
INTRODUCTION

Cerebellum integrates the neuronal activities of diverse
structures involved in performing motor actions. The cere-
bellum is also implicated in motor learning process, associa-
tive learning (1-4), and various cognitive or sensory discrim-
ination tasks (5-9). Studies on the cerebellum have contribut-
ed to our understanding of brain development, maturation,
and plasticity.

Neuronal plasticity in the cerebellum has been reported
in several experimental paradigms with animals. Acrobati-
cally trained rats showed greater numbers of synapses on a
Purkinje cell compared to exercise or inactive animals. The
volume of molecular layer was also larger in the acrobat-trained
group than in the exercise or inactive group (10). Mice allowed
to exercise during postnatal period had Purkinje cells with
larger dendritic trees and greater numbers of dendritic spines
than sedentary littermates (11).

Thanks to recent developments in medical imaging tech-
nique such as computerized tomography (CT) or magnetic
resonance imaging (MRI), in vivo morphometric analyses of
human brain became possible. Cerebellar size with respect

to physiological variables such as age, gender, intelligence,
and motor skill was studied by several investigators (12-16).
The recent MRI-based cerebellar volumetric study of musi-
cians suggested a possibility of macroscopic plasticity in the
human cerebellum (17, 18). Since basketball players practice
motor skills everyday for a long time, it is possible to con-
ceive that basketball-related motor learning could affect the
morphological plasticity of cerebellum. Therefore, we hypothe-
size that the absolute (aCV) or the relative cerebellar volumes
(rCV) of basketball players are greater than that of controls.

In order to investigate macroscopic cerebellar plasticity
associated with motor skill learning in humans, we com-
pared the size of total brain volume, absolute cerebellar vol-
ume, and relative cerebellum volume of basketball players
with those of control group.

MATERIALS AND METHODS

Subjects

19 male basketball players were recruited from several uni-

In Sung Park*,�,�, Jong Woo Han�,�, 
Kea Joo Lee*, Nam Joon Lee�, 
Won Teak Lee‖, Kyung Ah Park‖, 
Im Joo Rhyu*

Department of Anatomy*, College of Medicine, Korea
University; Department of Exercise Physiology�, 
Graduate School, Institute of Sports Science�, Korea
University; Department of Diagnostic Radiology�, 
College of Medicine, Korea University; Department of
Anatomy‖, College of Medicine, Yonsei University,
Seoul, Korea

Address for correspondence
Im Joo Rhyu, M.D.
Department of Anatomy, Korea University College of
Medicine, 126-1 Anam-dong 5-ga, Sungbuk-gu, Seoul
136-705, Korea
Tel : +82.2-920-6149, Fax : +82.2-929-5696
E-mail : irhyu@korea.ac.kr

*This study was supported by Brain Korea 21 Project
for Biomedical Science.

342

J Korean Med Sci 2006; 21: 342-6
ISSN 1011-8934

Copyright � The Korean Academy
of Medical Sciences

Evaluation of Morphological Plasticity in the Cerebella of Basketball
Players with MRI

Cerebellum is a key structure involved in motor learning and coordination. In animal
models, motor skill learning increased the volume of molecular layer and the num-
ber of synapses on Purkinje cells in the cerebellar cortex. The aim of this study is
to investigate whether the analogous change of cerebellar volume occurs in human
population who learn specialized motor skills and practice them intensively for a
long time. Magnetic resonance image (MRI)-based cerebellar volumetry was per-
formed in basketball players and matched controls with V-works image software.
Total brain volume, absolute and relative cerebellar volumes were compared between
two groups. There was no significant group difference in the total brain volume, the
absolute and the relative cerebellar volume. Thus we could not detect structural
change in the cerebellum of this athlete group in the macroscopic level.
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versity teams in Korea through direct visiting interviews as
an athletic group (AG). The athletes, whose heights over
190 cm, were ruled out in this study to minimize the varia-
tion as maximal as possible. 20 healthy control group (CG)
subjects were recruited through advertisements at Korea
university web pages. Among the volunteers, subjects whose
age and height matched the basketball players and who would
not do any regular exercise were selected for this study.

All procedures were fully explained to the subjects and
the duration of exercise training was checked. Through the
history of alcohol consumption and a neurological examina-
tion by a neurologist of Korea University Medical Center,
any individual with a possible neurological abnormality were
excluded in this study.

