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Abstract: Several epidemiological studies and clinical trials have reported the beneficial effects of
green tea, coffee, wine, and curry on human health, with its anti-obesity, anti-cancer, anti-diabetic,
and neuroprotective properties. These effects, which have been supported using cell-based and
animal studies, are mainly attributed to epigallocatechin gallate found in green tea, chlorogenic
acid in coffee, resveratrol in wine, and curcumin in curry. Polyphenols are proposed to function via
various mechanisms, the most important of which is related to reactive oxygen species (ROS). These
polyphenols exert conflicting dual actions as anti- and pro-oxidants. Their anti-oxidative actions
help scavenge ROS and downregulate nuclear factor-κB to produce favorable anti-inflammatory
effects. Meanwhile, pro-oxidant actions appear to promote ROS generation leading to the activation
of 5′-AMP-activated protein kinase, which modulates different enzymes and factors with health
beneficial roles. Currently, it remains unclear how these polyphenols exert either pro- or anti-oxidant
effects. Similarly, several human studies showed no beneficial effects of these foods, and, by extension
polyphenols, on obesity. These inconsistencies may be attributed to different confounding study
factors. Thus, this review provides a state-of-the-art update on these foods and their principal
polyphenol components, with an assumption that it prevents obesity.

Keywords: polyphenols; epigallocatechin-3-O-gallate; chlorogenic acid; resveratrol; curcumin; obe-
sity; reactive oxygen species; 5′-AMP-activated protein kinase; nuclear factor-κB; randomized con-
trolled trial

1. Introduction

Plant polyphenols are often found in beverages such as tea, wine, and coffee and in
vegetables and fruits such as turmeric, onions, broccoli, apples, berries, citrus fruits, and
plums [1].

Green tea is produced from leaves of the Camellia sinensis plant; a cup of green tea
brewed from 2.5 g tea leaves has been reported to contain 240–320 mg catechins, of which
(−)-epigallocatechin-3-O-gallate (EGCG, Figure 1) accounts for 60%–65% [2,3]. Black tea is
similarly produced from these leaves by intrinsic enzymatic processing and microorganisms
during which catechins are polymerized to generate lower EGCG levels.

Coffee contains approximately 2000 different chemicals; the major polyphenols are
chlorogenic acid (CGA, Figure 1) and its derivatives, which account for approximately 3%
w/w of the roasted coffee powder [2–4]. A single cup of coffee may contain 20–675 mg
CGA [3].

Resveratrol (RSV, 3,4′,5-trihydroxystilbene, Figure 1) is often derived from several
plant sources, including grapes, peanuts, and berries, and it exists in two isomeric forms:
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cis- and trans-RSV. Trans-RSV (defined here as RSV, Figure 1) is naturally found in grape
skin and in the leaf epidermis of the grape vine and is the main RSV form in red grape
juice (3.38 mg/L) [1,4]. Daily RSV intake may be in the order of several mg/day [5].
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Curcumin (CRC, Figure 1) is a yellow pigment, an active component of the turmeric
plant (Curcuma longa), and is widely used in cooking, cosmetics, dyes, and medicines [1,6].
In Asian populations, approximately 100 mg CRC is consumed daily [1,4].

Several studies have shown that consuming tea, coffee, wine, and curry can be ben-
eficial in fighting against various diseases including, cancer, obesity, neurodegenerative
disorders, and diabetes. Their polyphenolic constituents are believed to contribute mainly
to these effects as discussed in our previous reviews [1–3,6,7].

Thus, this review summarizes contemporary data from human epidemiological obesity
studies on these polyphenols and discusses mechanistic aspects related to laboratory
findings from cell and animal experiments.

2. The Effects of Green Tea/EGCG on Obesity

Epidemiological studies have suggested that green tea and its principal constituent,
EGCG, exert beneficial effects on chronic diseases, including obesity [1–3,6].

2.1. Observational Epidemiological Studies of Anti-Obesity Effects of Green Tea/EGCG

Several observational human studies have indicated that tea or green tea consumption
can exert beneficial effects on obesity. For example, a cross-sectional survey of 1210
epidemiologically sampled adults (569 men and 641 women) demonstrated that habitual
tea drinkers (455 individuals were green or oolong tea consumers, and 18 were black
tea consumers) for >10 years showed a 19.6% reduction in percent body fat and a 2.1%
reduction in waist-to-hip ratios when compared with non-habitual tea drinkers [8].
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Recent data from an epidemiological study with 6472 adult participants found that
tea consumers had a lower mean waist circumference (WC) and lower body mass index
(BMI) (25 vs. 28 kg/m2 in men; 26 vs. 29 kg/m2 in women) than non-consumers [1].

