mi, x)2 (1)

where dist is the standard Euclidean distance, x is an object, Ci is the ith cluster and
mi is the centroid (mean) for cluster Ci what minimizes the SSE of the cluster is the
mean, defined by the Equation (2):

mi =
1
n ∑

x∈ci

x (2)

where n corresponds to the number of objects in the ith cluster. The Basic K-means
functionality is described in Table 8.



Int. J. Environ. Res. Public Health 2021, 18, 10769 9 of 32

Table 8. Basic k-means algorithm.

1. Select K points as initial centroids

2. while

2.1. K clusters by assigning each point to its closest centroid

2.2. Recompute the centroid of each cluster

3. until centroids do not change

• BIRCH: This is a non-supervised algorithm. Due to its ability to find good clustering
with only a single data scan, it is especially suitable for larger datasets or streaming
data [37]. This characteristic was especially relevant to our research, since we expect
to obtain a larger dataset in the near future, and we were in need of a process that
would facilitate the upscaling of our application.
In order to understand how the BIRCH algorithm works, the concept of cluster feature
(CF) needs to be introduced. CF is a set of three summary statistics which represent
a single cluster, from a set of data points. The first statistic, count, quantifies how
many data values are present in the cluster. The second, linear sum, is a measurement
which represents cluster location. Finally, squared sum refers to the sum of the
squared coordinates that represents the spread of the clusters. The last two statistics
are equivalents to mean and variance of the data point [37]. BIRCH is frequently
explained in two steps: (1) building the CF tree, and (2) global clustering.
Phase 1–Building the CF Tree: Firstly, the data is loaded into the memory by building
a CF Tree, for which purpose a sequential clustering approach is used. Thus, the al-
gorithm simultaneously scans and records the data, and then determines whether a
point should be added to an existing cluster, or a new cluster should be created.
Phase 2–Global clustering: Secondly, an existing clustering algorithm is applied to
the sub-clusters (the CCF lead nodes), so as to assemble these sub-clusters into clusters.
This could, for instance, be achieved using the agglomerative hierarchical method.

The basic BIRCH algorithm is described in Table 9.

Table 9. Basic BIRCH algorithm.

1. For each record xi in set of elements D:

1.1. Determine correct leaf node for xi insertion

1.2. If threshold condition is not violated then:

1.2.1. Add xi to cluster and update CF

1.3. else if threshold condition is violated:

1.3.1. Insert xi as single cluster and update CF
2. Apply an existing clustering algorithm to the sub-clusters,
with a view to combining these sub-clusters into clusters

• Affinity propagation: this clustering method was proposed by Fred and Dueck in 2007,
and works with the similarity matrix. Points that appear close to each other have high
similarity while those that are furthest have low similarity [38]. Unlike others, the AP
method is not required as a parameter, although it is commonly used in experiments
where many clusters are needed. AP works with three matrices: similarity matrix,
responsibility matrix and availability matrix.
Similarity matrix: this is the first matrix obtained, and is calculated by negating the
sum of the squares of the difference between participants [39]. Thus, the elements
in the main diagonal of the similarity matrix equal 0 (zero) and a value needs to be
selected in order to fill these. Consequently, the algorithm will converge around a
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few clusters if the selected value is low, and vice-versa, insofar as the algorithm will
converge with many clusters, in the case of high selected values.
Responsibility matrix: once the similarity matrix has been calculated, the next step is
to calculate the responsibility matrix, given by the Equation (3).

r(i, k)← s(i, k)− max
k ’ such that k′ 6=k

{
a
(
i, k′
)
+ s
(
i, k′
)}

(3)

where i corresponds to the number of rows and k to the number of columns in the
associated matrix.

Availability matrix: the availability matrix is then calculated. All elements are set to
zero, and Equations (4) and (5) are then used to calculate elements off the diagonal.

a(k, k)← ∑
i ’such that i′ 6=k

max
{

0, r
(
i′, k
)}

(4)

a(i, k)← min

0, r(k, k) + ∑
i such that i′∈[i,k}

max
{

0, r
(
i′, k
)} (5)

In essence, the Equation (4) corresponds to the sum of all values in the columns that
are above 0, except for values which are identical for both rows and the given column.
Criterion matrix: Finally, the algorithm calculates the criterion matrix. This equals
the sum of the availability matrix and the responsibility matrix at that location, and is
given by (6).

c(i, k)← r(i, k) + a(i, k) (6)

The highest criterion value of each row is designated as the exemplar. The pseudocode
of AP can be seen in Table 10.

Table 10. Basic Affinity propagation algorithm.

1. Set “availabilities” to zero i.e., ∀ i,k: a(i,k) = 0

1.2. While responsibility and availability
matrices are updated until they converge:

1.3. Calculate similarity matrix

1.4. Calculate responsibility matrix

1.5. Calculate availability matrix

2. Cluster assignments corresponding to the highest criterion values of each
row is designated as the exemplar i.e., argmax_k [a(i,k) + r(i,k)]

2.2.4. Regression Models

• Recurrent Neural Networks and Long-Short-Term Memory model: Recurrent Neural
Networks (RNN) are a family of neural networks used to process sequential data [27],
which are well-known and widely used to process time series data and natural lan-
guage processing [40,41]. These networks are built upon the idea of using the output
of the previous neuron in the network along with the next input of the sequence as
input to the next. This ability gives the network the opportunity to model sequences.
It facilitates modelling cases in which the relationships between variables are not
simply parallel, but rather sequential (the value of a given variable at one time may
determine the value of another at a later or earlier time). Sequential data can be trained
as: complete sequences, forward or backward sequences, or a set of them.
Figure 4 illustrates the basic architecture of a recurrent neural network. Given an input
vector sequence x = x1, x2, ...., xt, passed through to bunch of N recurrently connected
hidden layers. The first hidden vector sequences are calculated as hn =

(
hn

1 , . . . , hn
T
)
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and the output vector sequence y = (y1, . . . , yT). Where N = 1, the architecture is
simply reduced to a single layer. Hidden layer connections are calculated as follows:

h1
t = H

(
Wih1 xt + Wh1h1 h1

t−1 + b1
h

)
(7)

hn
t = H

(
Wihn xt + Whn−1hn hn−1

t + Whnhn hn
t−1 + bn

h

)
(8)

where H corresponds to the hidden layer functions, W equals the weight matrices
(e.g., Wh1h1 is the recurrent connection at the first hidden layer), b denotes bias vectors
(e.g., by is the output bias vector). Then the output is computed by:

ŷt = by +
N

∑
n=1

Whnyhn
t (9)

Figure 4. Deep recurrent neural network prediction [42].

LSTM is one of the most famous types of RNN architecture [43]. It can memorize for
long and short periods of time using a gating mechanism which makes it possible to
control the information that has to be kept over time, the duration it has to be kept for
and the time that it can be read through the memory cell [44]. The architecture of an
LSTM cell, as described in [42], is shown in Figure 5, whereH is implemented by the
following composite function:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (10)

ft = σ
(

Wx f xt + Wh f ht−1 + Wc f ct−1 + b f

)
(11)

ot = σ(Wxoxt + Whoht−1 + Wcoct + bo) (12)

ct = ftct−1 + it tanh(Wxcxt + Whcht−1 + bc) (13)

ot = σ(Wxoxt + Whoht−1 + Wcoct + bo) (14)

ht = ot tanh(ct) (15)

where σ is the logistic function it, ft, ot, ct, ht correspond to the input gate, forget gate,
output gate, memory cell and hidden state at time t respectively, and xt refers to the
input of the system at time t.
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Figure 5. LSTM CELL based on [42].

• Support vector machine (SVM): this is an algorithm based on statistical learning and
which has gained great popularity over the last decade. It is useful in several classifi-
cation and regression problems [36,45,46]. SVM takes the structural risk minimization
principle into account and attempts to find the locations of decision boundaries (also
known as hyperplanes), which produce optimal separation among the classes [47,48].
This paper used a support vector regression (SVR), which refers to a generalization of
classification problems, where the model returns continuous values. SVM generaliza-
tion to SVR is achieved by introducing an ε-insensitive region around the function,
referred to as the ε-tube. The tube then reformulates the optimization problem in order
to find a tube value which best fits the function, while balancing model complexity
and prediction error [49]. SVR problem formulation derives from a geometrical rep-
resentation, and its continuous-value functions could be approximately represented
by:

y = f (x) = 〈w, x〉+ b =
M

∑
i=1

wixi + b, y, b ∈ R, x, w ∈ RM (16)

f (x) =
[

w
b

]T[ x
1

]
= wTx + b x, w ∈ RM+1 (17)

where w and b correspond to the weight and bias vectors, respectively. In spite of
this, and in real applications, data tends to be non-linear and separable, and Kernel
functions are therefore used to extend the concept of the optimal hyperplane.
In multidimensional data, x augments by one, and b is included in the w vector for
a simple mathematical notation (see Equation (17)). The multivariate regression in
SVR then formulates the function approximation problem as an optimization which
attempts to find the narrowest tube centred around the surface [49]. The objective
function is shown below in Equation (18), where w equals the magnitude of the
normal vector to the surface.

min
w

1
2
‖w‖2 (18)

The Grid search method was used to tune the hyperparameters, whereby three dif-
ferent kernel functions (i.e., radial basis function, polynomial kernel and sigmoid
kernel) were used. These three kernel methods are defined by the Equations (19)–(21),
respectively.

