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Abstract

Previous work revealed that conditional depletion of the core proteasome subunits PrcB and PrcA impaired growth of
Mycobacterium tuberculosis in vitro and in mouse lungs, caused hypersusceptibility to nitric oxide (NO) and impaired
persistence of the bacilli during chronic mouse infections. Here, we show that genetic deletion of prcBA led to similar
phenotypes. Surprisingly, however, an active site mutant proteasome complemented the in vitro and in vivo growth defects
of the prcBA knockout (DprcBA) as well as its NO hypersensitivity. In contrast, long-term survival of M. tuberculosis in
stationary phase and during starvation in vitro and in the chronic phase of mouse infection required a proteolytically active
proteasome. Inhibition of inducible nitric oxide synthase did not rescue survival of DprcBA, revealing a function beyond NO
defense, by which the proteasome contributes to M. tuberculosis fitness during chronic mouse infections. These findings
suggest that proteasomal proteolysis facilitates mycobacterial persistence, that M. tuberculosis faces starvation during
chronic mouse infections and that the proteasome serves a proteolysis-independent function.
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Introduction

Most cells continuously synthesize and degrade proteins in a

regulated manner. Protein degradation is highly selective and this

is achieved in part by localization of protease active sites within a

barrel-shaped complex. This self-compartmentalization was first

discovered for the proteasome [1,2]. In all genera, the proteasome

consists of a 20S cylindrical core particle, which contains two

heptameric outer rings composed of a subunits, and two

heptameric inner rings composed of the proteolytically active b
subunits. The 20S proteasome belongs to the class of N-terminal

nucleophile (Ntn) hydrolases, with a hydroxyl group of the amino-

(N) terminal threonine functioning as catalytic nucleophile that

reacts with peptide bonds of substrates or the electrophilic

functional groups of proteasome inhibitors [3].

Bacterial proteasomes are only found in Actinomycetes [4],

while other chambered proteases such as ClpAP, ClpXP, Lon,

HslUV and FtsH are common in most bacteria [5,6]. Mycobacterium

tuberculosis encodes a proteasome and two CLP proteases, but lacks

homologs of Lon and HslUV [7]. The proteasome accessory

factors, Mycobacterium proteasomal ATPase (Mpa) and proteasome

accessory factor A (PafA), are important for defense against

reactive nitrogen intermediates (RNI) and for virulence of M.

tuberculosis in the mouse [8]. Mpa assembles into a hexameric

ATPase similar to the archeal proteasome associating nucleotidase

(PAN) and the eukaryotic regulatory 19S cap [9,10]. The M.

tuberculosis 20S proteasome harbors electron dense plugs at the

barrel ends created by the N-termini of its a subunits [11].

Removal of the N-terminal eight amino acids resulted in enhanced

peptidolytic activity, suggesting that the M. tuberculosis proteasome

has a gated structure and implying a role for accessory factors

including Mpa in ‘‘gate opening’’ [9,12,13]. A direct interaction of

purified Mpa with the 20S open gate mutant proteasome was

demonstrated by electron microscopy [14].

In eukaryotic cells a covalently attached polymeric chain of

ubiquitin targets proteins for degradation by the proteasome [15].

In M. tuberculosis, Pup, a prokaryotic ubiquitin-like protein, is

ligated by PafA to proteasomal substrate proteins and serves as

degradation signal [16,17,18]. Pup must be deamidated by Dop

(deamidase of Pup) to activate it for conjugation to a substrate

[16,17,18]. In vitro reconstitution assays with purified Dop, PafA,

Pup, ATP and substrate proteins FabD (malonyl acyltransferase)

or PanB (ketopantoate hydroxymethyltranferase) revealed that

Dop and PafA are necessary and sufficient for in vitro pupylation of

proteasome target proteins. Accordingly pupylation was severely

impaired and PanB and FabD accumulated in an M. smegmatis dop

deletion mutant [19]. Recently, the Mpa-proteasome complex

has been reconstituted in vitro and shown to unfold and degrade

Pup-tagged substrates via interaction of Mpa with Pup [20].

Interestingly Pup is degraded together with the substrate, in

contrast to ubiquitin, which is recycled.