However, a recent study on 3539 participants observed that green tea was not asso-
ciated with visceral obesity or metabolic syndrome (MetS) [9]. Thus, further studies are
required to elucidate the anti-obesity properties of green tea.

2.2. Human Intervention Studies on the Effects of Green Tea/EGCG on Obesity

Several intervention studies have reported the beneficial effects of green tea [10,11]. In
a randomized controlled trial (RCT) on 35 subjects with obesity and MetS, patients were
randomly assigned to a control (four cups of water/day), green tea (four cups/day), or
green tea extract (GTE) (two capsules and four cups of water/day) group for 8 weeks [12].
As per the findings of this study, it showed that green tea and GTE significantly decreased
body weight and BMI vs. controls at 8 weeks (−2.5 ± 0.7 kg and −1.9 ± 0.6, respectively).
These results further indicated the therapeutic effects of green tea catechins (GTCs) in
improving MetS characteristics in obese patients.

A double-blind parallel multicenter trial in 240 subjects by Nagao et al. [13] observed
that participants who consumed a GTC 583 mg/day dose exhibited greater decreases
in body weight, BMI, body fat ratio, body fat mass, WC, hip circumference, visceral fat
area (VFA), and subcutaneous fat area when compared to those who consumed a GTC
96 mg/day dose.

The anti-obesity benefits of green tea were also demonstrated in a meta-analysis of
24 human studies [14]. In total, 5 of the 11 trials in Eastern populations showed significant
weight loss, ranging from 1 kg to 2 kg, and 3 of the 13 trials also demonstrated notable
weight loss ranging from 1 kg to 9 kg.

In another RCT, 102 obese women were randomly divided into 2 groups: high-dose
green tea group (EGCG, 856.8 mg/day) and the placebo group. The results indicated
that 12 weeks of high-dose green tea resulted in significant weight loss (76.8 ± 11.3 kg–
75.7 ± 11.5 kg) and decreased BMI, WC, total cholesterol (TC) and plasma low-density
lipoprotein (LDL) levels, without any adverse effects to participants [15].

In another RCT, 73 obese women were divided into two groups: group A received
GTE supplements for the first 6 weeks, while group B received daily placebo. After 6 weeks
of treatment and a 14-day washout period, groups A and B were switched to placebo
treatment and GTE treatment mutually for 6 weeks. These results showed that GTE
effectively increased leptin and reduced LDL levels in these women [16].

Individuals with Down syndrome traditionally experience higher obesity rates [17].
In a double-blind phase II clinical trial in 77 young adults with Down syndrome, the
placebo group showed increased body weight and BMI, which were not noted in an EGCG-
treated group. The effect of EGCG on body composition was mainly observed in males,
with significant differences between EGCG and placebo groups after 12 months, for body
weight (estimated adjusted mean difference (AMD): −2.34, 95% confidence interval (CI):
−4.21, −0.48) and body fat (AMD: −1.23, CI: −2.43, −0.04), suggesting that EGCGs were
beneficial for weight management in patients with Down syndrome [18].

A recent systematic review and meta-analysis revealed that green tea supplementation
had favorable effects on body weight (weighted mean difference (WMD): −1.78 kg, CI:
−2.80, −0.75) and BMI (WMD: −0.65 kg/m2, CI: −1.04, −0.25). The reduction in WC after
green tea consumption was determined to be significant for subjects using green tea at
≥800 mg/day (WMD: −2.06 cm) and treatment durations of <12 weeks (WMD: −2.39 cm).
This dose-response observation indicated that green tea intake at <500 mg/day may reduce
body weight over 12 weeks of treatment [19].

In contrast, several clinical trials failed to show body weight reduction via green tea
consumption. A clinical trial in 151 participants aged 30–70 years showed that 1.8 g/day
GTE consumption for 12 weeks did not lower body weight when compared with placebo,
although a significant LDL-cholesterol (LDL-C) lowering effect was noted [20]. Data from
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an RCT of 937 healthy postmenopausal women who received decaffeinated GTE containing
843 mg EGCG reported that GTE was not associated with reductions in terms of body
weight, BMI, or WC; further, it did not alter energy intake or mean hormone concentrations
for over 12 months [21].

2.3. Laboratory Studies and Mechanisms of EGCG Action

Obesity is often characterized by the excessive accumulation of triglycerides (TGs),
which are hepatically synthesized from both fatty acids (FAs) and de novo lipogenesis.
Fatty acid synthase (FASN) is a central enzyme in lipogenesis and is responsible for FA
production. The enzyme has gained considerable attention as a potential therapeutic
target for obesity and cancer [22,23]. Zhang et al. [24] found that GTE inhibited FASN
activity from duck liver, with a half-maximal inhibitory concentration (IC50) of 12.2 mg dry
weight/mL [25]. Similarly, Tian et al. reported that EGCG inhibited FASN, with an IC50 of
52 µM, mainly via interactions with the FASN β-ketoacyl reductase domain.