K(xi, yi) = exp
(
−γ‖xi − yi‖2

)
. (19)

K(xi, yi) = (γ(xi, yi) + r)d (20)
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K(xi, yi) = (γ(xi, yi) + r) (21)

where γ is the influence on classification outcomes; large values for γ leads to over-
fitting and small values result in under-fitting [50].

2.2.5. Ensemble Models

Once we had trained the LSTM and SVM algorithms and used the grid search for each
user to tune the hyperparameters, we then tried to develop a strategy that allowed us to use
the trained ML models and combine several base models in order to produce one optimal
predictive model. We decided to use an ensemble approach for this purpose. An ensemble
consists of a set of individually trained classifiers or regressors whose predictions are
combined in order to obtain better results than with single methods [51]. In this research,
we used an approach similar to that used for bagging methods [52] and, as such, our
objective was to compensate for the error generated by some models while at the same
time combining the models into clusters based on the similarity in terms of their training
data. The final prediction was the mean output value of combined models from the same
cluster, as shown in Figure 3.

2.2.6. Output

For a better understanding of the output of the proposed framework, we shall refer to
Figure 6, which contains an example that simulates three different users: users with high
exercise frequency, users with medium exercise frequency, and users with low exercise
frequency. The full steps a user has to go through in the system are explained below.

• Step 1 (Input data): Raw data from the three different users is given as input to the
system. Users can belong to one of the three aforementioned categories (depicted in
different colours).

• Step 2 (Pre-processing): In the pre-possessing step, all data cleaning procedures,
as well as other operations, are applied in order to obtain the data from workout
sessions.

• Step 3 (Clustering): When using the K-means algorithm, if three clusters are selected
and the characteristics are the mean of accumulated seconds per day over three
months, clusters categorize the users into three groups: people with high PA (orange
colour), people with medium PA (blue colour), and people with low PA (green colour).

• Step 4 (Ensemble models): Assuming we are using the LSTM as the regression method,
data corresponding to the first three months of use is given to the corresponding
LSTM ensembles (orange, blue or green). The ensembles then use pre-trained models
to calculate all regressions and the output will be the mean of the corresponding
ensemble; Ē1: mean ensemble 1 (green), Ē2: mean ensemble 2 (blue), Ē3: mean
ensemble 3 (orange).

• The system output corresponds to the average regression of the models within a given
cluster. Since our aim was to determine adherence to training using a fitness app,
we turned again to literature in order to follow a rule that defined user adherence.
Previous researchers have established that exercise-derived health benefits taper off
after 4–5 weeks of training cessation [53–57]. Taking this into account, we determined
that a user would be considered non-adherent if he/she showed no training activity
over a full month (the fourth month).

3. Experiments and Results

This section shows all the implementation and results obtained throughout all stages
of the project.

3.1. Implementation

We used Phyton programming language, version 3.8.5. For code writing, we used
the Jupiter client-server application. All the dependencies were installed using the Conda
package manager, in its version 4.9.2. Additionally, we used the open source sklearn
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Figure 6. Example of the proposed system with three different user categories.

library [58] for clustering algorithms, while DL algorithms were implemented using the
Keras library, version 2.4.3.

3.2. Clustering

Three different algorithms were used to allocate new users into similar groups, while
taking some of their characteristics (data training as calculated during the first 90 days)
into account. Their features and corresponding descriptions are shown in Table 11.

Table 11. Description of features used for clustering.

Variable Description

mean_first_month Mean of completed sessions in the first month of training (seconds)

mean_second_month Mean of completed sessions in the second month of training (seconds)

mean_third_month Mean of completed sessions in the three month of training (seconds)

missed_first_month The number of skipped sessions in the first month

missed_second_month The number of skipped sessions in the second month

missed_third_month The number of skipped sessions in the third month

mean_week_1 Mean of completed sessions in the first month of training (seconds)

mean_week_2 Mean of completed sessions in the first week of training (seconds)

mean_week_3 Mean of completed sessions in the second week of training (seconds)

... ...

mean_week_12 Mean of completed sessions in the 12th month of training (seconds)
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The purpose of creating these variables was to provide the clustering algorithms with
information so that, whenever a new user signs up, our framework extracts these features
based on the first three months, and the clustering algorithm will categorize the user based
on their training behaviour in the app. The variables mean_week_n were calculated from
week 1 until week 12, and Table 11 shows a simplification of this process.

Three methods were selected, to test different scenarios for clustering algorithms. We
first wanted to test the scenario where few clusters were expected, and chose the K-mean
algorithm for such purpose, as no more than 3 or 4 groups were expected. The elbow curve
in Figure 7 confirms that 3, 4 or 5 clusters are sufficient. The BIRCH algorithm caught
our attention, due to its ability to work with larger samples, which could prove useful
for our future work. Finally, we used the AP in scenarios where several groups of people
did exercise. With our data, clusters were automatically calculated, and results showed
variations between 15 and 30 groups.

3.2.1. K-Means

The parameter to adjust in the K-means clustering algorithm was the number of
clusters, and we used the elbow method to set up the number of clusters, as shown in
Figure 7.

Figure 7. Elbow curve for optimal k.

From the curve above, we can note that the optimal number of clusters is k = 4.
However, we also tested the results for k = 3. The curve in Figure 7 was obtained using
three features: (missed_first_month, missed_second_month, missed_third_month).

As for Figure 8, the top-left scatter plot represents the number of skipped sessions
in the first month vs. the number of skipped sessions in the second month. The top-right
scatter plot represents the number of skipped sessions in the second month vs. the number
of skipped sessions in the third month, while the bottom 3D scatter plot combines the three
axes into a single plot. The clusters show that users could be categorized into four groups:
1. users who, for the last three months, have been exercising for an average of one session
every two days (yellow colour); 2. users who exercised moderately during the first month,
but reduced their PA in the following months (green colour); 3. users with low PA in the
first month, but who increased their PA in the second and third months (blue colour); and
finally, those who evidenced very low PA across all three months (purple colour). The 3D
scatter plot shows the separability between the four clusters.
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Figure 8. 4-means clustering taking “missed first month”, “missed second month” and “missed third month”as features .

3.2.2. BIRCH

The parameter used to configure the BIRCH algorithm was the threshold which repre-
sents the radius of the subcluster obtained by merging a new sample and the closest sub-
cluster. The radius should be lower than the threshold [58]. Thus, it is important to adjust
the threshold because the values can be represented by explicit coordinates in a Euclidean
space. Upon building the cluster, special attention should be paid to units. In this dataset,
features that depend on the accumulated time (e.g., mean_first_month, mean_week_1 ...)
are expressed in seconds, while those features which depend on the accumulated num-
ber of missed workout sessions (e.g., missed_first_month, missed_second_month) do not
have units.
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Figure 9. BIRCH clustering taking “missed first month”, “missed second month” and “missed third month” as features.

Figure 9 shows the three scatter plots represent clustering by the BIRCH algorithm.
Similarities to clusters by K-means can be identified.

3.2.3. Affinity Propagation

The implementation of the sklearn library for the AP algorithm has two characteristics.
On the one hand, when the fit function does not converge, the cluster centres meet in
an empty array and then all training samples are labelled as −1. The predict function
will classify each label as −1 accordingly. On the other hand, when all training has
equal similarities and equal preferences, assignments of cluster centers and labels will
depend on preferences. Thus, if the preference is smaller than the similarities, then the
fit function will result in a single cluster and label 0 for each cluster. Otherwise, every
training sample becomes its own cluster centre and is assigned a unique label [58]. Taking
all of the above into account, we tested the AP by changing the damping parameter in the
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library, it is specified that this value must be in the range between [0.5, 1). With this in
mind and following several data tests, we obtained the best results to 0.7 and 0.8 for the
damping parameter.

