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Abstract: The synthetic polymer, polyallylamine hydrochloride (PAA), is found in a variety of
applications in biotechnology and medicine. It is used in gene and siRNA transfer, to form
microcapsules for targeted drug delivery to damaged and tumor cells. Conventional chemotherapy
often does not kill all cancer cells and leads to multidrug resistance (MDR). Until recently, studies of
the effects of PAA on cells have mainly focused on their morphological and genetic characteristics
immediately or several hours after exposure to the polymer. The properties of the cell progeny
which survived the sublethal effects of PAA and resumed their proliferation, were not monitored.
The present study demonstrated that treatment of immortalized Chinese hamster cells CHLV-79
RJK sensitive (RJK) and resistant (RJKEB) to ethidium bromide (EB) with cytotoxic doses of PAA,
selected cells with increased karyotypic instability, were accompanied by changes in the expression of
p53 genes c-fos, topo2-α, hsp90, hsc70. These changes did not contribute to the progression of MDR,
accompanied by the increased sensitivity of these cells to the toxic effects of doxorubicin (DOX).
Our results showed that PAA does not increase the oncogenic potential of immortalized cells and
confirmed that it can be used for intracellular drug delivery for anticancer therapy.

Keywords: polyallylamine hydrochloride; Chinese hamster cells V-79; multidrug resistance; p53;
c-fos; topo2-α; hsp90; hsc70; karyotypic stability; oncogenic transformation; doxorubicin

1. Introduction

Synthetic biopolymers with biodegradable and biocompatible properties are extensively used
in the biomedical field, such as cancer treatment, gene therapy, stem cell research, development of
cell scaffolds, and cell technologies for organ regeneration [1,2]. Water soluble synthetic polymeric
cation polyallylamine hydrochloride (PAA), a representative of such polymeric carriers, has many
biomedical applications. PAA is used in the formation of microcapsules for targeted delivery of drugs,
multilayer films covering biomedical implants. It is implicated in gene and siRNA transfer due to
electrostatic bonds between negatively charged phosphate groups of nucleic acids and positively
charged polycationic groups [3–5]. In tissue engineering, the surface characteristics of a biomaterial
are very important factors determining its biocompatibility. They affect the cell attachment and growth
on the substrate. In many cases, the surface must be modified and designed in the right direction.
Modification of non-adhesive surfaces with polyelectrolyte multilayer films has recently been proposed
as a powerful method that promotes the growth of various cells [6–8].
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Some researchers believe that PAA is a biologically neutral material [9]. However, an analysis of the
genetic expression of human vascular smooth muscle cells 24 h after exposure to PAA microcapsules
exhibited profound changes in gene expression related to cytoskeleton organization, cell cycle,
cell adhesion, migration ability, and the mitogen-activated protein kinase signaling pathway (MAPK) [3].
Cytogenetic analysis of Chinese hamster cells CHLV-79 RJK (RJK) resistant to ethidium bromide (RJKEB)
24 h after the exposure to PAA revealed multidirectional destabilization of the karyotype (the occurrence
of aneuploidy and the appearance of chromosomal aberrations) [10]. It was also demonstrated that
adhesion of RJK to the surface coated with PAA varied depending on the PAA concentration in
solution. PAA at concentration of 0.01 µg/mL enhanced cell attachment compared to cell adhesion to an
untreated surface. An increase in PAA concentration led to dose-dependent inhibition of cell adhesion.
Cell staining with trypan blue showed that concentration of PAA 100 µg/mL was sublethal [11].
The effect of PAA on the properties of cells that survived after treatment with sublethal doses of the
biopolymer has not been studied and remains unclear.

The use of biopolymer carriers for drug delivery can be part of complex drug therapy in
the treatment of cancer. In this regard, for the development of safe carriers that contain PAA,
it is important to signify the whole spectrum of possible effects, including the delayed effects that
PAA has on transformed cells and drug resistant cell populations. With any subcytoxic effects
on the tumor, there is a risk of increasing its insensitivity to drugs and the development of the
multidrug resistance (MDR). MDR is defined as the resistance of cells to the cytotoxic effect of
structurally heterogeneous and functionally different chemotherapeutic agents and is considered
as a main challenge in cancer treatment. A typical mechanism that ensures cell resistance to drugs
is the expression of the transmembrane glycoprotein with the molecular weight of 130–200 kDA,
called P-glycoprotein (“permeability” glycoprotein), product of the mdr1 gene [12]. Functionally,
P-glycoprotein, or MDR1, is an energy-dependent pump that removes drugs from resistant cells,
thereby reducing their intracellular content. Enhanced MDR1 expression is characteristic of typical
MDR tumors. In the case of atypical MDR, MDR1 expression remains unchanged, but it is possible
that expression of DNA topoisomerases (e.g., topo-2α), ribozymes that play an important role in
DNA replication, transcription and chromosome separation is altered [13]. The process of oncogenic
transformation and MDR appearance is accompanied with changed expression of many genes.
P53 tumor suppressor is a critical component of the system that maintains the genetic stability of
animal and human cells. The suppression of this gene is observed in almost all types of human
cancer. It facilitates the tumor cell to accumulate additional mutations and progress towards higher
malignancy [14]. A key player in oncogenesis is also the c-fos proto-oncogene, which is involved in
several cellular events, including cell proliferation, regulation of genes associated with hypoxia and
angiogenesis [15]. Heat shock proteins (HSP), which are involved in various cell processes, such as
protein folding, apoptosis, autophagy, and cellular immunity, are now considered to be related to
oncogenesis as well. HSP protect cancer cells from environmental and pharmacological stress factors
and can interfere with cancer therapy. Several studies have demonstrated the relationship between
HSP and drug resistance, as well as the possibility of their use as biomarkers for detecting tumors [16].