Body weights and heights were measured before MRI
scanning. Table 1 represents average age, height, and weight
of both groups. The members of AG have played basketball
for 8 yr in average and they have spent plenty of day time
for highly skilled basketball training.

MRI acquisition

Magnetic resonance imaging was performed on 1.5-telsa
Magnetom vision (Siemens, Erlangen, Germany). The fol-
lowing parameters were used for the volumetric acquisition:
TR=9.7 msec, TE=4 msec, flip angle=12 degree, slice thick-
ness=continuous 2.0 mm, matrix 192X256.

After the acquisition of MR images, the DICOM (Digital
Imaging and Communications in Medicine) files were trans-
ferred to an IBM compatible PC from Sun workstation with
V-work software version 3.5 (CyberMed, Korea).

Volumetry

Using 3-D medical software package (CyberMed, Korea)
used in a previous study (19), brain tissue on the MR images
were separated from non-brain tissue (skull and meninges)
for whole brain and cerebellar volumetric measurement.
Threshold and region-growing technique were applied to
generate a new image, representing brain without any scalp
and skull (20, 21). Manual tracing was used to eliminate
any remaining meninges. The cut-off between the brainstem
and spinal cord was the last horizontal slice including cere-
bellum. Although this is somewhat arbitrary, there are no
obvious and accepted gross anatomical landmarks to distin-

guish brainstem from spinal cord on MR images. Using the
last horizontal slice including cerebellum, in brains that were
anterior commissure (AC)-posterior commissure (PC) aligned,
ensured that the cut-off was reliable (18).

The cerebellum was segmented manually from the brain-
stem and cerebellar peduncles according to neuroanatomical
landmarks (18, 22, 23) and criteria similar to those adopted
in the previous volumetric studies of the cerebellum (24, 25).
On sagittal slices, the cerebellar peduncles were removed
from the cerebellar white matter according to the following
procedure (Fig. 1): on the mid-sagittal slice a vertical line
was drawn (at the angle of 90 degree to a line connecting
the anterior and posterior commissure) which touched the
posterior border of the inferior colliculus. This perpendicu-
lar line was overlaid on all sagittal slices and was used as a
guide to divide the cerebellar peduncles from the brainstem.
Cerebellar cortex anterior to this line was not expelled and
was manually traced as part of the cerebellum (note in Fig. 1
that this included parts of the anterior lobe, biventer and
flocculus on more lateral slices and of the tonsils and anteri-
or lobe of the vermis on more medial slices). The final seg-
mented cerebellum consisted of the cerebellar hemispheres,
deep nuclei and vermis (18). 

Two raters measured the total brain volume (tBV), the
absolute (aCV) and the relative cerebellar volumes (rCV). The
inter-rater reliability (two tailed, Pearson correlation coeffi-

Fig. 1. Landmark-based separation of the cerebellar peduncles
from the cerebellar white matter and the brainstem. On the mid-
sagittal slice (slice 46/90 in this subject), perpendicular lines are
drawn at a 90 degree angle to the bi-commissural line at the AC
and PC (arrows) and through the posterior border of the inferior
colliculus (arrowhead). These lines are superimposed on all sagit-
tal slices and the latter perpendicular line is used to differentiate
the cerebellar peduncles from the brainstem. (slice numbers are
placed on top left corner of each slice).

A

C
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56 60

Athlete group
(n=19)

Control group 
(n=20)

Age (yr) 20.52±1.64 22.40±1.78
Height (cm) 181.89±4.40 176.45±4.87
Weight (kg) 80.42±4.45 71.40±10.48
Training duration (yr) 8.0±1.80 Not analysed

Table 1. Physical characteristics of study participants (Mean±
SD)



344 I.S. Park, J.W. Han, K.J. Lee, et al.

cient) in tBV, aCV and rCV was 0.94 (p=0.00), 0.93 (p=0.00)
and 0.96 (p=0.00), respectively. The average of two raters
was used for analysis.

tBV, aCV and rCV were calculated by summing data ob-
tained by multiplying each area by slice thickness (2 mm)
using 3-D model of the total brain and the absolute cerebel-
lum (Fig. 2). We chose to normalize aCV to tBV in order to
exclude the inter-subject variability in tBV as a source of vari-
ance in aCV measurements, by calculating rCV in each sub-
ject as a percent ratio of their tBV, where rCV (%)=aCV/
tBV×100. There is precedence in selecting brain volume
or brain weight rather than body height to normalize brain
morphometric data (18, 26, 27).