Using a high-fat diet (HFD)-induced mouse obesity model, Wolfram et al. [26] ob-
served that 1% (w/w) TEAVIGO, which contains 97.69% EGCG, prevented HFD-induced
increases in mouse body weight. The authors also showed that FASN and acetyl-CoA
carboxylase (ACC) mRNA levels were markedly decreased in adipose tissue. ACC has been
identified as a key lipogenesis enzyme [27] and is potentially an anti-obesity target [28].

Both FASN and ACC expressions have been positively regulated by upstream lipoge-
nesis transcription factors, including CCAAT/enhancer-binding proteins (C/EBPs) [29],
peroxisome proliferation-activated receptors (PPARs, especially PPARγ) [30], and sterol
regulatory element-binding proteins (SREBPs) [31]. Lee et al. demonstrated that 0.2% or
0.5% (w/w) EGCG can reduce body weight and the mass of several adipose tissues in
a dose-dependent manner in an HFD-induced mouse obesity model [32]. These results
indicated that EGCG lowered plasma TG and liver lipid levels. In the epidermal white
adipose tissue of EGCG-treated mice, C/EBP, PPARγ, and SREBP mRNA levels were
observed to be significantly decreased [32].

5′-AMP-activated protein kinase (AMPK) has been identified as a metabolite-sensing
protein kinase. Activated AMPK triggers beneficial physiological effects, including re-
ductions in fat deposition. Ha et al. revealed that AMPK knockdown has upregulated
fat-forming enzymes, including FASN, ACC, and stearoyl-CoA desaturase, which is an-
other key enzyme of fat synthesis. These results suggest that activated AMPK inhibited fat
synthesis by inhibiting lipogenesis [33]. Given that GTE and EGCG activated AMPK by
inducing reactive oxygen species (ROS) generation [34,35], GTE and EGCG could improve
body weight and lipid metabolism by activating AMPK through ROS generation. EGCG
actions against lipogenesis and adipogenesis are shown in Figure 2.

Increased lipolysis can hydrolyze TGs and release free FAs, leading to anti-obesity
effects. Treatment of pre-adipocyte 3T3-L1 cells with 10 µM EGCG for 24 h has been found
to decrease intracellular lipid accumulation. Under the same experimental conditions,
increased glycerol levels in the medium were observed, and hormone-sensitive lipase
(HSL) mRNA levels, which catalyze rate-limiting stages in the hydrolysis of stored TGs to
monoacylglycerol and free FAs, were similarly increased [36].

Consistent with these findings, Wistar rats on an obesity induced 8-week cafeteria
diet, and supplemented with GTE (500 mg/kg body weight at 5 days/week for 12 weeks),
led to significant reductions in obesity indicators, e.g., hyperlipidemia, fat synthesis, body
weight, and fat depots when compared with the control diet group. Importantly, repression
of de novo lipogenesis in adipose tissue, reduced lipid droplets in the liver, and insulin resis-
tance development in diet-induced obese rats were accompanied by AMPK activation [37].
Similarly, mice fed a HFD with EGCG (50 and 100 mg/kg/day) exhibited significantly
increased HSL mRNA expression in white adipose tissue when compared with the HFD
group, and AMPK activity was noted to increase in both subcutaneous and epididymal
adipose tissues in these mice [38]. These results suggest that GTE/EGCG decreased obesity
in rats and mice via AMPK activation (Figure 2).
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A recent study examining EGCG effects and mechanisms on lifespan extensions
in obese rats demonstrated that median lifespans in control, HFD, and HFD + EGCG
animals were 693, 599, and 683 days, respectively, indicating EGCG can restore shortened
lifespans mediated by HFD [39]. EGCG also reduced inflammation and oxidative stress
associated with aging in HFD-induced rats. EGCG significantly decreased blood circulating
interleukin (IL)-6, tumor necrosis factor-α (TNF)-α, ROS, and superoxide dismutase (SOD)
levels. EGCG also increased the expression of sirtuin-1 (SIRT1), catalase, fatty acid-binding
protein-1, glutathione S-transferase (GST)-A2, and acyl-CoA synthetase-1, but significantly
decreased nuclear factor (NF)-κB, ACC-1, and FASN expressions at the liver. These findings
are represented by molecular events in Figure 2.
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It has been suggested that GTE regulates β-oxidation enzymes, which are one of the
indices for FA burning promotion and are activated by PPARα signaling [40,41]. Sae-Tan
et al. [42] demonstrated that 0.32% dietary EGCG can reduce the body weight of HFD-
induced mice, causing a 1.4–1.9-fold increase in PPARα mRNA levels when compared to
HFD controls.