3.3. Regression Results

The regression model was one of the most important stages in our research, and
the LSTM model was selected for its ability to work with sequences and to memorize
long and short term dependencies [43,59] . Here, we were interested in characterizing the
training of MH users, with the aim of predicting future workout sessions during the fourth
month, based on their training during the first three months.

The first step in this module was to convert time series data into supervised learning
data. The conversion procedure used can be seen in Figure 10. A lookback value of 7 was
used within the conversion procedure, implying that the LSTM system will learn in 7-day
periods, the system output consequently being the eighth day. This process was carried
out using the function TimeseriesGenerator from the Keras library.

Figure 10. Time series conversion into supervised learning data, for a lookback value of 7.

User behaviour differs greatly, and this can be observed in the first 90 days (marked in
red), in Figures 11–13. Hence, the strategy was to build a general architecture for different
types of user, whereby the creation of ensembles with similar users was combined with the
previously mentioned clustering stage and the hyperparameter tuning for each user.

Figures 11–13 reflect how different user behaviour was found for months 1–3 (in red),
and for month 4 (in purple). The fact that different user behaviour was found makes
it unnecessary to train and adjust hyperparameters for each newly-arrived user, which
justifies the general approach proposed. Additionally, Figure 11 shows the long-short
term memory, which is able to ignore the first month of workout sessions and learns from
months two and three, so as to obtain the prediction of an adherent user for the fourth
month. The LSTM prediction of an adherent user in Figure 12 proved similar, with a small
upward shift with regard to test data. Finally, non-adherent user prediction is shown in
Figure 13.
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Figure 11. User 1 workout behaviour (four months).

Figure 12. User 2 workout behaviour (four months).

Figure 13. User 3 workout behaviour (four months).

Hyperparameter Tuning

Given the sophisticated, automatic connections between their inputs and their outputs,
neural networks have the ability to learn very complicated patterns [27]. Adding a hyper-
parameter tuning process to this optimizes the extraction of network parameters and leads
to better regression results. There are different techniques used for hyperparameter tuning.
Some are based on optimization methods that aim to obtain the best configuration of the
networks, including Bayesian optimization to adaptively select configurations [60,61], Hill
Climbing- Random Restart and Tabu List algorithms originally [46,62,63]. Other classi-
cal methods like grid search have shown great effectiveness. However, they have high
computational complexity, especially with a wide range of parameter values that need
to be tuned. In this regard, other researchers have explored alternative techniques, such
as the suboptimal grid search [64]. In this paper, we used the grid search technique for
hyperparameter tuning for LSTM and SVR, since it was necessary to optimize a large
number of models with different behaviour.
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• LSTM - grid search: following a large number of tests with different users, a wide
range of hyperparameters was chosen for which the models generally adjusted the
regression curve better. The same hyperparameters and number of neurons were then
used for all users. Specifically, three dropout values after the first and second dense
layers were applied. Similarly, three batch sizes of values 1,2,4 were used, taking into
consideration the number of days in a week. Finally, five neuron values were applied
to the first layer (LSTM layer). The range of aforementioned values are highlighted in
Table12.

Table 12. Hyperparameters used in the LSTM ensemble models.

Hyperparameters Values

lookback 7

Number of epochs 50

Number of hidden layers 4

Number of LSTM layers 1

Number of dense layers 3

Activation function relu

Optimizer adam

Loss mse

Early stopping Patience: 15
Monitor: loss

Dropout [ 0.2 , 0.4 , 0.6]

Batch size [1, 2, 4]

Number of Neurons [50, 75, 100, 125, 150]

Remaining hyperparameters were selected from existing literature (previous work
on prediction, even if aimed at different types of application), with high performance
in their proposed architectures. Hence, in accordance with the previous explanation,
we pursued a hyperparameter tuning strategy in the relevant literature [22,65], with a
detailed explanation of all the values in Table 12. The lookback is a parameter which
was selected and agreed with the MH team, as it was considered more appropriate for
the purpose of analysing the evolution of training over the weeks, as people gener-
ally change their routines or lose their motivation within a period of one week [66].
Additionally, following some experiments, we also verified that curves were fitting
better with a value of 7 days. The number of epochs was then selected to be 50 after
observing in experiments that overfitting was occurring after 50 epochs. Next, based
on [67], we selected the number of hidden layers to be 4 after performing several
experiments. The activation function selected was Relu, since it resolved the problem
of negative values, and had performed well in previous research [68]. The Relu ac-
tivation function was applied to all layers (including LSTM and dense), except the
final one, while early stopping with patience of 15 epochs, was configured in our
architecture, in order to avoid over-fitting.

• SVR-grid search: The hyperparameters modified in the case of SVR were kernel,
with the choices ‘poly’, ‘rbf’, and ’sigmoid’. Similarly, for the hyperparameter c,
a range of 0 to 500 was chosen since the MAE error was not reduced beyond this
number with any combination of kernel or other hyperparameters setup. Finally,
the hyperparameter gamma, which assigns the scale option, and epsilon, which has a
value of 10, were left unchanged.
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3.4. Classification Results
3.4.1. Validation Metrics

We used the following performance metrics to evaluate the performance of our en-
semble approach, precision, specificity and F1_score.

- Confusion matrix: this displays and compares actual values with predicted values
of the model. In the context of ML, a confusion matrix is used as a metric to analyse how
a machine or deep learning classifier performs on a dataset. It consists of the following
4 elements:

• True Positives (TP): Users who were correctly predicted to exercise in the fourth
month.

• True Negatives (TN): Users who were correctly predicted to not exercise in the fourth
month.

• False Positives (FP): Users who were predicted to exercise but actually didn’t exercise
in the fourth month.

• False Negatives (FN): Users who were predicted to not exercise in the fourth month,
but who actually did.

- Accuracy: this is a metric that evaluates the performance of classification models.
It indicates the fractions that the model gets right in classifying of correct predictions of
adherent and non-adherent users in the total set evaluated. It is defined by (22).

Accuracy =
TP + TN

TP + TN + FP + FN
(22)

- Precision: this is a value which tracks the performance of a model in terms of positive
example classification (taking into account the users that were correctly and incorrectly
predicted to exercise in the case of the positive class).

Precision =
TP

TP + FP
(23)

- Recall: this equals the number of genuine positive examples (i.e., users who were
correctly predicted to exercise), divided by the number of false negatives (i.e., users who
were incorrectly predicted to not exercise) and the total number of positive examples (users
who were correctly predicted to exercise).

Recall =
TP

TP + FN
(24)

- F1_score: this is a weighted average of recall and precision.

F1_score =
2 * Precision * Recall

Precision + Recall
(25)

- Specificity: this quantifies the TN rate or the number of users that the model defined
as not exercising in the fourth month and who, in fact, did not train.

Specificity =
TN

TN + FP
(26)

3.4.2. Results

After all the pre-processing stage, the total number of users in our model equaled
246 (Figure 7). We trained with all 246 users in order to get the most out of the ensembles
proposed of which 112 were adherent and 134 were non-adherent, as shown in Table 7.
It should be noted that the testing data was never shown to our LSTM models (e.g., last
30 days or fourth month of training). We then tested the model over the last 30 days for
each user, using the regression results obtained from all the remaining 245 users.
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Table 13 presents the classification results using the regressions with a single ensemble,
ignoring the clustering stage. The ensembles output corresponds to the regressions average
in the fourth month for all trained models, while the system output (Class 0: Non-adherent
and class 1: Adherent) was obtained using the rule mentioned in Section 2.2.6. Table 13
shows high metrics for accuracy and specificity, while metrics for recall and f1_score were
not so high. This indicated that the system was unable to correctly classify users who
actually exercised during the fourth month, and justified the need to employ a clustering
stage, to make it possible to categorize users at the system input. Thus, our results are
presented using two regression methods: SVR and LSTM, each one preceded by three
different clustering methods.

Table 13. Metrics for Ensemble without clusters.

Accuracy Recall Precision Specificity F1_score

0.7276 0.4196 0.9592 0.9851 0.5839

The following tables contain the results obtained by making combinations with 4 types
of characteristics and altering some clustering algorithm parameters. The words in bold
reflect the results with higher scores for each combination of parameters and features.

Table 14 shows how the best results were obtained by using the number of skipped
sessions trait in the first, second and third month. Additionally, it can be noticed that the
recall and f1_score improved, although values remained unacceptable.

Table 14. Metrics, applying different configurations for k-means clustering—SVR.