The study of the MDR phenomenon in rodent and human cells in culture showed that these cells
underwent a change in the permeability of the cell membrane, as well as genetic changes recorded
both at the karyotypic and molecular levels. At the molecular level, this is associated with increased
expression of mdr1 gene. At the karyotypic level it is recorded as the appearance of an additional genetic
material, homogenous stained regions (HSR) in one of the chromosomes, as well as double minute
chromosomes (DM) considered as morphological manifestations of mdr1 gene amplification [17,18],
and markers of cells with MDR.

The studies of PAA effect on cells have been mainly focused on their morphological and genetic
characteristics immediately or a few hours after exposure to the polymer [3,10]. The properties of cell
progeny survived sublethal effects of PAA and resuming their proliferation have not been monitored.
There is also no data on the effect of sublethal doses of PAA on cell populations with MDR. In this
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regard, the aim of this work was to investigate the gene expression and karyotypic stability of the
descendants of Chinese hamster cells RJK with and without MDR that survived after exposure to PAA
in sublethal concentration.

2. Materials and Methods

2.1. Cells

The study was performed on Chinese hamster fibroblasts RJK, RJKEB, RJK-PAA, and RJKEB-PAA
cells. The constant transformed RJK (CHL V-79 RJK) cells were provided by Dr. F. Ruddle (Yale University,
New Haven, CT, USA). RJKEB cells were obtained by Dr. Ignatova and Dr. Artsybasheva (Institute
of Cytology RAS, Russia) using gradual selection of RJK cells for resistance to 5 µg/mL EB.
RJK-PAA and RJKEB-PAA cells were progenies surviving after PAA exposure to RJK and RJKEB
cells, respectively. The cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM)
/F12 medium (Gibco, Brooklyn, NY, USA) with 10% bovine fetal serum (HyClone, Logan, UT, USA),
1% antibiotic-antimycotic solution, and 1% GlutaMAX (Gibco, Brooklyn, NY, USA). The cells were
subcultured 1:3 twice a week using 0.05% trypsin with ethylenediaminetetraacetic acid (EDTA)
(Invitrogen, Waltham, MA, USA). The proliferation activity was assessed by creating cell growth
curves. The average population doubling time was estimated using the formula: Td = tlg2/log (Nt/N0),
with Td—the average population doubling time, t—the population growth time, Nt—the number of
cells after time t, N0—the initial number of cells.

2.2. Treatment Cells with Polymer Polyallylamine

PAA was synthesized at the Institute of Macromolecular Compounds of RAS. PAA average
Mw ~ 44,000 [19]. The concentration of PAA for cell treatment was 100 µg/mL. The polycation was
added to the submonolayer cell culture in the complete culture medium. The exposure time with PAA
was 1.5 h, after which the cells were washed twice with phosphate-buffered saline (PBS) (Sigma, St. Louis,
MO, USA) and added growth medium.

2.3. G-banded Karyotyping

Colchicine (Merck, Germany), final concentration of 3.6 µg/mL, was added to the cell culture that
reached a confluence of 80% for 1–1.5 h. at 37 ◦C. Then, the medium was removed; cells were detached
with 0.05% trypsin (Biolot, Russia) and centrifuged (1000 rpm). The pellet was resuspended and treated
with 0.075 M KCl for about 1 h. The cell suspension was centrifuged, the pellet was resuspended
and cells were fixed by a mixture of methanol with acetic acid (3:1). The fixing solution was changed
three times. The total fixation time was 1.5 h. The fixed cell suspension was dropped on cold and
wet slides. The slides were air dried at room temperature for one week. Then, the chromosomes
were G-banded with the Giemsa stain (Fluka, Newport News, VA, USA) after previous trypsinization.
Metaphase plates with well-spread chromosomes were assayed under the microscope Ampleval
(Zeiss, Germany) with magnifications of 20× and 100×. The chromosomes were identified according to
the standard nomenclature [20]. The work was carried out at the population level. In each sample we
analyzed no less than 30 metaphase plates. Cell karyotyping was performed at the 4th passage after
exposure to PAA.

2.4. Cell Cycle Analysis

Cells were harvested with trypsin-EDTA solution and suspended in fresh medium. Then 200 µg/mL
saponin (Fluka, New York, NY, USA), 250 µg/mL RNase A (Sigma, St. Louis, MO, USA, R4642),
and 50 µg/mL propidium iodide (Sigma, St. Louis, MO, USA) were added to each sample tube.
After incubation for 60 min at room temperature, samples were analyzed with a CytoFLEX flow
cytometer (Beckman Coulter, Indianapolis, IN, USA; 488 nm laser). Mean fluorescence intensity
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from 10,000 cells was acquired. Cell cycle analysis was performed using CytExpert v. 2.0 software
(Beckman Coulter, Indianapolis, IN, USA).

2.5. Viability Analysis

Cells were harvested with trypsin-EDTA solution and suspended in fresh medium. Then 50 µg/mL
propidium iodide (Sigma, St. Louis, MO, USA) was added to each sample tube. After incubation for
5 min at room temperature, samples were analyzed with a CytoFLEX flow cytometer (Beckman Coulter,
Indianapolis, IN, USA; 488 nm laser). Mean fluorescence intensity from 10,000 cells was acquired.
Cells were gated by size and granularity using FSC/SSC dot plot. Cell debris was excluded from
the analysis.