Statistics

Statistical analyses were performed using SPSS for Window,
version 12.0 (SPSS Inc., Chicago, IL, U.S.A.). Student’s t-
tests were performed to assess the effect of motor learnig on
tBV, aCV, and rCV. All analyses were two-tailed, and a p-value
<0.05 was considered as statistically significant.

RESULTS

The comparison of tBV between AG and CG revealed no
significant effect of persistent motor learning (Table 2; Stu-
dent t-test p=0.21). The average tBV of AG was 1355.64±

73.20 cm3, whereas that of CG was 1390.14±94.96 cm3

(Table 2).
The volumetry of aCV showed no significant difference

between two groups (Table 2; Student t-test p=0.07). The
average aCV of AG was 138.92±9.06 cm3 and that of CG
was 145.56±13.06 cm3.

The aCV of both groups in this study was slightly smaller
than the result of Filipek et al. (152±10.5 cm3) (24), and
was larger than that of average Korean (126±10.38 cm3)
which was previously reported by Rhyu et al. (14). Our result
was concomitant with that of Chung et al. (141.85±12.92)
(16). This implies that sampling and volumetry are reliable.

The effect of motor learning on rCV showed no statistical
differences between AG and CG group (Table 2; Student t-
test p=0.38). The average rCV of AG was 10.26±0.65 cm3,
whereas that of CG was 10.49±0.97 cm3.

Through the morphometric analyses of cerebellum in bas-
ketball players, we could not detect any statistical differences
in tBV, aCV, and rCV.

DISCUSSION

Recent morphometric analysis of Albert Einstein’s brain
implied that his exceptional intelligence might be associat-
ed with larger inferior parietal lobe than that of age-matched
control group (28). The relatively larger cerebellum of musi-
cians suggested that acquisition and continual practice of
complex motor skill may contribute to the macroscopic plas-
ticity (17, 18) as in other animal training models, in which
the data suggested strong correlation between motor skill
learning and cerebellar plasticity (1). 

Although we tried to match the age and height as possi-
ble, there were significant difference between AG and CG.
The previous study clearly demonstrated that cerebellar vol-
ume was comparatively stable during young adults, but con-
siderable reductions and increasing variability became obvi-
ous around the age of 50 yr (25, 29) and there was little cor-
relation between height and cerebellar volume (16). So, it
was thought that height and age variable did not affect the
result of this study.

This study failed to detect macroscopic plasticity in the
cerebellum. This failure might come from different natures
of the motor skills used by musicians and basketball players.
Playing musical instruments consists of relatively fine move-
ments, whereas playing basketball consists of coarser move-

Fig. 2. 3-D model of the total brain (A) and the absolute cerebel-
lum (B) using 3-D medical software package for tBV, aCV, rCV.

A

B

Athlete group
(n=19)

Control group 
(n=20)

t-test
(p value)

tBV (cm3) 1355.64±73.20 1390.14±94.96 0.21
aCV (cm3) 138.92±9.06 145.56±13.06 0.07
rCV (cm3) 10.26±0.65 10.49±0.97 0.38

Table 2. Measured values of each region of interest (mean±SD)
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ments using big muscles. The cerebellar plasticity according
to the properties of motor skills needs to be explored further.

Differential responses of neurogenesis in adult mice accord-
ing to exercise modules may support this hypothesis. Mice
that had access to a running wheel have the greater number
of newly formed brain cells compared with the mice of the
control or swimming group (30). Another example can be
found in acrobatically trained rats, whose volume of cerebellar
molecular layer is bigger than those of rats received forced
or voluntary exercises, or raised in inactive condition (1).
Unlike the animal subjects, human subjects do various kinds
of daily physical activities even though they do not do regu-
lar exercises. The restriction of motor activity in the animal
experiments is much more easily done compared to that in
the human experiments. We might observe microscopic plas-
ticity in the cerebellum of AG as acrobat trained rats, if we
could ran ultra-structural analysis. 

In conclusion, this study finds no significant differences
in tBV, aCV, and rCV between basketball players and non-
basketball players. Although macroscopic plasticity was not
observed in this study, present results might be valuable data
in that this is the first comparative study of cerebellar vol-
ume between basketball players and non-basketball players.
Longitudinal, functional levels study and lobular volumetry
may be required to demonstrate this hypothesis.
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