Numerous pupylated proteins of diverse cellular functions have

been identified in M. smegmatis and M. tuberculosis [21,22]. The

overlap between nitrosylated and pupylated proteins suggests that

the proteasome is important for turnover of nitrosylated proteins

[22,23]. This hypothesis is substantiated by hypersusceptibility to
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reactive nitrogen intermediates (RNI) of M. tuberculosis lacking

proteasome associated factors or depleted for the proteasome core

subunits PrcBA [8,24]. However, it is unclear if accumulation of

nitrosylated proteins or any other proteasome substrate(s) caused

the growth and persistence defects of proteasome deficient M.

tuberculosis in mouse lungs. To gain more insight into proteasome

core function, we constructed a prcBA deletion mutant (DprcBA)

and complemented it with either an active wild type core

proteasome or a proteolytically defective, active site mutant

proteasome. Our data suggest that proteasomal proteolysis is

dispensable for in vitro and in vivo replication of M. tuberculosis and

for resistance to RNI. Inhibition of inducible nitric oxide synthase

(iNOS) did not affect killing of DprcBA, indicating that defense

against NO is likely not a major activity by which the proteasome

facilitates mycobacterial persistence. However, M. tuberculosis

expressing the proteolysis defective proteasome was severely

impaired in stationary phase survival, died in response to carbon

starvation and failed to persist during chronic mouse infections.

Thus, the M. tuberculosis proteasome may promote survival in vivo

by opposing starvation.

Results

The 20S core proteasome is not essential but is required
for optimal growth and resistance to nitric oxide

The genes encoding the M. tuberculosis proteasome core subunits

PrcB and PrcA were predicted to be essential or required

for optimal growth in vitro [25]. Conditional depletion of the

proteasome core subunits via transcriptional silencing of prcBA

resulted in impaired growth on agar plates and in liquid culture

[24]. Here, we genetically deleted prcBA (Figure S1) resulting in

loss of proteasome activity (Figure 1A). Expression of prcBA from a

constitutive promoter on an episomal plasmid restored PrcB

expression and proteasome activity in the complemented mutant

(DprcBA+PrcBA) (Figure 1A, S1C). The prcBA knockout (DprcBA)

was viable, yet impaired for growth on agar plates and had a small

but reproducible growth defect in liquid culture, confirming

previous observations (Figure 1B, C). The growth defects were

restored in the complemented mutant. These data demonstrate

that while the core proteasome is required for optimal growth of

M. tuberculosis in vitro, it is not essential. The growth defect of

DprcBA was more evident on agar plates than in liquid medium,

similar to what we previously observed after prcBA silencing [24].

M. tuberculosis mutants that lack the mycobacterial proteasome

ATPase Mpa or the Pup ligase PafA or are depleted for PrcBA are

hypersusceptible to RNI [8,24]. Similarly, viability of DprcBA was

almost ten-fold reduced compared to wt M. tuberculosis after

exposure to acidified sodium nitrite (Figure 1D). This increased

killing was complemented when PrcBA were expressed from a

plasmid. Thus, the 20 S proteasome core is required for resistance

against RNI in vitro.

The core proteasome is required for virulence in immune
competent and immune compromised mice

The mouse model of tuberculosis is characterized by an acute

phase, in which the bacteria replicate actively for approximately

three weeks and a chronic phase, during which the bacteria persist

at stable numbers. Silencing of prcBA reduced replication of M.

tuberculosis during the acute phase and persistence during the

chronic phase of infection in mouse lungs [24]. Genetic deletion of

prcBA similarly affected in vivo growth and persistence of M.

tuberculosis (Figure 2A, B). At three weeks post infection CFU in

lungs were 1.5 log10 lower in DprcBA infected mice than in mice

infected with wt M. tuberculosis and at 16 weeks post infection this

difference increased to 2 log10 (P = 0.001 and P = 0.009). The

virulence defects were fully restored in the complemented mutant.

Nitric oxide generated by inducible nitric oxide synthase (iNOS) is

required to control mycobacterial replication in mice [26] and lack

of proteasome activity resulted in increased susceptibility of M.

tuberculosis to RNI (Figure 1D). To determine if NO produced by

iNOS was responsible for the decline in viability of DprcBA during

the chronic phase of the infection, infected mice were treated with

an iNOS-specific inhibitor L-N6-iminoethyl-lysine (L-NIL) [27,28]

starting at day 25 post infection (Figure 2C). In mice infected with

wt M. tuberculosis, L-NIL treatment resulted in a failure to control

bacterial replication, so that bacillary loads were increased by two

orders of magnitude in lungs at 25 days post treatment (day 50

post infection) compared to the control group treated with the

inactive enantiomer (D-NIL) (Figure 2C). The remaining L-NIL-

treated mice infected with wt M. tuberculosis succumbed between

day 50 and day 75 post-infection. In contrast, only a 2-fold

increase in bacillary burden of DprcBA was observed in lungs upon

L-NIL treatment compared to D-NIL treatment at 25 days post

treatment. L-NIL treated mice infected with DprcBA survived until

the end of the experiment (day 200), and bacterial numbers in the

lungs of both L-NIL and D-NIL treated mice declined by 20-fold

(Figure 2C). There was only a slight increase in the number of

nodular lesions at day 200 in mice infected with DprcBA and

treated with L- Nil compared to D-Nil treated mice (not shown).