2.6. qRT-PCR Assay

To analyze gene expression, total RNA was isolated with RNesy Micro Kit (Qiagen, Germany)
according to the manufacturer’s instructions. RNA was quantified in a NanoDrop ND-1000
Spectrophotometer (NanoDrop Technologies, Inc., Wilmington, DE, USA). cDNA was obtained
by reverse transcription of 500 ng RNA using the RevertAid H Minus First Strand cDNA Synthesis
Kit (Thermo Fisher Scientific, Vilnius, Lithuania) according to the manufacturer’s instructions. It was
subsequently amplified with specific primers, using DreamTaq™ PCR Master Mix (Thermo Fisher
Scientific, Lithuania) with CycloTemp amplificator. For qRT-PCR cDNA was amplified with specific
primers, using EvaGreen® dye (Biotium) and DreamTaq™ PCR Master Mix (Thermo Fisher Scientific,
Lithuania) in the BioRad CFX-96 real time system (BioRad, CA, USA), according to the kit’s enclosed
protocol. The volume of the reverse transcription polymerase chain (RT-PCR) reactions was 20 µL.
Gene expression was calculated with BioRad CFX Manager 3.1 software. Expression of target genes was
normalized to actin gene. Primers and reaction conditions are presented in Table 1. All amplification
reactions were performed in triplicate. Experiments were repeated at least three times.

Table 1. The primers and conditions for qRT-PCR.

Symbol Primer Sequence Amplification
Conditions PCR Product Size (bp) NCBI Reference

Sequence

p53 F 5′ GTTGGCTCTGACTGTACCAC 3′

R 5′ AGGGTGAAATATTCTCCATC 3′
93 ◦C, 20 s, 57 ◦C,

20 s, 72 ◦C 30 s 317 NM_001243976.1

topo2-α F 5′ GGGAGACTCAGCCAAAACAC 3′

R 5′ CAGCATCATCTTCAGGTCCA 3′
93 ◦C, 20 s, 58 ◦C,

20 s, 72 ◦C 30 s 560 NM_001246738.1

mdr1 F 5′ ATCGACGGTCAGGACATCAG 3′

R 5′ TTCAGCGATAGTGGTGGCAA 3′
93 ◦C, 20 s, 60 ◦C,

20 s, 72 ◦C 30 s 102 XM_027439202.1

c-fos F 5′ GCAGCCAAATGCTGGAATCG 3′

R 5′ CCAGTGATGTCTTGGGCTCA 3′
93 ◦C, 20 s, 60 ◦C,

20 s, 72 ◦C 30 s 310 NM_001246683.1

grp78 F 5′ GATGCGGCCAAGAACCAGCT 3′

R 5′ CGCATGACATTCAGTCCAGC 3′
93 ◦C, 20 s, 63 ◦C,

20 s, 72 ◦C 30 s 359 NM_001246739.2

hsp90 F 5′ AATCGGAAGAAGCTTTCAGA 3′

R 5′ GTGCTTGTGACAATACAGCA 3′
93 ◦C, 20 s,56 ◦C,
20 s, 72 ◦C 30 s 257 NM_001246821.1

hsc70 F 5′ ATCCCCAAGATTCAGAAGCT 3′

R 5′ TTGATGAGGACAGTCATGAC 3′
93 ◦C, 20 s, 56 ◦C,

20 s, 72 ◦C 30 s 218 NM_001246729.1

actin F 5′ GCTGAGAGGGAAATTGTGCGTG 3′

R 5′ CGGTGGACGATGGAGGGGCCG 3′
93 ◦C, 20 s, 68 ◦C,

20 s, 72 ◦C 30 s 506 XM_007648665.3

The primers and conditions for qRT-PCR. Abbreviations: qRT-PCR—quantitative reverse transcription polymerase
chain reaction; F—forward; R—reverse; p53—tumor protein p53 (Tp53); topo 2-α—DNA topoisomerase 2;
mdr1—multidrug resistance 1; ATP binding cassette subfamily B member 1 (Abcb1); c-fos—Fos proto-oncogene;
grp78—heat shock protein family A (Hsp70) member 5; hsp90—heat shock protein 90 alpha family class A member
1 (Hsp90aa1); hsc70—heat shock protein family A (Hsp70) member 8 (Hspa8); actin—actin beta (Actb).

2.7. MTT Assay

Cells in the log-phase of growth were seeded in 96-multiwall plates in 104 cells per well.
The next day DOX (Teva, Netherland) at concentrations 0–50 µg/mL was added to the cell growth
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medium. After 24 h 20 µL MTT (Sigma-Aldrich, St. Louis, MO, USA) solution (5 mg/mL
3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide in PBS) was added to the control
and tested cells. Cells were incubated for 3 h at 37 ◦C and 5% CO2. Mitochondrial dehydrogenases
of viable cells cleave the tetrazolium ring, yielding purple formazan crystals. The crystals were
dissolved in acidified isopropanol (Sigma-Aldrich, St. Louis, MO, USA). The resulting solutions
were spectrophotometricaly measured at 570 nm with a microplate scanning spectrophotometer
(Pikon, Russia). The change in optical density was evaluated by comparison with that of control samples.

2.8. Colony Forming Assay

Cells in the log-phase of growth were treated with DOX at concentrations 0–100 µg/mL for 6 h
at 37 ◦C and 5% CO2. Following treatment, single cell suspension containing 200 cells in 4 mL was
seeded into 5 cm Petri dishes (3 replicates). The incubation time for colony formation varied from 2
weeks for RJK, RJKEB cells and 3 weeks for RJK-PAA, RJKEB-PAA cells. Dishes were washed with
PBS, fixed with 10% neutral buffered formalin solution for 15–30 min and stained with 0.01% (w/v)
crystal violet (Sigma-Aldrich, St. Louis, MO, USA) in H2O for 30–60 min. Colonies containing more
than 50 cells were counted using an inverted microscope (Zeiss, Germany). Cloning efficiency was
estimated as the number of grown colonies/number of plated cells (%).

2.9. Statistical Analysis

Experiments were performed in triplicate. Excel and GraphPad PRISM 5.02 were used as statistical
software. The results are expressed as mean ± SD. The Student’s t-test was used to determine the
statistical significance of differences between two groups (cell growth, cell viability). One-way ANOVA
with post-hoc Tukey HSD Test was used to determine the significance of differences among groups
(gene expression, cloning efficiency). The null hypothesis was rejected at the 0.05 level of significance.

