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Abstract: By solving the Langevin equation, mode coupling in a multimode step-index microstruc-
tured polymer optical fibers (SI mPOF) with a solid core was investigated. The numerical integration
of the Langevin equation was based on the computer-simulated Langevin force. The numerical
solution of the Langevin equation corresponded to the previously reported theoretical data. We
demonstrated that by solving the Langevin equation (stochastic differential equation), one can suc-
cessfully treat a mode coupling in multimode SI mPOF as a stochastic process, since it is caused by its
intrinsic random perturbations. Thus, the Langevin equation allowed for a stochastic mathematical
description of mode coupling in SI mPOF. Regarding the efficiency and execution speed, the Langevin
equation was more favorable than the power flow equation. Such knowledge is useful for the use of
multimode SI mPOFs for potential sensing and communication applications.

Keywords: microstructured polymer optical fiber; Langevin equation; mode coupling

1. Introduction

Compared with silica optical fibers, polymer optical fibers (POFs) have a larger di-
ameter (up to 1 mm) and can be easily paired with VCSELs and LEDs, although the
transmission losses of POFs are higher [1]. POFs are good candidates for short-range
transmission systems such as automotive and home network connections [2,3]. Moreover,
due to their advantages such as a large negative thermo-optic coefficient, high bending
flexibility, and large elastic strain limits, POFs are promising for sensing applications [4–9].
A microstructured optical fiber or photonic crystal fiber (PCF) was first demonstrated in
1996 with silica material [10], which can realize a wide variety of properties by different
microstructures with a solid core and a hollow core [11,12]. This technology is transferable
from silica material to other materials so the first non-silica microstructured optical fiber
reported was made of the polymer [13]. The change to polymers had advantages due to
the wide range of polymer materials and low processing temperature [14–16]. As an alter-
native to standard optical fibers, a profile of the refractive index (RI) of the microstructured
optical fiber can be adjusted by selecting an appropriate material and hole pattern in the
cladding [17]. The RI distribution and numerical aperture of the SI mPOF can be adjusted
by varying fiber design parameters. For example, holes that are uniform in size can form
a regular triangular lattice over the SI mPOF cladding (Figure 1). Thus, the central part
without holes has the highest RI while the effective value of the RI of the cladding n1 can be
easily reduced with larger or more densely spaced holes in the cladding. The transmission
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of light along the microstructured optical fibers is influenced by differential mode coupling,
modal attenuation, and modal dispersion [18]. Mode coupling is the process of energy
transfer between neighboring modes during their propagation along the optical fiber. Mode
coupling is mostly induced by intrinsic random perturbations of the fiber, such as refractive
index variations, microbends, and stresses [19–21].
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The angular input optical power distribution that results from a specific launch gets
modified gradually with distance from the input fiber end by the effect of mode coupling.
The expected beam properties, including the far-field radiation pattern, are altered as a
consequence [19,20]. Thus, for example, if we arrange a centrally symmetric launch (along
a cone) at a fixed angle θ = θ0 to the fiber axis, a ring can be imaged behind the output
end of a short fiber—the ring diameter is related to that initial launch angle θ0. As the
fiber is “lengthened” (replaced by longer and longer fibers), the edges of this ring become
blurred and the ring morphs gradually into a disk. This is due to effects of mode coupling
accumulating with distance from the input end and causing the angular power distribution,
initially narrowly centered around θ = θ0, to gradually widen and shift towards θ = 0◦.
At the coupling length Lc, the distribution, even of the highest order guiding mode, has
shifted its midpoint to zero degree, where the equilibrium mode distribution (EMD) is
achieved. By lengthening the fiber to beyond the value known as zs, the angular light
distribution becomes fixed and centered (the disk is brightest in its center). This is a steady-
state distribution (SSD) that is independent of the launch conditions except for the overall
brightness: normalized to its peak value, the SSD is one and the same whatever the launch
angle(s). By employing the power flow equation [19], these patterns have been predicted
as a function of the launch conditions and fiber length in SI mPOF. In this paper, we report
for the first time on the application of the Langevin equation in the treatment of mode
coupling in SI mPOF. This way, by solving a stochastic differential equation (the Langevin
equation), we show that one can successfully treat a mode coupling in multimode SI mPOF
caused by its intrinsic random perturbations.