Altogether, these data suggest that iNOS is not required to control

DprcBA during chronic infection in mice.

Mutation of the PrcB active site residue threonine
dramatically impairs proteolytic activity

The 20S proteasome is a multimeric protein complex and we

hypothesized that lack of expression of the proteasome core

Author Summary

The eukaryotic proteasome is ubiquitous and essential for
many basic cellular processes. In contrast to most bacteria,
which do not express a proteasome, Mycobacterium
tuberculosis encodes a proteasome predicted to be
essential or required for optimal growth of the pathogen.
Genetic silencing of the proteasome core genes further
suggested that the M. tuberculosis proteasome plays an
important role in defense against nitric oxide and in
persistence of the pathogen during chronic mouse
infections. In this manuscript we generated a genetic
deletion mutant of the proteasome core genes proving
that the 20S proteasome is not essential for growth of M.
tuberculosis. We complemented the proteasome knockout
with a proteolytically active and a mutated, proteolysis
defective proteasome. This revealed that proteasomal
proteolysis is dispensable for in vitro and in vivo growth
and nitric oxide resistance of M. tuberculosis and suggests
that the proteasome core serves a proteolysis-indepen-
dent function. In contrast, long-term survival of the
pathogen in vitro and in the chronic phase of mouse
infection required a proteolytically active proteasome. We
further provide evidence that nitric oxide is not respon-
sible for killing of the proteasome knockout during chronic
mouse infections. Thus, proteasomal proteolysis facilitates
mycobacterial persistence independently of defense
against nitric oxide. We propose that the failure to survive
starvation contributes to the impaired persistence of M.
tuberculosis lacking a proteolytically active proteasome
during chronic infections.

Proteasome Function in M. tuberculosis
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subunits PrcB and PrcA could have different physiological

consequences than lack of PrcB-mediated proteolytic activity. To

test this, we expressed a proteasome active site mutant in DprcBA.

In this mutant, the N-terminal threonine residue of the mature

PrcB subunit was mutated to alanine (T1A). This mutation

abolished proteolytic activity of the proteasome from Thermoplasma

acidophilum [3,29,30]. To allow assembly of this mutant proteasome

subunit into a 20S complex, we also deleted the pro-peptide of the

PrcB subunit, which in an active proteasome is autocatalytically

removed by the active site Thr, thereby exposing the amino group

of Thr for nucleophilic attack on the target peptide bond

[12,29,31]. Similar mutagenesis of the T. acidophilum proteasome

allowed assembly of a mature 20S proteasome core [29,31,32].

The mutated prcB gene (pcrBT1A) was cloned including a C-

terminal histidine tag in an operon with prcA (prcABT1A) and

expressed in DprcBA. Immunoprecipitation of the PrcB subunit

from lysates of this M. tuberculosis strain co-purified PrcA as

determined by liquid chromatography-tandem mass spectrometry

(Figure S2) indicating that a complex containing both subunits

formed in vivo despite the PrcBT1A mutation. As expected, the

mutant proteasome failed to complement proteolytic activity of

DprcBA, measured by cleavage of the peptide substrate Suc-LLVY-

AMC (Figure 3A), although the expression level of the PrcB

subunit containing the T1A mutation was similar to that of wt

PrcB (Figure 3B). To determine whether the T1A mutation

affected proteolytic activity within the bacteria, GFP was fused to

the proteasome substrate PanB (ketopantoate hydroxymethyl-

transferase). PanB has been shown to accumulate in M. tuberculosis

Figure 1. The proteasome is required for optimal growth in vitro and for resistance to RNI. (A) Proteasome activities in H37Rv, DprcBA and
the complemented mutant (DprcBA + PrcBA). The cleavage velocity (RFU/min) of the fluorogenic peptide substrate Suc-LLVY-AMC reports proteasome
activity. Proteasome activity was not detectable in DprcBA. Data are means 6 s.d. of three independent experiments. (B) Growth of H37Rv, DprcBA and
DprcBA + PrcBA on agar plates. Serial dilution of the three stains were spotted onto 7H11 agar plates and incubated for 3 weeks at 37uC. (C) Growth of
H37Rv, DprcBA and DprcBA + PrcBA in liquid culture. Strains were inoculated in 7H9 media and growth was followed by measuring OD580. (D)
Susceptibility to reactive nitrogen intermediates. Colony forming units (CFU) of H37Rv, DprcBA and the complemented strain after three days exposure
to 0 mM and 3 mM sodium nitrite at pH 5.5. Data are means 6 s.d. of triplicate cultures and representative of three independent experiments.
doi:10.1371/journal.ppat.1001040.g001
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lacking Mpa and in wt M. tuberculosis treated with the proteasome

inhibitor epoxomicin [33]. We confirmed by 2-D SDS page

analysis that PanB also accumulated in DprcBA (not shown).