3. Results

3.1. Characteristics of Cell Lines RJK and RJKEB

Chinese hamster transformed fibroblast RJK cells and its subline RJKEB resistant to 5µg/mL EB were
used in this study. Since EB is a substrate for the majority of cell multidrug efflux pumps, EB-resistant
cells were exploited as an example of cells with MDR phenotype. RJK cells have fibroblast-like
morphology (Figure 1A). The population doubling time is 23 h. The density of the confluent monolayer
is 300,000 cells/cm2 (Figure 1C). RJK cell karyotype was characterized by the presence of four normal
Chinese hamster chromosomes (two copies of chromosome 2, one copy of chromosomes 3 and 8)
and 15 rearranged, marker chromosomes (Z1–Z15) (Figure 1D). The modal chromosome number was
represented by 17–19 chromosomes (Table 2). The population was characterized by increased structural
instability of the chromosome 2 and variable occurrence of chromosomes Z2, Z14, Z15. Other changes
were rare and random (Figure 1F).

RJKEB cells also have a fibroblast-like morphology, however, foci of polygonal cells are also found
in the culture (Figure 1B). The population doubling time is 26 h. The density of the confluent monolayer
is 120,000 cells/cm2 (Figure 1C). The karyotypic characteristics of this line (number of chromosomes,
modal chromosome number and types of instability) did not differ from the cells of the original RJK
line (Figure 1F). The variability of the number of chromosomal copies from cell to cell is from 0 to
3 (Table 2). The karyotypic marker of these cells was the presence of additional genetic material in
the form of HSR at the locus 1q26 of chromosome Z6, a derivative of chromosome 1, at the location
of the wild-type mdr1 gene (Figure 1G). The length of HSR varied from cell to cell, which affected
the chromosome index and the chromosome topology that they marked. Three types of HSR were
detected in the analyzed cells. As a result, the length ratio of the short (p) and long (q) arms in different
cells was different: p < q, p = q, p > q.
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1 

 

Figure 1. Characteristics of RJK and RJKEB cells. (A) RJK cells, live imaging, Ob: 10×; (B) RJKEB cells,
live imaging, Ob: 10×; (C) RJK and RJKEB growth curves. To plot cell growth curves, the number of
RJK and RJKEB cells was counted using FACS analysis for 4 days. The mean ± SD of three independent
experiments (** p < 0.01); (D) standard RJK karyotype. 2, 3, 8—normal chromosomes. Z1-Z15—marker
chromosomes. n = 20; (E) RJK karyotype with loss of chromosome Z10, n = 18; (F) karyotype with
centromeric break in chromosome 2, del p terZ8, chromosome Z15 is absent. n = 18; (G) karyotype of
RJKEB cells. A cell variant with two copies of the Z6 chromosome labeled with HSR of different lengths.
Chromosomes Z11 and Z15 are absent. n = 18. Ob: 100×. Abbreviations: RJK—Chinese hamster cells
CHLV-79 RJK; RJKEB—RJK resistant to ethidium bromide; FACS—fluorescence-actevated cell sorting;
del—deletion; p—short chromosome arm; q—long chromosome arm; n—number of chromosomes in
the karyotype; HSR—homogeneously stained region.

Table 2. Karyotype characterization of RJK, RJKEB, RJK-PAA, RJKEB-PAA cells.

Variability of
Chromosome
Copy Number

Cell Number with Modified Chromosome Structure, %

Cells Chromosome
Variability Modal Class

Breaks with
Preservation of
Genet Material

Deletions Translocations HSRs
Presence

RJK 16-23 17-19 0-2 16 22 11 0

RJK-PAA 15-32 Not evident 0-5 11 50 17 0

RJKEB 18-32 18 0-3 5 20 10 100

RJKEB-PAA 15-21 18-20 0-3 33 55 0 100

Karyotype characterization of RJK, RJKEB, RJK-PAA, RJKEB-PAA cells. Abbreviations: RJK—Chinese hamster cells
CHLV-79 RJK; RJKEB—RJK resistant to ethidium bromide; PAA—polyallylamine hydrochloride; RJK-PAA—RJK cells
after PAA treatment; RJKEB-PAA—RJKEB cells after PAA treatment; EB—ethidium bromide; HSR—homogeneously
stained region.
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3.2. Morphology and Proliferative Features of RJK and RJKEB Cells after Exposure to PAA

To study the effect of the polymer on cell cultures, we chose PAA concentration of 100 µg/mL.
It is sublethal for the RJK line and kills most cells [11]; 24 h after PAA treatment, RJK and RJKEB cells
changed their morphology (Figure 2A). Most cells lost their fibroblast-like shape and were rounded.
Flow cytometry assay demonstrated multiphase cell cycle arrest in RJKEB cells and accumulation RJK
cells in late G1 and early S phase (Figure 2B). The viability of RJK and RJKEB cells exposed to PAA for
24 h decreased to 10% and 40% and after 72 h to 8% and 32%, respectively (Figure 2C). Within 72 h after
treatment, the cell number in cultures of both lines did not increase however, later the cells resumed
proliferation, acquired typical fibroblast morphology, gradually reached a monolayer and could be
subcultured (Figure 2D). 