2. The Langevin Equation

We have previously reported that the Langevin equation can be employed in the
investigation of mode coupling in standard step-index plastic optical fibers [22]. In this
work, we investigate the state of mode coupling along the SI mPOFs by employing the
Langevin equation. The Langevin equation can be written as [23]:

dθ

dz
= W + gΓ(z) (1)
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where z is the distance from the end of the fiber’s input, θ is the propagation angle measured
with respect to the optical fiber core axis, W is the drift coefficient and gΓ(z) is a random
Langevin force with the strength g, and where:

〈Γ(z)〉 = 0〈
Γ(z)Γ

(
z′
)〉

= 2δ
(
z− z′

)
(2)

The Langevin Equation (1) can be expressed in the following form [23]:

dθ

dz
= W +

√
DΓ(z) (3)

where D is the mode coupling coefficient. It should be noted that the second term in
Equation (2) represents the intrinsic perturbation effects of the fiber’s internal noise which
has a stochastic nature. The process described by the Langevin Equation (3) with the δ-
correlated Langevin force (2) is known as a Markov process, i.e., its probability distribution
at length zn depends only on the value θn−1 at the preceding position zn−1. To solve the
Langevin Equation (3), the fiber length z = zf is divided into N length steps k:

zn = kn; k =
z f

N
; n = 1, 2, . . . , N (4)

Then, the angle θn+1 at fiber length zn+1 is determined by the following discretized
Langevin equation:

θn+1 = θn + Wk +
√

Dkωn (5)

where n = 0, 1, . . . , N − 1 and ω0,ω1, . . . , ωN−1 are independent random numbers with
Gaussian distribution, zero mean <ωn> = 0, and variance <ωn ωn′> = 2δnn′ . This way, one
obtains θN = θ(zf). By calculating a large number of representations of ωn, and averaging in
appropriate intervals ∆θ, one obtains <θ(zf)>.

One should mention here that it is well known that perturbations in an optical fiber
are random in nature, and they include density and concentration fluctuations, microscopic
random bends caused by stress, diameter variations, and fiber core defects such as mi-
crovoids, cracks, or dust particles. The power flow equation [19,20] is deterministic in
nature, and it does not describe the energy redistribution in an optical fiber as a stochastic
process caused by fiber perturbations. Since the Langevin equation is stochastic in nature,
the stochastic process of energy redistribution in an optical fiber caused by its perturbations
is explicitly described and modeled by the Langevin equation.

3. Numerical Results and Discussion

By solving the Langevin equation, we study the influence of mode coupling on
transmission in a solid-core multimode mPOF. The following two equations for effective
parameter V are used to calculate the effective RI of cladding n f sm for SI mPOFs [24,25]:

V =
2π

λ
ae f f

√
n2

0 − n2
f sm (6)

V
(

λ

Λ
,

d
Λ

)
= A1 +

A2

1 + A3exp(A4λ/Λ)
(7)

where n0 is the RI of the core, Λ is the pitch, d is the hole diameter of the cladding,
ae f f = Λ/

√
3 [25], λ is the operating wavelength, and fitting parameters Ai (i = 1 to 4) are

given as:

Ai = ai0 + ai1

(
d
Λ

)bi1

+ ai2

(
d
Λ

)bi2

+ ai3

(
d
Λ

)bi3

(8)

The coefficients ai0 to ai3 and bi1 to bi3 (i = 1 to 4) are given in Table 1.
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Table 1. Fitting coefficients in Equation (8).

i = 1 i = 2 i = 3 i = 4

ai0 0.54808 0.71041 0.16904 −1.52736
ai1 5.00401 9.73491 1.85765 1.06745
ai2 −10.43248 47.41496 18.96849 1.93229
ai3 8.22992 −437.50962 −42.4318 3.89
bi1 5 1.8 1.7 −0.84
bi2 7 7.32 10 1.02
bi3 9 22.8 14 13.4