Similarly, the PanB-GFP fusion protein accumulated in DprcBA

compared to wt M. tuberculosis as shown by GFP activity (Figure 3C)

and GFP protein levels (Figure 3D). This was complemented when

the intact core proteasome (PrcBA) was expressed in DprcBA. In

contrast, the active site mutant proteasome (PrcAB-T1A) did not

revert the accumulation of PanB-GFP (Figure 3C, D). Thus, the

active site mutation T1A not only abolished proteasome activity

against a peptide substrate in vitro, but also disrupted proteolytic

activity of the proteasome within the bacteria.

The active site mutant proteasome enables optimal
growth in vitro and in vivo, confers RNI resistance but is
not sufficient for persistence in mice

Surprisingly, expression of PrcAB-T1A in DprcBA complement-

ed its growth defect both on solid and in liquid media similar to

expression of wt PrcBA (Figure 4A, B). The RNI hypersuscepti-

bility of DprcBA was also complemented to a large degree by the

active site mutant proteasome (Figure 4C). We next asked if the

catalytic activity of the proteasome is required for M. tuberculosis to

grow and persist in mice. The mutant proteasome complemented

the in vivo growth defect of DprcBA similar to the wt proteasome

(Figure 5A), suggesting that a proteolysis-independent activity of

the 20S core is required for optimal growth of M. tuberculosis in

mouse lungs. However, the persistence defect of DprcBA during the

chronic phase of infection was not complemented by the T1A

mutant proteasome and bacterial numbers in the lungs declined by

3 log10 between day 28 and day 200. Similarly, lung pathology,

which was easily detectable on day 56 post-infection, decreased

from day 56 to day 200 in mice infected with the T1A mutant

proteasome complemented DprcBA (Figure 5B). Of note, DprcBA

complemented with the mutant proteasome lost viability faster

than DprcBA in mouse lungs (Figure 5A). The higher bacterial

burden reached by the strain expressing the mutant proteasome at

three weeks post infection likely resulted in a more efficient

activation of the immune system resulting in faster killing of the

bacilli. This hypothesis is supported by the increased kinetics of

killing of DprcBA in the face of a higher bacterial burden when

mice were infected with a mixture of equal numbers of wt M.

tuberculosis and DprcBA (Figure 5C).

Altogether, these data suggest that the proteolytic activity of the

proteasome is dispensable for growth of M. tuberculosis in vitro and in

mice and for RNI resistance, yet proteasome mediated proteolysis

is required for persistence of M. tuberculosis in mouse lungs.

A proteolytically active proteasome is required for
survival in stationary phase and during starvation

Proteasomal proteolysis may be required during bacteriostasis

or periods of slow replication to counter the effects of

Figure 2. The proteasome is required for optimal growth and
persistence in mice. (A) Bacterial titers in lungs of C57BL/6 mice
infected by aerosol with H37Rv, DprcBA and the complemented mutant.
Data are means 6 s.d. from four mice per time point per group and are
representative of three independent experiments. (B) Gross pathology
of lungs infected with H37Rv, DprcBA and complemented mutant at
day 116 post-infection. (C) Bacterial titers in lungs of C57BL/6 mice
infected by aerosol with H37Rv and DprcBA and treated with the iNOS
inhibitor L-Nil and its inactive enantiomer D-Nil starting at day 25 post-
infection (indicated by arrow). Data are means 6 s.d. from four mice per
time point per group and represent two independent experiments.
doi:10.1371/journal.ppat.1001040.g002
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accumulating protein damage as well as to provide amino acids for