2 

Figure 2. Analysis of RJK, and RJKEB cell populations after exposure to PAA. (A) Morphology of
RJK and RJKEB cells 24 h after treatment with PAA. Ob. 10×. (B) FACS analysis of the cell cycle 24 h
after PAA treatment. (C) FACS analysis cell viability 24 after PAA treatment. (D) Morphology of RJK
and RJKEB cells resumed proliferation after PAA treatment. The mean ± SD of three independent
experiments are presented (** p < 0.01). Abbreviations: RJK—Chinese hamster cells CHLV-79 RJK;
RJKEB—RJK resistant to ethidium bromide; PAA—polyallylamine hydrochloride, RJK-PAA—RJK
cells after PAA treatment; RJKEB-PAA—RJKEB cells after PAA treatment; EB—ethidium bromide;
FACS—fluorescence-actevated cell sorting.
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3.3. Increased Karyotypic Instability of RJK and RJKEB Cells Survived after Exposure to PAA

Cell exposure to drugs or factors of endogenous or exogenous stress can lead to changed
chromosome structures. In this regard, the next task of our study was a comparative analysis of
the karyotype structure in descendants of RJK (RJK-PAA) and RJKEB (RJKEB-PAA) cells after PAA
treatment. Karyotypic analysis of the chromosome structure in RJK-PAA and RJKEB-PAA cells was
performed at the 4th passage of cultivation under standard conditions. It was found that in RJK-PAA
cells, the variation in chromosome number increased compared to the control, while the modal class
was not distinctive. The number of chromosomal copies within the karyotype increased and varied
from 0 to 5 (Table 2). The frequency of cell occurrence with morphological abnormalities in the
chromosome structure compared to control cells not treated with PAA increased twice. Breaks in
chromosomes 3, Z1, Z4, Z7, Z8 were not random (Figure 3A,B). Up to three rearranged chromosomes
could be present within the karyotype, while in the control population there was no more than one
rearrangement per karyotype. The karyotype of RJKEB-PAA cells similar to RJK-PAA karyotype was
unstable (Figure 3C,D). The modal class of chromosome numbers was well defined but differed from
the modal chromosome number in RJKEB cells (Table 1). The number of chromosome copies varied in
cells from 0 to 3 (Table 1). The number of chromosomes involved in the rearrangement did not differ
significantly from RJK-PAA cells. Chromosomes 2, Z1, Z3, Z6, Z8, and Z13 (Figure 3C) frequently
participated in the rearrangements. Two chromosomes (Z1, Z8) were involved in rearrangements both
in RJK-PAA cells and RJKEB-PAA cells. Rearrangements in chromosome Z1 occurred more often than
in Z8 (Figure 3A,D). Cellular variants with HSR, where p-arm is >q-arm were absent in RJKEB-PAA
cells. These data show that PAA treatment of Chinese hamster RJK cells regardless of the level of
their multidrug resistance altered their genetic status and significantly changed stability of the genetic
apparatus at the karyotype level. 

3 

Figure 3. Cont.
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3 

Figure 3. Changes in the karyotype of RJK and RJKEB cells survived after exposure to PAA.
(A) Aneuploid RJK-PAA karyotype with 3 copies of chromosome 2; chromosomes—3, Z1, Z4, Z5,
Z9, Z12—2 copies; lack of chromosomes Z2, Z3, Z11; del 2p ter (in one copy) and del Z7 pter
(in one copy), del 3p (in one copy, tr 3p: 3p ter (in another copy). n = 23. (B) Aneupolyploid RJK-PAA
karyotype, chromosome Z2 is missing; centromeric breaks in one copy of chromosome Z1 (p-arm,
q-arm, in one copy); del 2p ter (in one copy) and delZ5qter (in two copies). n = 44. (C) Aneuploid
RJKEB-PAA karyotype with impaired copying of chromosomes Z1, Z5, Z6; lack of chromosomes Z2,
Z8; centromeric breaks in Z3 chromosome (p-arm, q-arm), the presence of HSR of different lengths
in Z6. n = 20. (D) Aneuploid RJKEB-PAA karyotype with impaired copy number of chromosome
2 (3 copies), lack of chromosomes Z2, Z14, Z15; del 2q—ter (in one copy), break in Z1 pter. n = 17.
Abbreviations: RJK—Chinese hamster cells CHLV-79 RJK; RJKEB—RJK resistant to ethidium bromide;
PAA—polyallylamine hydrochloride; RJK-PAA—RJK cells after PAA treatment; RJKEB-PAA—RJKEB
cells after PAA treatment; EB—ethidium bromide; del-deletion; ter-terminal end of the chromosome;
p—short arm of the chromosome; q—long arm of the chromosome; n—number of chromosomes in the
karyotype; HSR—homogeneously stained region.

3.4. Expression of Genes Involved in Oncogenic Transformation in Progeny of RJK RJKEB Survived after
Exposure to PAA

Increased karyotypic instability of cell lines may be accompanied by a change in gene expression.
Since the object of our study was cells with the MDR phenotype, we first analyzed the basal level of
mdr1 gene expression in RJK and RJKEB cells, and then in their progeny surviving PAA exposure.
Real-time PCR (Figure 4) revealed that basal expression of the mdr1 gene was 10 times higher in the
RJKEB than in RJK cells, which correlates with the presence of HSR on chromosome Z6 in RJKEB cells.
RJK and RJKEB cell progeny survived after exposure to a sublethal dose of PAA did not exhibit an
increased expression of mdr1 in comparison with the control cells. Besides, we analyzed the impact
of PAA on the expression of several genes involved in oncogenesis. The basal expression level of
proto-oncogene c-fos, which is known to participate in the regulation of mdr1 gene expression and
is overexpressed in various types of cancer, was higher in the RJK cells compared to RJKEB cells.
Its expression significantly increased in the RJKEB cells after exposure to PAA unlike in EB-sensitive
RJK cells. The expression of the key tumor suppressor gene p53 enhanced in RJK-PAA but not in
RJKEB-PAA cells compared to parent cells. The expression of topo2-α gene, which is associated with
atypical multidrug resistance, decreased after exposure to PAA in both cell lines. Finally, we examined
the influence of PAA on the expression of the molecular chaperon genes important for the proteostasis,
stress-defense and viability of cancer cells. The basal level of hsc70 and grp78 was significantly higher in
the RJKEB cells in comparison the RJK cells, whilst no significant differences in hsp90 expression were
found. Decreased expression of hsp90 and hsc70 was observed in cells after PAA exposure. The level of
grp78 remained unchanged in both cell lines.
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4 