Figure 2 depicts the effective RI of the cladding n1 ≡ n f sm as a function of λ/Λ,
for pitch Λ = 3 µm and the hole diameter of the cladding d = 2 µm. The effective RI is
n1 = 1.4458, the core RI is n0 = 1.492 and the relative RI difference is
∆ = (n0− n1)/n0 = 0.691611 (operating wavelength is λ = 645 nm). The coupling coefficient
for this fiber was assumed to be D = 1.649×10−4 rad2/m [19]. In the calculations, we used
a drift coefficient W = (0.0051 ± 0.0005) rad/m, which was determined by averaging the
rate of switching from the ring to the disk output field pattern for low- and high-order
modes (incidental angles) [22]:

W =

(
1
M

) M

∑
r=1

Wr (9)

where Wr is a drift coefficient of the rth mode. In Equation (9), drift coefficients Wr (r = 1, 2)
for modes with launch angles θ0 = 5◦and 10◦were averaged. We performed a Monte Carlo
sampling of 5× 105 representations of the ωn in Equation (5) in intervals ∆θ = 0.2◦, where
k = 0.0001 m was used.
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In Figure 3, we show the evolution of the normalized output angular power distribu-
tion with the fiber length for SI mPOF, which is our numerical solution to the Langevin
equation. The results shown in Figure 3 for three different input angles θ0 = 0◦, 5◦, and 10◦

are compared with our previously reported results obtained by solving the power flow
equation [19]. There is a high degree of agreement between these results, with mean square
errors below 1%. The radiation patterns in the short fiber (z = 2 m) in Figure 3b indicate
that distributions of low-order modes have shifted towards θ = 0◦. Higher-order mode
coupling can be observed after longer fiber lengths. It is not until a fiber’s coupling length
Lc of 39 m that all the mode distributions have shifted their midpoints to zero degree (from
the initial value of θ0 at the input fiber end), producing the EMD in Figure 3c. The coupling
continues beyond the Lc mark until all distribution widths equalize and SSD is reached at
length zs in Figure 3d: zs = 102 m.
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Regarding the efficiency and execution speed, the Langevin equation is more favorable
than the power flow equation. In contrast to the power flow equation where a very fine
mesh in the finite difference method is needed in order to achieve a high accuracy of the
numerical solution, there is no such problem with the Langevin equation. The efficiency
of the algorithm for integration of the Langevin equation and algorithm for obtaining the
numerical solution of the power flow equation using an explicit finite difference method
was measured in terms of time efficiency (execution speed) and complexity (structure of
the solution/algorithm). For the largest analyzed fiber length of 102 m, the execution time
on an Intel® Core™ i3 CPU 540 at 3.07 GHz computer for the Langevin equation and the
power flow equation was 1.8 min and 2.7 min, respectively. The numerical solution of the
power flow equation is more complex than the solution of the Langevin equation.

Finally, the importance of knowing the coupling length Lc lies in the fact that at fiber
lengths shorter than Lc, the pulse spreading is linear with length, while after establishing
the EMD at length Lc, it has a z1/2 dependence. Therefore, the shorter length Lc is more
desirable since it results in a slower bandwidth decrease [26].

4. Conclusions

By employing the Langevin equation (stochastic differential equation), we investigated
the influence of mode coupling on transmission characteristics of the SI mPOFs. The
numerical solution of the Langevin equation corresponded to the previously reported
theoretical data. It is important to note that the Langevin equation, which is a stochastic
differential equation (in contrast to the power flow equation, which is deterministic in
nature), recognizes and explicitly accounts for the stochastic nature of the fiber’s intrinsic
perturbation effects which cause mode coupling. Regarding the efficiency and execution
speed, the Langevin equation is more favorable than the power flow equation. In contrast
to the power flow equation where a very fine mesh in the finite difference method is needed
in order to achieve a high accuracy of the numerical solution, there is no such problem
with the Langevin equation. Our numerical results obtained by solving the Langevin
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equation compared with our previously reported results obtained by solving the power
flow equation for the analyzed SI mPOF showed a high degree of agreement, with mean
square errors below 1%. Mode coupling influences the fiber’s bandwidth in such a way
that the sooner the EMD is achieved the faster a bandwidth improvement in SI mPOFs
occurs. Namely, at fiber lengths shorter than the coupling length Lc the pulse spreading is
linear with length, while after establishing the EMD at length Lc, it has a z1/2 dependence.
Therefore, the shorter length Lc is more desirable since it results in a slower bandwidth
decrease in SI mPOFs. This is significant because mode coupling has an impact on the vast
majority of fiber-based applications.
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