energy metabolism during starvation. Proteolysis mediated by

ClpP and Lon is important for the ability of E. coli to sustain

starvation [34,35]. We monitored survival during stationary phase

and during complete starvation of wt M. tuberculosis, DprcBA and

DprcBA complemented with the wt proteasome and the T1A active

site mutant proteasome. In normal growth medium, M. tuberculosis

grew exponentially for about 10 days, after which bacterial

numbers remained almost constant over the next 170 days

(Figure 6A). DprcBA was, as expected from earlier growth

characterizations, impaired for growth. Upon entering stationary

phase, viability of the DprcBA declined steadily. At 180 days post

inoculation there was an approximately 3 log10 difference in viable

counts between wt and DprcBA (Figure 6A). Both the growth and

persistence defects were largely complemented by expression of

the wt proteasome. The T1A mutant proteasome complemented

the initial growth defect but failed to complement the persistence

defect. Wt M. tuberculosis and DprcBA transformed with the wt

proteasome also survived conditions of complete starvation

without a significant decline in viability (Figure 6B). In contrast,

viability of DprcBA and DprcBA transformed with the T1A mutant

proteasome declined steadily during starvation (Figure 6B).

Collectively, these data indicate that the proteasomal proteolysis

is important for the ability of M. tuberculosis to survive conditions of

starvation and stationary phase in vitro.

Discussion

The eukaryotic proteasome is ubiquitous and essential for many

basic cellular processes including differentiation, proliferation,

transcription, signal transduction, metabolic regulation, immune

surveillance and others [36,37]. In prokaryotes, proteasome

deletion mutants have been generated in Thermoplasma acipophilum,

Streptomyces lividans, S. coelicolor and M. smegmatis. T. acidophilum

proteasome mutants were impaired for survival post heat shock

but not under normal growth conditions [38]. Deletion of the

Figure 3. Characterization of the active site mutant proteasome. (A) Proteasome activities of H37Rv, DprcBA and DprcBA complemented with
the active site mutant proteasome (PrcAB-T1A) and the intact proteasome (PrcBA) measured using the fluorogenic substrate Suc-LLVY-AMC.
Proteasome activity was not detectable in DprcBA and DprcBA complemented with the active site mutant proteasome (PrcAB-T1A). (B) PrcB levels
analyzed by immunoblotting in lysates from H37Rv, DprcBA and the complemented strains. DlaT was used as loading control. (C) GFP activities in
strains expressing GFP or the PanB-GFP fusion protein. (D) GFP and PanB-GFP levels analyzed by immunoblotting in lysates from H37Rv, DprcBA and
the complemented strains. DlaT was used as loading control.
doi:10.1371/journal.ppat.1001040.g003
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proteasome in S. lividans, S. coelicolor and M. smegmatis did not reveal

phenotypic defects [39,40,41]. The current work proves that the

20S proteasome is not essential for growth of M. tuberculosis.

However, consistent with previous studies [24,25] lack of the core

proteasome resulted in a growth defect on plates and in liquid

culture, suggesting that proteasome-mediated proteolysis is

important for optimal in vitro growth of M. tuberculosis.

Surprisingly, however, a proteolytically defective proteasome

fully complemented the growth defects and partially restored the

RNI hypersusceptibility of DprcBA. Thus, these phenotpyes of

DprcBA are likely not due to lack of proteasomal proteolysis. We

cannot exclude that mutation of the active site threonine to alanine

failed to completely abolish proteolysis. However, peptidolytic

activity of the proteasome was undetectable in lysates expressing

the T1A mutant proteasome and the proteasome substrate PanB

tagged with GFP accumulated similarly in DprcBA and DprcBA

expressing the T1A mutant proteasome. Thus, proteasome-

mediated proteolysis was drastically impaired when the active site

Figure 4. The active site mutant proteasome complements the growth defects and RNI hypersusceptibility of the proteasome KO.
(A) Growth of H37Rv, DprcBA and the complemented strains in liquid culture. Strains were inoculated in 7H9 media and growth was followed by
measuring OD580. (B). Growth of H37Rv, DprcBA and the complemented strains on agar plates. Serial dilutions of the indicated stains were spotted
onto 7H11 agar plates and incubated for 3 weeks at 37uC. (C) Susceptibility to reactive nitrogen intermediates. Colony forming units (CFU) of H37Rv,
DprcBA and the complemented strains after three days exposure to 0 mM, 3 mM or 5 mM sodium nitrite at pH 5.5. Data are means 6 s.d. of triplicate
cultures and representative of three independent experiments.
doi:10.1371/journal.ppat.1001040.g004
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threonine was mutated to alanine in PrcB. The 20S core requires

accessory factors for protein targeting to the proteolytic chamber

[42]. In eukaryotes, proteasome accessory factors are not only

found as part of the proteasome complex; they also form

subcomplexes that regulate transcription and DNA repair and

have chaperone function [43,44,45]. The stoichiometry of

proteasome accessory factors that are free or in complex with

the 20S core might be regulated. In the absence of the 20S core an

excess of free accessory factors might affect growth. The T1A

active-site mutant proteasome is likely to interact with Mpa and

potentially other proteasome accessory factors despite its catalytic

defect and thereby prevent phenotypes caused by an imbalance of

free and complexed accessory factors.