Figure 4. Gene expression on RJK and RJKEB cells survived after PAA exposure. (A) qRT-PCR analysis of
the gene mdr1, c-fos, topo2-α, p53 level in RJK, RJK-PAA, RJKEB, RJKEB-PAA cells. (B) qRT-PCR analysis
of the gene grp78, hsp90, hsc70 level in RJK, RJK-PAA, RJKEB, RJKEB-PAA cells. The mean ± SD of three
independent experiments are presented (* p < 0.05; ** p < 0.01). Abbreviations: RJK—Chinese hamster
cells CHLV-79 RJK; RJKEB—RJK resistant to ethidium bromide; PAA—polyallylamine hydrochloride;
RJK-PAA—RJK cells after PAA treatment; RJKEB-PAA—RJKEB cells after PAA treatment; EB—ethidium
bromide; qRT-PCR—quantitative reverse transcription polymerase chain reaction.
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3.5. PAA Reduced RJKEB Cell Resistance to DOX

Decreased expression of HSP and topo2-α may correlate with increased sensitivity of cancer cells
to the chemical agents used in cancer therapy. We decided to test the resistance of cells that survived
sublethal exposure to PAA to one of the MDR agents, DOX. Cells treated and untreated with PAA at
passage 4 after restored proliferation were subjected to DOX. Cells were grown to submonolayer and
treated with 1, 10, and 50 µg/mL DOX in the growth medium for 24 h. The cytotoxic effect of DOX was
evaluated using the MTT test. The results of cell survival after treatment with DOX are presented in
Figure 5. It can be seen that survival of RJK and RJK-PAA cells decreased from 70 to 30% with the
increase in DOX dose (Figure 5A). The viability of the RJKEB cells both treated and untreated with PAA
did not significantly decrease with DOX concentrations ranged from 1 to 10 µg/mL. After treatment
with DOX at concentration of 50 µg/mL, the survival rate of the RJKEB-PAA line was slightly lower
than RJKEB (p < 0.05). The original RJK line was sensitive to DOX, and the RJKEB line was resistant to
DOX at concentrations of 1 to 10 µg/mL. 

5 

 
Figure 5. Viability of RJK, RJK-PAA, RJKEB, RJKEB-PAA cells after treatment with various doses of
DOX. (A) Viability of RJK, RJK-PAA, RJKEB and RJKEB-PAA treated with DOX for 24 h. MTT assay.
(B) The cloning efficiency of RJK, RJK-PAA, RJKEB, RJKEB-PAA after DOX treatment. (C) Petri dishes
with colonies of RJK, RJK-PAA, RJKEB, RJKEB-PAA cells stained with crystal violet dye. (D) Quantitation
of colonies in RJK, RJK-PAA, RJKEB, RJKEB-PAA cultures after DOX treatment. The mean ± SD of
three independent experiments are presented (** p < 0.01). Abbreviations: RJK—Chinese hamster
cells CHLV-79 RJK; RJKEB—RJK resistant to ethidium bromide; PAA—polyallylamine hydrochloride;
RJK-PAA—RJK cells after PAA treatment; RJKEB-PAA—RJKEB cells after PAA treatment; EB—ethidium
bromide; DOX—doxorubicin.

Cells of all four cell lines were cloned after 6-h exposure to 0, 50, and 100 µg/mL DOX. The results
are presented in Figure 5B. The cloning efficiency of control untreated cells sensitive to EB was about
40–50% while it was 75–65% in lines resistant to EB. DOX treatment reduced the cloning efficiency of
RJKEB cells to 35–40% (Figure 5B). The RJK line had no clones after DOX treatment. Exposure to PAA
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reduced the cloning efficiency to 1–2% in the resistant cell lines (Figure 5C). Thus, in our experiments
PAA pretreatment affected the multidrug resistance of transformed cells and increased their sensitivity
to DOX.

4. Discussion

Cancer remains a disease difficult to treat due to poor drug potency and side effects during the
cancer therapy. Conventional chemotherapy is often unsuccessful in killing all cancer cells that leads
to cross-resistance to a variety of other chemotherapeutics, so called MDR [21]. Synthetic polymers are
trendy drug delivery platforms for the treatment of cancer. These systems selectively deliver therapeutic
agents to target tissues, cells and cell compartments and release their loads. Pharmacological properties,
release profile, and therapeutic results are improved compared to the chemotherapeutic delivery as
free drugs for cancer therapy [22].

In this work, we examined the karyotypic stability and gene expression of the descendants
of Chinese hamster RJK cells sensitive and resistant to the MDR agent surviving after exposure
to polycation PAA in sublethal dose. The data obtained in this study showed that PAA in high
concentration was extremely toxic for RJK and RJKEB cells. The treatment of these cells with PAA in
sublethal concentration led to multidirectional disorganization of the karyotype: aneu(poly)ploidy
and occurrence of a large number of chromosomal aberrations, primarily breakdowns. It is known
that chromatid breaks, chromosomal breakdowns, and polyploidy are common for the initial stage of
oncogenesis process [23]. Genomic instability facilitates the risk of malignant transformation. It is
known that any karyotype contains chromosomes with increased fragility [24,25]. Our many years of
studies of RJK cells revealed that the most sensitive to various types of stress was the chromosome
2 [26,27]. Other chromosomes are involved in rearrangements more randomly. Genomic instability
generated by random (non-clonal) chromosomal abnormalities is a key driver in genome evolution,
including cancer progression [28,29]. Karyotypic changes that occur in RJK cells after PAA treatment are
mostly random. An important role in the disorganization of the karyotype is played by aneu(poly)ploidy.
It is known that the emergence of aneu(poly)ploidy is associated with disorders in the mechanisms
of cell division [30]. Once it has arisen, it can lead to abnormal chromosome segregation in mitosis.
Disturbances in the cell division program can be spontaneous or induced by a stressor factor. It was
shown that increased instability of the cell genome is typical for cancer cells. It may be associated with
the presence in the karyotype of both unspecific aneuploid chromosomes resulted from random events
and specific ones that enhance the genome instability, thereby contributing to an increase in the cancer
potential. There is evidence that aneu/polyploidy, increasing genome instability, contributes to the
drug resistance [31] and, as a consequence cell adaptability and tumor recurrence [32,33].