Features Selected

Parameters Metrics
mean_fm,
mean_sm,
mean_tm

missed_first_month,
missed_second_month,
missed_third_month

week_0,
week_1,
week_2,
... ,
week_11

missed_first_month,
missed_second_month,
missed_third_month,
mean_fm, mean_sm,
mean_tm, week8, week9
week10, week 11

Accuracy 0.7073 0.7764 0.7398 0.7195

Recall 0.375 0.5268 0.4464 0.4018

Precision 0.9545 0.9672 0.9615 0.9574

Specificity 0.9851 0.9851 0.9851 0.9851

k = 3

F1_score 0.5385 0.6821 0.6098 0.566

Accuracy 0.7073 0.7358 0.7398 0.7236

Recall 0.3661 0.4643 0.4375 0.4107

Precision 0.9762 0.9123 0.98 0.9583

Specificity 0.9925 0.9627 0.9925 0.9851

k = 4

F1_score 0.5325 0.6154 0.6049 0.575

The best results were obtained for k = 4 and threshold 0.1. See Table 15. The features
which produced the best results were the same as those used in the k-means algorithm.
It is also worth noting that the threshold values shown in the table were those which,
after running a number of tests, produced the greatest changes. Low threshold values did
not create changes in results, although large increases caused results to worsen.

In the AP algorithm, the Damping parameter was modified between the allowed
range of 0.5 to 1, and Table 16 clearly reflects how the algorithm did not converge in the
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case of for values lower than 0.66. For this reason, only values higher than 0.66 were
presented. No major changes were found in terms of results.

Table 15. Metrics, applying different configurations for BIRCH clustering—SVR.

Features Selected

Parameters Metrics
mean_fm,
mean_sm,
mean_tm

missed_first_month,
missed_second_month,
missed_third_month

week_0,
week_1,
week_2,
... ,
week_11

missed_first_month,
missed_second_month,
missed_third_month,
mean_fm, mean_sm,
mean_tm, week8, week9
week10, week 11

Accuracy 0.687 0.7764 0.7764 0.7236

Recall 0.3214 0.5268 0.5268 0.4018

Precision 0.973 0.9672 0.9672 0.9783

Specificity 0.9925 0.9851 0.9851 0.9925

k = 4,

threshold
= 0.001

F1_score 0.4832 0.6821 0.6821 0.5696

Accuracy 0.687 0.7764 0.752 0.7154

Recall 0.3214 0.5268 0.4732 0.3929

Precision 0.973 0.9672 0.9636 0.9565

Specificity 0.9925 0.9851 0.9851 0.9851

k = 4,

threshold
= 0.1

F1_score 0.4832 0.6821 0.6347 0.557

Accuracy 0.7602 0.752 0.7114 0.752

Recall 0.4911 0.4732 0.375 0.4732

Precision 0.9649 0.9636 0.9767 0.9636

Specificity 0.9851 0.9851 0.9925 0.9851

k = 4,

threshold
= 100

F1_score 0.6509 0.6347 0.5419 0.6347

Table 16. Metrics, applying different configurations for Affinity propagation clustering—SVR.

Parameters: Damping

Features selected Metrics 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8

mean_fm,
mean_sm,
mean_tm,

Accuracy 0.752 0.7114 0.7114 0.7154 0.7154 0.7195 0.7154 0.7195

Recall 0.4732 0.375 0.375 0.3839 0.3839 0.3929 0.3839 0.3929

Precision 0.9636 0.9767 0.9767 0.9773 0.9773 0.9778 0.9773 0.9778

Specificity 0.9851 0.9925 0.9925 0.9925 0.9925 0.9552 0.9925 0.9925

F1_score 0.6347 0.5419 0.5419 0.5513 0.5513 0.5605 0.5513 0.5605
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Table 16. Cont.

Parameters: Damping

missed_first_month,
missed_second_month,
missed_third_month

Accuracy 0.6992 0.6911 0.687 0.687 0.687 0.687 0.687 0.687

Recall 0.3393 0.3214 0.3125 0.3125 0.3125 0.3125 0.3125 0.3125

Precision 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Specificity 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

F1_score 0.5067 0.4865 0.4762 0.4762 0.4762 0.4762 0.4762 0.4762

week_0, week_1
week_2, ... ,week_11

Accuracy 0.752 0.7317 0.7317 0.7317 0.7358 0.752 0.7317 0.7317

Recall 0.4732 0.4196 0.4196 0.4196 0.4196 0.4732 0.4196 0.4196

Precision 0.9636 0.9792 0.9792 0.9792 1.0 0.9636 0.9792 0.9792

Specificity 0.9851 0.9925 0.9925 0.9925 1.0 0.9851 0.9925 0.9925

F1_score 0.6347 0.5875 0.5875 0.5875 0.5912 0.6347 0.5875 0.5875

missed_first_month,
missed_second_month,
missed_third_month,
mean_fm, mean_sm,
mean_tm, week8, week9,
week10, week 11

Accuracy 0.752 0.7317 0.7317 0.7317 0.7358 0.7317 0.7317 0.7317

Recall 0.4732 0.4107 0.4107 0.4107 0.4196 0.4107 0.4107 0.4107

Precision 0.9636 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Specificity 0.9851 1.0 1.0 1.0 1.0 1.0 1.0 1.0

F1_score 0.6347 0.5823 0.5823 0.5823 0.5912 0.5823 0.5823 0.5823

Features selected Metrics 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96

mean_fm,
mean_sm,
mean_tm,

Accuracy 0.7033 0.7033 0.7033 0.7033 0.7398 0.7398 0.7398 0.7398

Recall 0.3571 0.3571 0.3571 0.3571 0.4464 0.4464 0.4464 0.4464

Precision 0.9756 0.9756 0.9756 0.9756 0.9615 0.9615 0.9615 0.9615

Specificity 0.9925 0.9925 0.9925 0.9925 0.9851 0.9851 0.9851 0.9851

F1_score 0.5229 0.5229 0.5229 0.5229 0.6098 0.6098 0.6098 0.6098

missed_first_month,
missed_second_month,
missed_third_month

Accuracy 0.6911 0.687 0.687 0.6911 0.6911 0.6911 0.6992 0.7195

Recall 0.3214 0.3125 0.3125 0.3214 0.3214 0.3214 0.3393 0.3929

Precision 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9778

Specificity 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9925

F1_score 0.4865 0.4762 0.4762 0.4865 0.4865 0.4865 0.5067 0.5605

week_0, week_1
week_2, ... ,week_11

Accuracy 0.7073 0.7317 0.5875 0.7073 0.7073 0.7317 0.7317 0.7195

Recall 0.3661 0.4196 0.4196 0.3661 0.3661 0.4196 0.4196 0.4018

Precision 0.9762 0.9792 0.9792 0.9762 0.9762 0.9792 0.9792 0.9574

Specificity 0.9925 0.9925 0.9925 0.9925 0.9925 0.9925 0.9925 0.9851

F1_score 0.5325 0.5875 0.5875 0.5325 0.5325 0.5875 0.5875 0.566

missed_first_month,
missed_second_month,
missed_third_month,
mean_fm, mean_sm,
mean_tm, week8, week9,
week10, week 11

Accuracy 0.7317 0.7317 0.7317 0.7195 0.752 0.752 0.6951 0.6992

Recall 0.4107 0.4107 0.4107 0.3839 0.4732 0.4732 0.3393 0.3482

Precision 1.0 1.0 1.0 1.0 0.9636 0.9636 0.9744 0.975

Specificity 1.0 1.0 1.0 1.0 0.9851 0.9851 0.9925 0.9925

F1_score 0.5823 0.5823 0.5823 0.5548 0.6347 0.6347 0.5033 0.5132
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The following tables show the results obtained using LSTM architecture while chang-
ing the clustering method. We can observe that the LSTM model in combination with
k-means clustering, obtained significant results when compared to the results using SVR,
as seen in Table 17, with a recall value of 70% (acceptable results). Modifying the number
of clusters led to no variations in results. However, accuracy did increase by 7%, compared
to the best results obtained using SVR and clustering combinations.

Table 17. Metrics, applying different configurations for k-means clustering—LSTM.

Features Selected

Parameters Metrics
mean_fm,
mean_sm,
mean_tm,

missed_first_month,
missed_second_month,
missed_third_month

week_0, week_1
week_2, ... ,week_11

missed_first_month,
missed_second_month,
missed_third_month,
mean_fm, mean_sm,
mean_tm, week8, week9
week10, week 11

k = 3

Accuracy 0.7967 0.8496 0.7805 0.7967

Recall 0.5714 0.7054 0.5268 0.5625

Precision 0.9697 0.9518 0.9833 0.9844

Specificity 0.9851 0.9701 0.9925 0.9925

F1_score 0.7191 0.8103 0.686 0.7159

k = 4

Accuracy 0.8089 0.7967 0.7764 0.8089

Recall 0.5714 0.6161 0.5179 0.5982

Precision 0.9697 0.9452 0.9831 0.971

Specificity 0.9851 0.9701 0.9925 0.9851

F1_score 0.7191 0.7459 0.6784 0.7403

In Table 18, the best results for the BIRCH algorithm and LSTM were obtained by tak-
ing a combination of the following features: mean of completed sessions in the first, second
and third month (in seconds), means of completed sessions in weeks 8–12, and skipped
workout sessions, in seconds.