Depletion of the 20S proteasome in M. tuberculosis caused

hypersusceptibility to RNI and impaired persistence in the mouse

[24]. Deletion of Mpa and PafA sensitized M. tuberculosis to RNI in

vitro and resulted in impaired growth in the mouse [8]. However,

the proteolytically defective active site mutant proteasome

complemented the RNI hypersusceptibility of DprcBA to a large

degree, suggesting that proteasomal proteolysis is not essential for

conferring RNI resistance. Moreover, inhibition of iNOS, the

major producer of nitric oxide in macrophages, had no impact on

survival of DprcBA in mouse lungs. Thus other factors of the

adaptive immune response appear responsible for killing DprcBA

during the chronic phase of the infection. Of note, the attenuated

growth of the M. tuberculosis Mpa mutant in the acute phase of

infection was not rescued in iNOS-deficient mice [8]. Phagocyte

oxidase activity may have compensated for inhibited iNOS

activity; however, proteasome-depleted M. tuberculosis and the

Mpa mutant were hyperresistant to oxidative stress in vitro [8,24].

We propose that nutrient limitation might be responsible for the

killing of DprcBA in mice. M. tuberculosis lacking the 20S core failed

to survive prolonged stationary phase and nutrient starvation in

vitro and was unable to persist in vivo. Proteasome-mediated

proteolytic turnover seems essential for in vitro and in vivo

persistence of M. tuberculosis, because the active site mutant

proteasome expressing strain phenocopied the inability of DprcBA

to persist both in vitro and in vivo. Nutritionally starved and

clinically persistent M. tuberculosis share phenotypic similarities,

including reduced acid-fastness and drug tolerance [46,47,48].

Starvation of M. tuberculosis reduced respiration to minimal levels,

indicating a low metabolic activity, but the bacilli remained viable

and were recoverable when returned to rich medium [49,50].

Nutrient starvation-induced transcripts can be detected in human

tuberculous granulomas [46,51]. Moreover, the stringent response,

required for long-term survival in culture, was also required for

persistence of M. tuberculosis in mice [52,53,54]. In E. coli amino

acid starvation is followed by increased ribosomal protein

degradation via Lon protease to provide amino acids for the

synthesis of new enzymes important for adaptation to starvation

[35,55]. Moreover, starvation and growth arrest are linked to the

production of misfolded and aberrant proteins isoforms that need

to be degraded to prevent toxicity [56]. In mammalian cells

proteasomal protein degradation is crucial in supplying amino

acids for the synthesis of new proteins during amino acid

deprivation [57]. Similarly, M. tuberculosis might require the

proteasome for amino acid supply and turnover of damaged

proteins during long term persistence within its host.

Figure 5. The active site mutant proteasome complements the
in vivo growth defect but not the persistence defect of the
proteasome KO. (A) Bacterial titers in lungs of C57BL/6 mice infected
by aerosol with DprcBA and DprcBA complemented with wild type and
the active site T1A mutant ptroteasome. Data are means 6 s.d. from
four mice per time point per group and represent two independent
experiments. (B) Gross pathology of lungs infected with DprcBA and
DprcBA complemented with the wild type and the active site mutant
proteasome at day 56 and day 120 post-infection. (C) Bacterial titers in

lungs of C57BL/6 mice infected by aerosol with a mixed culture of
H37Rv with a streptomycin resistance conferring plasmid integrated in
the chromosomal attB site (H37Rvstrep) and the hygromycin resistant
DprcBA.
doi:10.1371/journal.ppat.1001040.g005
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In summary, this work demonstrates the essential role of the 20S

proteasome proteolytic activity for M. tuberculosis to persist in vivo

and reveals a mechanism beyond nitric oxide defense by which the

proteasome contributes to mycobacterial fitness.

Materials and Methods

Ethics statement
All mouse procedures performed in this study were conducted

following the National Institutes of Health guidelines for housing

and care of laboratory animals and performed in accordance with

institutional regulations after protocol review and approval by the

Institutional Animal Care and Use Committee of Weill Cornell

Medical College.

Strains, media and culture conditions
Wild-type M. tuberculosis (H37Rv) was obtained from Dr. Robert

North, Trudeau Institute. Mycobacteria were grown at 37uC in

Middlebrook 7H9 medium (Difco) containing 0.2% glycerol, 0.5%

bovine serum albumin, 0.2% dextrose, 0.085% NaCl, and 0.05%

Tween 80. Hygromycin B (50 mg/ml), kanamycin (15 mg/ml)

and streptomycin (20 mg/ml) were included when required for

selection.