PAA in sublethal concentration had a strong effect on the cell division of the analyzed cells.
It disordered the regular chromosome separation in mitosis and altered their morphology. It is interesting
to note that although chromosomal instability has long been considered to contribute to tumor
development, recent studies have shown that chromosomal instability can either contribute to or
suppress tumor development. The choice is determined by the level of chromosomal instability. A low
level of chromosomal instability facilitates tumor progression, while a high level often promotes the
death of cancer cells [34]. It was demonstrated that sublethal heat stress may trigger non-tumorigenic
karyotypic instability due to homologous recombination deficiency and decrease of oncogene expression
in progeny of heat shock survived mesenchymal stromal cells [35]. Karyotypic destabilization in
RJK-PAA and RJKEB-PAA cells does not seem to be significant for its viability.

Increased karyotypic instability in transformed cell lines may be accompanied by alteration in
genetic expression. In this work, while trying to study the effect of PAA on RJK and RJKEB cells,
we focused on the expression of genes that are targets for cancer treatment. Since the object of our
study was the RJKEB cell line with the MDR phenotype, we first analyzed the change in the expression
of the mdr1 gene. Real-time PCR showed that basal expression of the mdr1 gene was 10 times higher
in these cells than in the RJK line. It correlated with the presence of additional HSR genetic material on
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chromosome Z6 in RJKEB cells. RJK-PAA and RJKEB-PAA cells did not exhibit increased expression of
mdr1. Enhanced MDR1 expression is typical for cells with “classic” MDR. By contrast, cells without
overexpression of mdr1 gene and multidrug resistance phenotype are named as atypical MDR cells.
These cells have altered expression of topoisomerase, glutathione-S-transferases and cytochrome
P450-dependent oxidases which affect the DNA topology by introducing single- or double-stranded
breaks with subsequent restoration and play an important role in the processes of replication and
transcription. We found that four passages after the cell exposure to PAA, the expression of the topo2-α
gene decreased compared with untreated cells. Topo2-α is essential for various cellular processes,
such as DNA replication, transcription, recombination, and chromosome separation. Topo2-α is
the target of many antitumor drugs which can directly bind with topo2-α, stabilize topo2-α–DNA
complex that promote the death of tumor cells. Thus, inhibition of topo2-α may be a supportive
anticancer strategy. Modified activity of topo2-α and its disordered regulation may be accompanied
with genetic instability [36]. It was found that expression of the topo2-α protein in larynx carcinoma
was positively correlated with aneuploidy of human chromosome 17. Aberrant expression of topo2-α
and aneuploidy of human chromosome 17 contributed to tumor development and its progression.
It shows that targeting topo2-α may provide a treatment strategy for patients with laryngeal cancer [37].
Low expression of topo2-α increased survival of patients with non-small cell lung cancer treated with
amrubicin, a topo2-α inhibitor [38]. Thus, a decreased expression of topo2-α in the RJK-PAA and
RJKEB-PAA cells may be indicative for enhanced sensitivity of these cells to drugs.

C-fos is a proto-oncogene overexpressed in different types of cancer. We found that its expression
was higher in RJK cells. After cell exposure to PAA, expression of c-fos was significantly increased in
RJKEB but not RJK cells. This protooncogene is a member of the Fos family of transcription factors.
It binds to c-Jun and form heterodimeric activator protein-1 (AP-1) complexes that transcriptionally
regulate the expression of many genes [39]. It has recently been shown that suppression of AP-1
inhibits mdr1 expression and reduces drug resistance in gastric cancer cells [40]. There is evidence that
overexpression of c-fos in head and neck squamous cell carcinoma enhances epithelial-mesenchymal
transition (EMT) and the expression of cancer cell markers (Nanog, c-Myc, Sox2 and Notch1) [41].
However, it is believed that c-fos may also be involved in tumor growth suppression [42]. For example,
c-fos inhibits the proliferation of tumor hepatocytes [43]. In ovarian cancer (OvCa) high c-fos expression
correlates with a well differentiated phenotype [44]. It decreased with metastasis compared with
primary tumors [45]. High c-fos expression inhibited metastasis in OvCa cells, altered cellular adhesive
properties and is an independent favorable prognostic factor for OvCa cells [46]. C-fos binds to the
miR-551 promoter in breast cancer cells, reduces cell adhesion, and blocks tumorigenesis [47].

HSP and heat shock factors (HSF) play a significant role in cancer progression. HSF1 is involved in
the regulation of a specific P-pg transporter. It was shown that the P-pg1 promoter contains heat shock
elements (HSE). Overexpression of HSF1 increased activity of p-glycoprotein and produced resistance to
the chemotherapeutic agent doxorubicin [48]. Thus, HSF and HSP can be an important target for MDR
reversibility [49,50]. Numerous studies have shown the relationship between membrane-associated
HSP and drug resistance and the possibility to use HSP as biomarkers for tumor detection [51].
The results of our study showed that the basal level of expression of the hsc70 and grp78 genes was
significantly higher in RJKEB cells with MDR phenotype. No significant difference in expression of
hsp90 was found in the RJK and RJKEB cells. After cell exposure to PAA the expression of hsp90 and
hsc70 decreased. The level of grp78 remained unchanged. High HSP level is common for various cancer
cells. In cancer cells, HSP70 supports mitotic signals and suppresses apoptosis and aging caused by
oncogenes [52]. It has been shown that enhanced expression of HSP70 is accompanied with activation
of mesenchymal markers N-cadherin, MMP2, SNAIL, and vimentin and promotes metastasis of breast
cancer [53]. Overexpression of HSC70 stimulates glioma cell proliferation, migration, and invasion
through phosphorylation and activation of FAK, Src, and Pyk2 [54]. GRP78, a resident protein in the
endoplasmic reticulum (ER), is also overexpressed in various tumor cells. It promotes cancer cell
survival by preventing autophagy and apoptosis associated with ER stress [55]. HSP70 can translocate