The results of the LSTM model preceded by the AP clustering method are shown in
Table 19. It shows that it is possible to obtain good results with several features, such as the
mean of completed sessions (seconds) in weeks of training, or skipped workout sessions
per month, with accuracy values of up to 86%, and 87%, respectively. Additionally, the best
results were obtained using all the combined features, with a Damping value of 0.68.
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Table 18. Metrics, applying different configurations for BIRCH clustering—LSTM.

Features Selected

Parameters Metrics
mean_fm,
mean_sm,
mean_tm,

missed_first_month,
missed_second_month,
missed_third_month

week_0, week_1
week_2, ... ,week_11

missed_first_month,
missed_second_month,
missed_third_month,
mean_fm, mean_sm,
mean_tm, week8, week9,
week10, week 11

k = 4,
threshold = 0.001

Accuracy 0.8089 0.7967 0.7967 0.8333

Recall 0.5893 0.5625 0.5893 0.6518

Precision 0.9851 0.9844 0.9429 0.9733

Specificity 0.9925 0.9925 0.9701 0.9851

F1_score 0.7374 0.7159 0.7253 0.7807

k = 4,
threshold = 0.1

Accuracy 0.8089 0.7967 0.7967 0.8415

Recall 0.5893 0.5625 0.5893 0.6607

Precision 0.9851 0.9844 0.9429 0.9867

Specificity 0.9925 0.9925 0.9701 0.9925

F1_score 0.7374 0.7159 0.7253 0.7914

k = 4,
threshold = 100

Accuracy 0.7398 0.7276 0.7805 0.7276

Recall 0.4286 0.4196 0.5536 0.4196

Precision 1.0 0.9592 0.9394 0.9592

Specificity 1.0 0.9851 0.9701 0.9851

F1_score 0.6 0.5839 0.6966 0.5839

Table 19. Metrics, applying different configurations for Affinity propagation clustering—LSTM.

Parameters: Damping

Features selected Metrics 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8

mean_fm,
mean_sm,
mean_tm,

Accuracy 0.7276 0.8293 0.8293 0.8252 0.8252 0.8252 0.8252 0.8089

Recall 0.4196 0.6786 0.6786 0.6696 0.6696 0.6696 0.6696 0.5893

Precision 0.9592 0.9268 0.9268 0.9259 0.9259 0.9259 0.9259 0.9851

Specificity 0.9851 0.9552 0.9552 0.9552 0.9552 0.9552 0.9552 0.9925

F1_score 0.5839 0.7835 0.7835 0.7772 0.7772 0.7772 0.7772 0.7374

missed_first_month,
missed_second_month,
missed_third_month

Accuracy 0.8496 0.8496 0.7967 0.7967 0.7967 0.7967 0.7967 0.7967

Recall 0.6875 0.6964 0.5893 0.5893 0.5893 0.5893 0.5893 0.5893

Precision 0.9747 0.963 0.9429 0.9429 0.9429 0.9429 0.9429 0.9429

Specificity 0.9851 0.9776 0.9701 0.9701 0.9701 0.9701 0.9701 0.9701

F1_score 0.8063 0.8083 0.7253 0.7253 0.7253 0.7253 0.7253 0.7253

week_0, week_1
week_2, ... ,week_11

Accuracy 0.8577 0.8577 0.8577 0.8577 0.8618 0.8577 0.8577 0.8577

Recall 0.7411 0.7411 0.7411 0.7411 0.75 0.7411 0.7411 0.7411

Precision 0.9326 0.9326 0.9326 0.9326 0.9333 0.9326 0.9326 0.9326

Specificity 0.9552 0.9552 0.9552 0.9552 0.9552 0.9552 0.9552 0.9552

F1_score 0.8259 0.8259 0.8259 0.8259 0.8317 0.8259 0.8259 0.8259
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Table 19. Cont.

Parameters: Damping

missed_first_month,
missed_second_month,
missed_third_month,
mean_fm, mean_sm,
mean_tm, week8, week9,
week10, week 11

Accuracy 0.7276 0.8775 0.8333 0.8333 0.8333 0.8333 0.8333 0.8333

Recall 0.4196 0.7748 0.6964 0.6964 0.6964 0.6964 0.6964 0.6964

Precision 0.9592 0.9451 0.9176 0.9176 0.9176 0.9176 0.9176 0.9176

Specificity 0.9851 0.9627 0.9478 0.9478 0.9478 0.9478 0.9478 0.9478

F1_score 0.5839 0.8514 0.7919 0.7919 0.7919 0.7919 0.7919 0.7919

Features selected Metrics 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96

mean_fm,
mean_sm,
mean_tm,

Accuracy 0.8252 0.8252 0.8252 0.8252 0.7561 0.7561 0.7561 0.7561

Recall 0.6696 0.6696 0.6696 0.6696 0.4732 0.4732 0.4732 0.4732

Precision 0.9259 0.9259 0.9259 0.9259 0.9815 0.9815 0.9815 0.9815

Specificity 0.9552 0.9552 0.9552 0.9552 0.9925 0.9925 0.9925 0.9925

F1_score 0.7772 0.7772 0.7772 0.7772 0.6386 0.6386 0.6386 0.6386

missed_first_month,
missed_second_month,
missed_third_month

Accuracy 0.7967 0.7967 0.7967 0.7967 0.7967 0.8577 0.813 0.813

Recall 0.5893 0.5893 0.5893 0.5893 0.5893 0.7143 0.6161 0.6161

Precision 0.9429 0.9429 0.9429 0.9429 0.9429 0.9639 0.9583 0.9583

Specificity 0.9701 0.9701 0.9701 0.9701 0.9701 0.9776 0.9776 0.9776

F1_score 0.7253 0.7253 0.7253 0.7253 0.7253 0.8205 0.75 0.75

week_0, week_1
week_2, ... ,week_11

Accuracy 0.8577 0.8618 0.8618 0.8577 0.8577 0.8659 0.8659 0.8496

Recall 0.7411 0.7411 0.7411 0.7411 0.7411 0.7411 0.7411 0.6786

Precision 0.9326 0.9432 0.9432 0.9326 0.9326 0.954 0.954 0.987

Specificity 0.9552 0.9627 0.9627 0.9552 0.9552 0.9701 0.9701 0.9925

F1_score 0.8259 0.83 0.83 0.8259 0.8259 0.8342 0.8342 0.8042

missed_first_month,
missed_second_month,
missed_third_month,
mean_fm, mean_sm,
mean_tm, week8, week9,
week10, week 11

Accuracy 0.8333 0.8333 0.8374 0.8333 0.7276 0.7276 0.7927 0.7886

Recall 0.6964 0.6964 0.6607 0.6964 0.4196 0.4196 0.5536 0.5446

Precision 0.9176 0.9176 0.9737 0.9176 0.9592 0.9592 0.9841 0.9839

Specificity 0.9478 0.9478 0.9851 0.9478 0.9851 0.9851 0.9925 0.9925

F1_score 0.7919 0.7919 0.7872 0.7919 0.5839 0.5839 0.7086 0.7011

Finally, the confusion matrix of LSTM model preceded by the AP clustering method
which represents the best model is shown in Table 20.

Table 20. Confusion Matrix: 4—Means.

Confusion Matrix Predicted: No Predicted: Yes

Actual: No TN: 129 FP: 5

Actual: Yes FN: 25 TP: 86

4. Discussion

Our results show that our initial purpose, stating that user adherence can be pre-
dicted, was correct. In order to achieve this, we used ML to categorize users into groups,
and regressions according to DL ensembles, so as to predict user adherence to fitness
app training.
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Another finding was that the LSTM model outperforms the SVR model (12% accuracy
increase), when the former is combined with clustering by Affinity Propagation. This is
due to LSTM ability to learn from a series of past observations in order to predict the next
sequential value. Adding a clustering block before the regression model has also increased
(>15%) accuracy and recall (35%), which means that grouping users into similar categories
can help to achieve better predictions of physical activity behaviour in new users.