Construction of DprcBA
PrcBA genes were deleted from the chromosome via

homologous recombination following transduction with temper-

ature-sensitive mycobacteriophage phAE87 [58]. 768 bp up-

stream of the start codon of prcB and 524 bp downstream of the

stop codon of prcA were amplified by PCR from H37Rv

genomic DNA and cloned into pJSC284 to flank the hygro-

mycin resistance gene. pJSC284 is a derivative of pYUB854

containing a lambda cos site, and a unique PacI site. The

resulting plasmid was ligated with the temperature-sensitive

phage phAE87 and the resulting phage was used to infect M.

tuberculosis. Hygromycin-resistant transductants were selected on

7H11 agar plates with 50 mg/ml hygromycin for 3 weeks and

analyzed by Southern blot.

Complementation of DprcBA
PrcBA were PCR amplified from H37Rv genomic DNA with a

forward primer specific to prcB (59- CGTCCGCGCATGCGTC-

CAGGAGGGCGGACAG-39) and a reverse primer specific to

prcA (59-GACACGCGTCGGACGTTTAAACTCAGCCCG-39).

The resulting fragment was cloned into an episomal mycobacterial

plasmid containing the mycobacterial promoter Pmyc1tetO [59]

and a kanamycin resistance gene.

Construction of T1A proteasome mutant
PrcA was PCR amplified using primers 59- CGGGTGC-

GCATGCTTTCGGCTCCGAAGGAGGTGAG-39 and 59-AC-

TCAGCCCGACGATTCGCCGTCAGACTGC-39 resulting in

introduction of an SphI site at the 59 end of prcA followed by a

synthetic ribosome binding site (RBS). prcB was PCR amplified

using primers 59-GGCCACCATTGTCGCGCTGAAATACC-

CC-39 and 59- CGCCTGCTCTGCAGTCAATGATGATGAT-

GATGATGCTTCTCACCGCCATCGGAGCCGAAAGTATCC-

39 from the H37Rv genome resulting in deletion of the 59 end

encoding its pro-peptide, mutation of threonine 1 to alanine and

addition of a C terminal hexahistidine tag, followed by a PstI site

39 of prcB-T1AHis6 (encoded protein referred to as PrcAB-T1A).

For expression of the active proteasome, prcBA was amplified

from the H37Rv genome using primers 59- CGTCCGCGC-

ATGCGTCCAGGAGGGCGGACAG-39 and 59-GGGGGCC-

CATCGATCTCTTAATTAAGGTAGAC-39. The amplified

fragments were cloned into an episomal mycobacterial plasmid

containing the mycobacterial promoter Pmyc1tetO [59] and a

kanamycin resistance gene.

Construction of PanB-GFP expression vector
The panB-gfp fusion was generated by PCR and cloned using the

Gateway Cloning Technology (Invitrogen) behind a constitutive

promoter into an integrative mycobacterial plasmid containing a

streptomycin resistance gene.

Figure 6. A proteolytically intact core proteasome is required
for long-term survival in stationary phase and during starva-
tion. (A) Growth and survival of H37Rv, DprcBA and the complemented
strains in complete 7H9 growth medium. (B) Survival of H37Rv, DprcBA
and the complemented strains in phosphate buffered saline. CFU were
determined at indicated times by plating on 7H11 agar plates. Data are
means 6 s.d. of triplicates and representative of three independent
experiments.
doi:10.1371/journal.ppat.1001040.g006
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Immunoblots
Cell lysates were prepared by bead-beating the cell pellets in

PBS containing protease inhibitor cocktail (Complete Mini,

Roche). Clarified cell lysates were filter sterilized by passage

through a 0.2 mm filter. 15 mg cell lysates were subjected to SDS-

PAGE, followed by transfer to a nitrocellulose membrane. Blots

were probed with PrcB-specific and DlaT-specific rabbit sera at

1:15,000 and 1:10,000 dilutions in 5% skimmed-milk containing

Tris-buffered saline with 0.05% Tween 20 (TBST). To assess

PanB-GFP accumulation, blots were probed with anti-GFP

antibody (Invitrogen). Secondary antibodies, donkey anti-rabbit

(horse radish peroxidase coupled) or LI-COR 800 goat anti rabbit

were used at 1:30,000 dilution in 2% skimmed-milk containing

TBST and at 1:15,000 dilution in Odyssey blocking buffer,

respectively. Blots were developed using Immobilon Western

Chemiluminescent HRP substrate (Millipore) or using the Odyssey

Infrared Imaging System (LI-COR Biosciences).