Cells 2020, 9, 2332 14 of 18

into the plasma membrane of cancer cells and enter the intercellular space, where it mediates antitumor
immune responses [56]. HSP90 is the most examined member of the HSP family due to its many
functions in cancer development. This protein is often overexpressed and is associated with poor
prognosis for multiple tumors, including cholangiocarcinoma, lung cancer, stomach and breast cancer,
and glioblastoma [57]. Increased expression of HSP90 activates oncogenic protein kinases JAK2/STAT3,
PI3K/AKT and MAPK that facilitates cancer cell progression cancer [58]. It has been demonstrated that
HSP90 interacts with the promoter of human telomerase reverse transcriptase (hTERT). Its expression
is often enhanced during cell immortalization [59]. Elevated levels of HSP90 have been found in breast
and prostate cancer [60,61]. High expression of the HSP70 family (hsc70 and grp78) in the RJKEB
cell line corresponds to enhanced expression of chaperones in cancer cells with the MDR phenotype.
In RJK and RJKEB cells surviving sublethal exposure to PAA, a decreased level of hsp90 and hsc70 may
indicate their reduced resistance to drugs.

Increased expression of c-fos in the RJKEB cells and decreased expression of topo2-α and HSP genes
(hsp90 and hsc70) point to altered cell sensitivity to MDR agents. To verify this assumption, we tested
the resistance of cells of both lines surviving after exposure to PAA to DOX. It was found that DOX
resistance of RJKEB-PAA and parental RJKEB cells did not differ. It shows that the progeny of RJKEB
after PAA exposure cells retained MDR phenotype.

Cell viability in our experiments was evaluated with MTT assay which reflects the metabolic
activity of mitochondria. Differences in the proliferation rate of different cells can affect the cytotoxicity
index. A reliable indicator of proliferating cells survival is their ability to multiply, which is determined
by cell cloning. It was found that it was impossible to clone RJK and their progeny RJK-PAA cells
in DOX presence. The cloning efficiency of the RJKEB cells after DOX treatment markedly declined
compared to RJKEB cells. It is known that the main targets of DOX in a cell are topo2-α and antioxidant
defense enzymes [62]. Their interaction disturbs DNA replication, produces DNA breaks, and alters
cellular redox status that results in cell cycle arrest and apoptosis. RJKEB cells exhibit high level of
mdr1 expression which was not altered after PAA exposure. However, expression of topo2-α and HSP
in RJKEB-PAA cells was decreased compared with parental cells. Probably, the low cloning efficiency
of RJKEB-PAA cells after DOX treatment indicates that the population contains a large number of
cells with injuries that impede their clonal propagation. These findings suppose that PAA treatment
enhanced the sensitivity of RJKEB cells to drugs. The mechanism of polycation effect on the cell genome
is still unknown. However, there is evidence of a cytotoxic effect of polycation poly(ethylenimine)
associated with a disturbed membrane potential of mitochondria and apoptosis [63]. Using proteomic
analysis, it was shown that polycations interact in the cell with HSP and some other proteins involved
in apoptosis induction in tumor cells [64]. In our work, increased DOX cytotoxicity was observed
in RJK-PAA and RJKEB-PAA cells. Supposedly, it was associated with decreased expression of HSP,
topo2-α and increased expression of c-fos. Our results are consistent with data from Roy et al. [65] that
PAA can enhance the effect of doxorubicin in the intracellular delivery of this drug to tumor cells.

5. Conclusions

In the present work, we demonstrated that treatment of Chinese hamster immortalized RJK
and RJKEB cells with cytotoxic doses of PAA selected cells with increased karyotypic instability
were accompanied by changes in the expression of p53, c-fos, topo2-α, hsp90, hsc70 genes and did not
contribute to MDR progression. Enhanced expression of tumor suppressor p53 and declined expression
of HSP and topo2-α point to a decrease in their resistance to drugs. This suggestion was confirmed by
the increased sensitivity of these cells to the toxic effects of DOX. Thus, we can conclude that PAA
did not facilitate and even slightly reduced the cell tumorigenic potential and thus can be used for
intracellular drug delivery, for anticancer therapy, in particular.

Author Contributions: L.A., M.S. and T.G. contributed equally as first authors. L.A. conceived the original
idea, contributed to experiment design, performed real-time PCR and analyzed gene expression, article writing.
M.S. and T.G. designed the experiments, collected the material, performed G-banding and karyotype analysis,



Cells 2020, 9, 2332 15 of 18

contributed to interpretation of the results, and wrote the paper. I.K. carried out cell viability and drug resistance
experiments, discussion and article writing. O.L. undertook a flow cytometry analysis, article discussion and
writing. I.F. provided helpful consultations and helped shape and write the article. N.N. inspired the manuscript
writing, contributed to its final version and supervised the project. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the Russian Science Foundation grant #19-14-00108.

Acknowledgments: The authors thank Julia Ivanova for carrying out cell cycle analysis and Valentina Ivanova
for her help in choosing the design of the experiment.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kim, H.; Kim, Y.; Park, J.; Hwang, N.S.; Lee, Y.K.; Hwang, Y. Recent Advances in Engineered Stem
Cell-Derived Cell Sheets for Tissue Regeneration. Polymers 2019, 11, 209. [CrossRef]
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