Both in the case of LSTM and SVR models, the features which better helped to
determine whether a user would be adherent to app training or not were mainly the
combination of all features extracted, as shown in Table 11. We also obtained good results
when clustering by the K-means method while using solely the skipped workout sessions
feature. This could intuitively lead one to think that the number of missed workouts could
have a greater significance than other features when determining adherence to training,
and the latter could be relevant when predicting training behaviour in general. Somewhat
in line with our results, previous research has associated mood improvement with the
completion of the session, rather than with its duration [69]. If sticking to the training plan
leads to improvements in mood, perceived pleasantness and usefulness, the former could
be positively affected. And these two factors have been hypothesized to correlate directly
with adherence to the training plan [70].

On a different note, the results in confusion matrix showed that the system we propose
leads to high numbers of FN predictions. These FN become obvious in those cases where
we know that the user completed workouts in month four, while our framework had
predicted that they would not. While it may seem like a meaningless mistake, given
that the client is in fact not at risk of dropping out, such incorrect predictions could have
consequences. For instance, receiving a non-adherence prediction could lead to a series
of unnecessary and inadequate motivational strategies, and the consequences of these
otherwise unnecessary actions are unknown.

Our results (see Table 19) for FP values showed 5 false positive predictions—i.e., the
system predicted that 5 individuals would continue to train during month four, while
they actually failed to do so. These predictions showed 95% precision and 96% specificity,
which we interpret as being satisfactory. Despite this being a low figure, it still implies that
5 clients could drop out unexpectedly, and so we will work towards reducing this figure in
the future.

In this paper, we are identifying user patterns in a group of people who have been
shown to have a desire to perform physical exercise. Thus, predicting user behaviour will
give us the capacity to identify and target users at risk of drop-out. As published by other
authors, programme modifications and/or psychological interventions that specifically
targeted at these subgroups will allow for behavioral modifications which can, eventually,
lead to increased levels of physical activity on the part of these users [71]. Increased
physical activity entails various physical, mental and psychological benefits and constitutes
one of the best ways to prevent health problems [2]. Greater adherence to regular physical
activity would most likely have a very significant impact on public health and this fact
needs to be acknowledged. Further steps are required, until the tools required to ensure
effective motivation are found that may help our communities be more physically active.

Our work was developed via a general approach, so as to take that it takes advantage
of the models already trained to predict the workouts, instead of training the model for
each user who joins the application. In this way, the processing time for the system is and
will remain low, even when the number of users becomes high. This approach highlights
the characteristics of flexibility and resource efficiency, which are within the definition of
“Industry 4.0” and its two directions in terms of development [72]. In order to advance
to the industrialization stage and contribute to the development of 4.0 applications, our
proposed system could next be deployed in production.

Future processes could study more flexible longitudinal periods (other than 4 months),
while variables of both engagement to the exercise plan and user motivation (intrinsic vs.
extrinsic) could be included, possibly by previously applying a motivational questionnaire.
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This would enable analysts to more accurately identify user patterns and predict training
behaviour. Fitness app developers would, accordingly, be in a position to undertake
motivational intervention to promote training adherence and reduce app attrition.

5. Conclusions

Our paper adds to the scarcely researched area of training behaviour in fitness app
users. There is still no consensus as to the exact definition of fitness app adherence,
and there would seem not to be any previous research work that uses a deep learning
approach to predict fitness app adherence over time. To the best of our knowledge, this is
the first framework whose aim is to predict user adherence to training via a fitness app.
The framework consists of two main stages: (i) characterization of users into user groups,
based on their training behavior during the first three months; and (ii) the regression
prediction for new users via an ensemble approach. Our results show that it is possible to
take advantage of stored time-dependent data, in order to predict adherence over a given
period of time. From the features studied, training frequency seems to be more relevant
than time spent in training. For their part, our ensembles consisted of DL regressors and
reflected good performance metrics. In the near future, we plan to incorporate demographic
factors, as well as involvement variables in the workout regimen and user motivation,
(intrinsic vs. extrinsic) into the DL architectural design. Additionally, we believe flexible
longitudinal periods would be worth studying, the stages for which, we expect to be using
a larger user database, which should enable thorough testing. The approach should focus
on adhering to the principles of flexibility and resource efficiency, which will be essential
in the creation of industrial 4.0 applications.
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SVM Support vector machine
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References
1. Hall, G.; Laddu, D.R.; Phillips, S.A.; Lavie, C.J.; Arena, R. A tale of two pandemics: How will COVID-19 and global trends in

physical inactivity and sedentary behavior affect one another? Prog. Cardiovasc. Dis. 2021, 64, 108. [CrossRef]
2. Physical Activity. WHO Int. Available online: https://www.who.int/news-room/fact-sheets/detail/physical-activity

(accessed on 26 November 2020).
3. Booth, F.W.; Roberts, C.K.; Thyfault, J.P.; Ruegsegger, G.N.; Toedebusch, R.G. Role of inactivity in chronic diseases: Evolutionary

insight and pathophysiological mechanisms. Physiol. Rev. 2017, 97, 1351–1402. [CrossRef] [PubMed]
4. World Health Organization. Global Action Plan on Physical Activity 2018–2030: More Active People for a Healthier World: At-a-Glance;

Technical Report; World Health Organization: Geneva, Swizerland, 2018.
5. Ding, D.; Lawson, K.D.; Kolbe-Alexander, T.L.; Finkelstein, E.A.; Katzmarzyk, P.T.; Van Mechelen, W.; Pratt, M.; Lancet

Physical Activity Series 2 Executive Committee. The economic burden of physical inactivity: A global analysis of major
non-communicable diseases. Lancet 2016, 388, 1311–1324. [CrossRef]

6. Jason, A.; Bennie, K.D.C.; Tittlbach, S. The epidemiology of muscle-strengthening and aerobic physical activity guideline
adherence among 24,016 German adults. Scand. J. Med. Sci. Sport. 2021, 31, 1096–1104. [CrossRef]

7. Bull, F.; Saad, S.A.-A.; Biddle, S. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J.
Sports Med. 2020, 54. Available online: https://bjsm.bmj.com/content/54/24/1451 (accessed on 26 November 2020). [CrossRef]

8. Ekkekakis, P.; Vazou, S.; Bixby, W.; Georgiadis, E. The mysterious case of the public health guideline that is (almost) entirely
ignored: Call for a research agenda on the causes of the extreme avoidance of physical activity in obesity. Obes. Rev. 2016,
17, 313–329. [CrossRef]

9. Van Tuyckom, C.; Scheerder, J.; Bracke, P. Gender and age inequalities in regular sports participation: A cross-national study of
25 European countries. J. Sport Sci. 2010, 28, 1077–1084. [CrossRef]

10. Direito, A.; Jiang, Y.; Whittaker, R.; Maddison, R. Smartphone apps to improve fitness and increase physical activity among
young people: Protocol of the Apps for IMproving FITness (AIMFIT) randomized controlled trial. BMC Public Health 2015,
15, 1–12. [CrossRef]

11. Yang, X.; Ma, L.; Zhao, X.; Kankanhalli, A. Factors influencing user’s adherence to physical activity applications: A scoping
literature review and future directions. Int. J. Med. Inform. 2020, 134, 104039. [CrossRef] [PubMed]

12. Sieverink, F.; Kelders, S.M.; van Gemert-Pijnen, J.E. Clarifying the concept of adherence to eHealth technology: Systematic
review on when usage becomes adherence. J. Med. Internet Res. 2017, 19, e8578. [CrossRef]

13. Bailey, D.L.; Holden, M.A.; Foster, N.E.; Quicke, J.G.; Haywood, K.L.; Bishop, A. Defining adherence to therapeutic exercise for
musculoskeletal pain: A systematic review. Br. J. Sport Med. 2020, 54, 326–331.