Proteasome activity assay
Bacteria were grown to OD580nm 1.0, washed as described above

and cell pellets were lysed in 450 ml PBS containing protease

inhibitor cocktail (Complete Mini, Roche) using a bead beater.

Clarified cell lysates were filter sterilized by passage through a

0.2 mm filter and then adjusted to a final glycerol concentration of

10%. Proteasome activity was assessed as previously described [12].

Briefly, 50 mg of lysate were incubated with 100 mM Succinyl-Leu-

Leu-Val-Tyr-aminomethyl coumarin (Suc-LLVY-AMC) in 20 mM

HEPES, 0.5 mM EDTA buffer and fluorescence was monitored at

excitation of 370 nm and emission of 430 nm at 37uC over 60 min

in a 96 well-plate fluorimeter (Molecular Devices).

Determination of in vivo GFP and PanB-GFP
accumulation

Cultures were grown to OD580nm 0.4–0.9 (mid log) and 1.0–

1.5 ml of cultures were harvested, resuspended in 100 ml PBS and

aliquoted into a black 96 well plate. Fluorescence was measured

using excitation at 485 nm and emission at 515 nm. Relative

fluorescence units were normalized to OD580nm.

In vitro stress susceptibility assays
Cultures were grown to log phase (OD580nm 0.6), washed in

growth medium and single cell suspensions prepared in assay

medium by centrifugation at 800 rpm for 12 minutes. Single cell

suspensions were subsequently diluted to OD580nm 0.01. To test

susceptibility to RNI, diluted cultures were incubated at pH 5.5 with

or without 3mM or 5mM NaNO2 for 3 days at 37uC. To determine

viability, serial dilutions of cultures were plated on 7H11 plates.

Stationary phase survival and starvation assays
For long-term survival experiments M. tuberculosis strains were

grown in 7H9 medium to mid log phase. Single cell suspensions

were prepared in 7H9 as described above and diluted into fresh

medium to OD580n 0.01, in 10 ml triplicate cultures. For starvation

conditions, single cell suspensions were prepared in PBS with 0.02%

Tween 80 and diluted into PBS-Tween to OD580n 0.01 in triplicate

10 ml cultures. Cultures were incubated at 37uC under constant

shaking (50 rpm). To determine growth and viability, serial

dilutions of cultures were plated on 7H11 plates.

Animal infections
Eight week old, female C57BL/6 mice (Jackson Laboratory)

were infected with M. tuberculosis strains by aerosol as described

[24]. Bacterial numbers in organs were enumerated by plating

organ homogenates for colony forming units (CFU) at indicated

times. N6-(1-Iminoethyl)lysine (NIL; L- and D-enantiomers)

(custom synthesized by DeCODE Chemicals [60], and a kind

gift from Dr. C. Nathan) were given in acidified (pH 2.7) drinking

water (4 mM) beginning on day 21 post infection and freshly

prepared every 48 hr until the end of the experiment [26].

Supporting Information

Figure S1 Genetic deletion of prcBA. (A) Map of the prcBA

genomic region in wt M. tuberculosis (top) and DprcBA (bottom). Probe

location and BamHI (B) restriction sites are indicated. (B) Southern

blot of BamHI (B) digested genomic DNA from wt M. tuberculosis

(H37Rv) and DprcBA probed with the DNA fragment indicated in

(A). (C) PrcB levels analyzed by immunoblot in H37Rv, DprcBA and

the complemented mutant (DprcBA + PrcBA). Dihydrolipoamide

acyltransferase (DlaT) was used as loading control.

Found at: doi:10.1371/journal.ppat.1001040.s001 (0.80 MB TIF)

Figure S2 PrcBA complex formation. (A) Immunoprecipitation

of PrcBHis6 and PrcB-T1AHis6 co-purified PrcA. Cell lysates

from 100 ml cultures (20 mg total protein) of the indicated M.

tuberculosis strains were immunoprecipitated with anti-histidine

beads (Invitrogen). Protein eluted from the beads (E) with 1 M

imidazol and protein recovered from boiled beads (B) were

separated on a 15% SDS Page. (B) Identification of PrcB and PrcA

by peptide mass finger printing and N-terminal sequencing. N-

terminal sequencing of proteins from band 2 and 4 identified the

expected N-terminal threonine for PrcB in band 2 and an N-

terminal alanine residue for PrcB-T1A in band 4.

Found at: doi:10.1371/journal.ppat.1001040.s002 (0.31 MB PDF)
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