14. Guertler, D.; Vandelanotte, C.; Kirwan, M.; Duncan, M.J. Engagement and nonusage attrition with a free physical activity
promotion program: The case of 10,000 steps Australia. J. Med. Internet Res. 2015, 17, e4339. [CrossRef]

15. Cugelman, B.; Thelwall, M.; Dawes, P. Online interventions for social marketing health behavior change campaigns: A
meta-analysis of psychological architectures and adherence factors. J. Med. Internet Res. 2011, 13, e17. [CrossRef]

16. Du, H.; Venkatakrishnan, A.; Youngblood, G.M.; Ram, A.; Pirolli, P. A group-based mobile application to increase adherence in
exercise and nutrition programs: A factorial design feasibility study. JMIR MHealth UHealth 2016, 4, e4900. [CrossRef]

17. Pratap, A.; Neto, E.C.; Snyder, P.; Stepnowsky, C.; Elhadad, N.; Grant, D.; Mohebbi, M.H.; Mooney, S.; Suver, C.; Wilbanks, J.;
et al. Indicators of retention in remote digital health studies: A cross-study evaluation of 100,000 participants. NPJ Digit. Med.
2020, 3, 1–10. [CrossRef] [PubMed]

18. Rahman, S.A.; Adjeroh, D.A. Deep learning using convolutional LSTM estimates biological age from physical activity. Sci. Rep.
2019, 9, 1–15. [CrossRef] [PubMed]

19. El-Kassabi, H.T.; Khalil, K.; Serhani, M.A. Deep Learning Approach for Forecasting Athletes’ Performance in Sports Tournaments.
In Proceedings of the 13th International Conference on Intelligent Systems: Theories and Applications, Rabat, Morocco, 23–24
September 2020; pp. 1–6.

http://doi.org/10.1016/j.pcad.2020.04.005
https://www.who.int/news-room/fact-sheets/detail/physical-activity
http://dx.doi.org/10.1152/physrev.00019.2016
http://www.ncbi.nlm.nih.gov/pubmed/28814614
http://dx.doi.org/10.1016/S0140-6736(16)30383-X
http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://bjsm.bmj.com/content/54/24/1451
http://dx.doi.org/10.1136/bjsports-2020-102955
http://dx.doi.org/10.1111/obr.12369
http://dx.doi.org/10.1080/02640414.2010.492229
http://dx.doi.org/10.1186/s12889-015-1968-y
http://dx.doi.org/10.1016/j.ijmedinf.2019.104039
http://www.ncbi.nlm.nih.gov/pubmed/31865054
http://dx.doi.org/10.2196/jmir.8578
http://dx.doi.org/10.2196/jmir.4339
http://dx.doi.org/10.2196/jmir.1367
http://dx.doi.org/10.2196/mhealth.4900
http://dx.doi.org/10.1038/s41746-020-0224-8
http://www.ncbi.nlm.nih.gov/pubmed/32128451
http://dx.doi.org/10.1038/s41598-019-46850-0
http://www.ncbi.nlm.nih.gov/pubmed/31388024


Int. J. Environ. Res. Public Health 2021, 18, 10769 31 of 32

20. Zebin, T.; Sperrin, M.; Peek, N.; Casson, A.J. Human activity recognition from inertial sensor time-series using batch normalized
deep LSTM recurrent networks. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), Honolulu, HI, USA, 17–21 July 2018; pp. 1–4.

21. Kim, J.C.; Chung, K. Prediction model of user physical activity using data characteristics-based long short-term memory
recurrent neural networks. KSII Trans. Internet Inf. Syst. (TIIS) 2019, 13, 2060–2077.

22. Zahia, S.; Garcia-Zapirain, B.; Saralegui, I.; Fernandez-Ruanova, B. Dyslexia detection using 3D convolutional neural networks
and functional magnetic resonance imaging. Comput. Methods Programs Biomed. 2020, 197, 105726. [CrossRef]

23. Hameed, Z.; Garcia-Zapirain, B. Sentiment classification using a single-layered BiLSTM model. IEEE Access 2020, 8, 73992–74001.
[CrossRef]

24. Zahia, S.; Zapirain, M.B.G.; Sevillano, X.; González, A.; Kim, P.J.; Elmaghraby, A. Pressure injury image analysis with machine
learning techniques: A systematic review on previous and possible future methods. Artif. Intell. Med. 2020, 102, 101742.
[CrossRef]

25. Acosta, M.F.J.; Tovar, L.Y.C.; Garcia-Zapirain, M.B.; Percybrooks, W.S. Melanoma diagnosis using deep learning techniques on
dermatoscopic images. BMC Med. Imaging 2021, 21, 1–11.

26. Rodríguez-Esparza, E.; Zanella-Calzada, L.A.; Oliva, D.; Pérez-Cisneros, M. Automatic detection and classification of abnormal
tissues on digital mammograms based on a bag-of-visual-words approach. Med. Imaging 2020 Comput.-Aided Diagn. Int. Soc.
Opt. Photonics 2020, 11314, 1131424.

27. Goodfellow, I.; Bengio, Y.; Courville, A.; Bengio, Y. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; Volume 1.
28. Campos, L.C.; Campos, F.A.; Bezerra, T.A.; Pellegrinotti, Í.L. Effects of 12 weeks of physical training on body composition and

physical fitness in military recruits. Int. J. Exerc. Sci. 2017, 10, 560. [PubMed]
29. Hurst, C.; Weston, K.L.; Weston, M. The effect of 12 weeks of combined upper-and lower-body high-intensity interval training

on muscular and cardiorespiratory fitness in older adults. Aging Clin. Exp. Res. 2019, 31, 661–671. [CrossRef]
30. Oertzen-Hagemann, V.; Kirmse, M.; Eggers, B.; Pfeiffer, K.; Marcus, K.; de Marées, M.; Platen, P. Effects of 12 weeks of

hypertrophy resistance exercise training combined with collagen peptide supplementation on the skeletal muscle proteome in
recreationally active men. Nutrients 2019, 11, 1072. [CrossRef]

31. Barranco-Ruiz, Y.; Villa-González, E. Health-related physical fitness benefits in sedentary women employees after an exercise
intervention with Zumba Fitness®. Int. J. Environ. Res. Public Health 2020, 17, 2632. [CrossRef]

32. Feito, Y.; Hoffstetter, W.; Serafini, P.; Mangine, G. Changes in body composition, bone metabolism, strength, and skill-specific
performance resulting from 16-weeks of HIFT. PLoS ONE 2018, 13, e0198324. [CrossRef]

33. Brownlee, J. Data Preparation for Machine Learning: Data Cleaning, Feature Selection, and Data Transforms in Python; Machine
Learning Mastery, 2020. Available online: https://pubmed.ncbi.nlm.nih.gov/26806460/ (accessed on 26 November 2020).

34. Li, B.; Liu, B.; Lin, W.; Zhang, Y. Performance analysis of clustering algorithm under two kinds of big data architecture. J. High
Speed Netw. 2017, 23, 49–57. [CrossRef]

35. Tan, P.N.; Steinbach, M.; Karpatne, A.; Kumar, V. Introduction to Data Mining, 2nd ed.; Pearson: London, UK, 2018.
36. Chaves, A.; Jossa, O.; Jojoa, M. Classification of Hosts in a WLAN Based on Support Vector Machine. In Proceedings of the 2018

Congreso Internacional de Innovación y Tendencias en Ingeniería (CONIITI), Bogotá, Colombia, 3–5 October 2018; pp. 1–6.
[CrossRef]

37. Larose, D. Data Mining and Predictive Analytics; Wiley Series on Methods and Applications in Data Mining; Wiley: Hoboken, NJ,
USA, 2015.

38. Frey, B.J.; Dueck, D. Clustering by passing messages between data points. Science 2007, 315, 972–976. [CrossRef]
39. Thavikulwat, P. Affinity propagation: A clustering algorithm for computer-assisted business simulations and experiential

exercises. Dev. Bus. Simul. Exp. Learn. 2008, 35, 220–224.
40. Basiri, M.E.; Nemati, S.; Abdar, M.; Cambria, E.; Acharya, U.R. ABCDM: An attention-based bidirectional CNN-RNN deep

model for sentiment analysis. Future Gener. Comput. Syst. 2021, 115, 279–294. [CrossRef]
41. Liu, Y.; Gong, C.; Yang, L.; Chen, Y. DSTP-RNN: A dual-stage two-phase attention-based recurrent neural network for long-term

and multivariate time series prediction. Expert Syst. Appl. 2020, 143, 113082. [CrossRef]
42. Graves, A. Generating sequences with recurrent neural networks. arXiv 2013, arXiv:1308.0850.
43. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
44. Karevan, Z.; Suykens, J.A. Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Netw.

2020, 125, 1–9. [CrossRef]
45. Cervantes, J.; Garcia-Lamont, F.; Rodríguez-Mazahua, L.; Lopez, A. A comprehensive survey on support vector machine

classification: Applications, challenges and trends. Neurocomputing 2020, 408, 189–215. [CrossRef]
46. Jojoa, M.; Garcia-Zapirain, B. Forecasting COVID 19 Confirmed Cases Using Machine Learning: The Case of America. Preprints

2020, 2020090228. [CrossRef]
47. Shawe-Taylor, J.; Cristianini, N. Kernel Methods for Pattern Analysis; Cambridge University Press: Cambridge, UK, 2004.
48. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
49. Awad, M.; Khanna, R. Support vector regression. In Efficient Learning Machines; Apress: Berkeley, CA, USA, 2015; pp. 67–80.
50. Rahmadani, F.; Lee, H. ODE-based epidemic network simulation of viral Hepatitis A and kernel support vector machine based

vaccination effect analysis. J. Korean Inst. Intell. Syst. 2020, 30, 106–112. [CrossRef]

http://dx.doi.org/10.1016/j.cmpb.2020.105726
http://dx.doi.org/10.1109/ACCESS.2020.2988550
http://dx.doi.org/10.1016/j.artmed.2019.101742
http://www.ncbi.nlm.nih.gov/pubmed/28674600
http://dx.doi.org/10.1007/s40520-018-1015-9
http://dx.doi.org/10.3390/nu11051072
http://dx.doi.org/10.3390/ijerph17082632
http://dx.doi.org/10.1371/journal.pone.0198324
https://pubmed.ncbi.nlm.nih.gov/26806460/
http://dx.doi.org/10.3233/JHS-170556
http://dx.doi.org/10.1109/CONIITI.2018.8587103
http://dx.doi.org/10.1126/science.1136800
http://dx.doi.org/10.1016/j.future.2020.08.005
http://dx.doi.org/10.1016/j.eswa.2019.113082
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1016/j.neunet.2019.12.030
http://dx.doi.org/10.1016/j.neucom.2019.10.118
http://dx.doi.org/10.20944/preprints202009.0228.v1
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.5391/JKIIS.2020.30.2.106


Int. J. Environ. Res. Public Health 2021, 18, 10769 32 of 32

51. Opitz, D.; Maclin, R. Popular ensemble methods: An empirical study. J. Artif. Intell. Res. 1999, 11, 169–198. [CrossRef]
52. Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
53. Mujika, I.; Padilla, S. Detraining: Loss of training-induced physiological and performance adaptations. Part I. Sports Med. 2000,

30, 79–87. [CrossRef] [PubMed]
54. Sousa, A.C.; Neiva, H.P.; Izquierdo, M.; Cadore, E.L.; Alves, A.R.; Marinho, D.A. Concurrent training and detraining: Brief

review on the effect of exercise intensities. Int. J. Sports Med. 2019, 40, 747–755. [CrossRef]
55. Maldonado-Martín, S.; Cámara, J.; James, D.V.; Fernández-López, J.R.; Artetxe-Gezuraga, X. Effects of long-term training

cessation in young top-level road cyclists. J. Sport Sci. 2017, 35, 1396–1401. [CrossRef]
56. Sousa, A.C.; Marinho, D.A.; Gil, M.H.; Izquierdo, M.; Rodríguez-Rosell, D.; Neiva, H.P.; Marques, M.C. Concurrent training

followed by detraining: Does the resistance training intensity matter? J. Strength Cond. Res. 2018, 32, 632–642. [CrossRef]
57. Zacca, R.; Toubekis, A.; Freitas, L.; Silva, A.F.; Azevedo, R.; Vilas-Boas, J.P.; Pyne, D.B.; Castro, F.A.D.S.; Fernandes, R.J. Effects

of detraining in age-group swimmers performance, energetics and kinematics. J. Sports Sci. 2019, 37, 1490–1498. [CrossRef]
58. Buitinck, L.; Louppe, G.; Blondel, M.; Pedregosa, F.; Mueller, A.; Grisel, O.; Niculae, V.; Prettenhofer, P.; Gramfort, A.; Grobler, J.;

et al. API design for machine learning software: Experiences from the scikit-learn project. arXiv 2013, arXiv:1309.0238.
59. Nasir, V.; Sassani, F. A review on deep learning in machining and tool monitoring: Methods, opportunities, and challenges. Int.

J. Adv. Manuf. Technol. 2021, 115, 2683–2709. [CrossRef]
60. Victoria, A.H.; Maragatham, G. Automatic tuning of hyperparameters using Bayesian optimization. Evol. Syst. 2021, 12, 217–223.

[CrossRef]
61. Wu, J.; Toscano-Palmerin, S.; Frazier, P.I.; Wilson, A.G. Practical multi-fidelity Bayesian optimization for hyperparameter tuning.

In Proceedings of the 35th Uncertainty in Artificial Intelligence Conference, PMLR, Tel Aviv, Israel, 22–25 July 2020; Volume 115,
pp. 788–798.

62. Koller, D.; Friedman, N. Probabilistic Graphical Models: Principles and Techniques; MIT Press: Cambridge, MA, USA, 2009.
63. Caballero, L.; Jojoa, M.; Percybrooks, W.S. Optimized neural networks in industrial data analysis. SN Appl. Sci. 2020, 2, 1–8.

[CrossRef]
64. Amirabadi, M.A.; Kahaei, M.H.; Nezamalhosseini, S.A. Novel suboptimal approaches for hyperparameter tuning of deep

neural network [under the shelf of optical communication]. Phys. Commun. 2020, 41, 101057. [CrossRef]
65. Hameed, Z.; Zahia, S.; Garcia-Zapirain, B.; Javier Aguirre, J.; María Vanegas, A. Breast cancer histopathology image classification

using an ensemble of deep learning models. Sensors 2020, 20, 4373. [CrossRef]
66. Pilloni, P.; Piras, L.; Carta, S.; Fenu, G.; Mulas, F.; Boratto, L. Recommender system lets coaches identify and help athletes who

begin losing motivation. Computer 2018, 51, 36–42. [CrossRef]
67. Sunny, M.A.I.; Maswood, M.M.S.; Alharbi, A.G. Deep Learning-Based Stock Price Prediction Using LSTM and Bi-Directional

LSTM Model. In Proceedings of the 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES), Giza,
Egypt, 24–26 October 2020; pp. 87–92.

68. Gokulan, S.; Narmadha, S.; Pavithra, M.; Rajmohan, R.; Ananthkumar, T. Determination of Various Deep Learning Parameter
for Sleep Disorder. In Proceedings of the 2020 International Conference on System, Computation, Automation and Networking
(ICSCAN), Puducherry, India, 3–4 July 2020; pp. 1–6.

69. Basso, J.C.; Suzuki, W.A. The effects of acute exercise on mood, cognition, neurophysiology, and neurochemical pathways: A
review. Brain Plast. 2017, 2, 127–152. [CrossRef] [PubMed]

70. Lee, H.H.; Emerson, J.A.; Williams, D.M. The exercise–affect–adherence pathway: An evolutionary perspective. Front. Psychol.
2016, 7, 1285. [CrossRef] [PubMed]

71. Milne-Ives, M.; Lam, C.; De Cock, C.; Van Velthoven, M.H.; Meinert, E. Mobile apps for health behavior change in physical
activity, diet, drug and alcohol use, and mental health: Systematic review. JMIR MHealth UHealth 2020, 8, e17046. [CrossRef]

72. Lasi, H.; Fettke, P.; Kemper, H.G.; Feld, T.; Hoffmann, M. Industry 4.0. Bus. Inf. Syst. Eng. 2014, 6, 239–242. [CrossRef]

http://dx.doi.org/10.1613/jair.614
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.2165/00007256-200030020-00002
http://www.ncbi.nlm.nih.gov/pubmed/10966148
http://dx.doi.org/10.1055/a-0975-9471
http://dx.doi.org/10.1080/02640414.2016.1215502
http://dx.doi.org/10.1519/JSC.0000000000002237
http://dx.doi.org/10.1080/02640414.2019.1572434
http://dx.doi.org/10.1007/s00170-021-07325-7
http://dx.doi.org/10.1007/s12530-020-09345-2
http://dx.doi.org/10.1007/s42452-020-2060-5
http://dx.doi.org/10.1016/j.phycom.2020.101057
http://dx.doi.org/10.3390/s20164373
http://dx.doi.org/10.1109/MC.2018.1731060
http://dx.doi.org/10.3233/BPL-160040
http://www.ncbi.nlm.nih.gov/pubmed/29765853
http://dx.doi.org/10.3389/fpsyg.2016.01285
http://www.ncbi.nlm.nih.gov/pubmed/27610096
http://dx.doi.org/10.2196/17046
http://dx.doi.org/10.1007/s12599-014-0334-4

	Introduction
	Materials and Methods
	Data Acquisition
	Proposed Framework
	Input Data
	Pre-Processing
	Clustering
	Regression Models
	Ensemble Models
	Output


	Experiments and Results
	Implementation
	Clustering
	K-Means
	BIRCH
	Affinity Propagation

	Regression Results
	Classification Results
	Validation Metrics
	Results


	Discussion
	Conclusions
	References