In mice fed with diets containing either low fat (5% TG), high fat (30% TG), or high
fat supplemented with 0.1%–0.5% (w/w) GTC for 11 months, Murase et al. [43] observed
that GTC significantly reduced HFD-induced body weight gains and visceral and liver fat
accumulation and prompted the development of hyperinsulinemia and hyperleptinemia.
GTC supplementation for 1 month increased hepatic mRNA expression levels of acyl-CoA
oxidase and medium chain acyl-CoA dehydrogenase, as well as β-oxidation activity.

It is also possible that EGCG may have exerted its anti-obesity effects by reducing
lipid uptake and transport. The multi-ligand receptor, cluster of differentiation 36 (CD36),
has been determined as a key transmembrane protein implicated in lipid uptake and trans-
port [44]. EGCG decreased TCs and TGs in mice given 1,3-dichloro-2-propanol (1 mg/kg
body weight/day), which is an inducer of oxidative stress. EGCG dramatically increased
the expression of phosphorylated AMPK at Thr172 and lowered CD36 expression [45].
CD36 has also been deemed essential for lipoprotein binding at the liver [46]. Therefore,
decreased CD36 expression induced by EGCG may be related to changes in blood lipid
profiles [45]. Thus, EGCG inhibition of CD36 via AMPK activation may contribute to its
anti-obesity effects [47].
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3. The Effects of Coffee/CGA on Obesity

Coffee and CGA have been determined to exert anti-obesity effects in humans [48],
with several observational and experimental epidemiological studies supporting this
hypothesis.

3.1. Epidemiological Studies on Coffee/CGA

A cross-sectional study in 137 patients with non-alcoholic fatty liver disease (NAFLD)
and 108 controls showed that coffee consumption was inversely associated with obesity
and insulin resistance [1,49]. The results of a Mendelian randomization study in 93,179 indi-
viduals demonstrated that coffee intake of up to four cups/day was associated with a lower
risk of obesity with an odds ratios (ORs) of 0.82–0.86, when compared with non-coffee
drinkers [50].

Yonekura et al. [51] conducted a cross-sectional study in 232 Japanese women aged
40–65 years and found that daily coffee consumption was inversely associated with high BMI
(adjusted OR: 0.14, CI: 0.14, 0.96) and body fat percentage (adjusted OR: 0.33, CI: 0.14, 0.82).

Recently, Koyama et al. [9] reported that coffee consumption is associated with signif-
icantly lower levels of visceral obesity (OR: 0.746, CI: 0.588, 0.947) and MetS (OR: 0.706,
CI: 0.565, 0.882). These findings indicate the beneficial effects of coffee consumption
toward obesity.

However, several studies failed to show such favorable effects. For example, an epi-
demiological study in 17,953 Korean adults aged 19–65 years failed to show that coffee con-
sumption has health benefits; the OR for obesity of those who drank coffee ≥3 times/day
was 1.37 (CI: 1.15, 1.63) when compared with those who had coffee <1 time/week [52].
Similarly, an epidemiological study in 5995 women indicated that the ORs of high coffee
consumption (≥3 cups) were positively associated with obesity as measured by BMI (OR:
2.52, CI: 1.91, 3.34) and abdominal obesity as measured by WC (OR: 2.11, CI: 1.59, 2.79)
when compared with non-coffee drinkers [53]. Coffee with additives such as sugar was
positively correlated with the prevalence of obesity.

3.2. Clinical Studies on Coffee/CGA

A systemic review of three RCTs, including 142 participants, observed a significant
difference in body weight in a green coffee extract (GCE)-consuming group when compared
with placebo (mean difference: −2.47 kg, CI: −4.23, −0.72) [54].

A 12-week RCT in 30 overweight individuals reported that the average body weight
loss in subjects who consumed CGA-enriched coffee was 5.4 kg, while in the instant
coffee groups, this was 1.7 kg, suggesting a beneficial effect of CGA on body weight
management [55].

Haidari et al. [56] conducted an 8-week RCT where 64 obese women were divided
into the intervention group (receiving 400 mg GCE, equivalent to 180 mg CGA, n = 30) or
the control placebo group (receiving 400 mg starch, n = 34). As per the study results, signif-
icant reductions were noted in body weight, BMI, and fat mass indices, and waist-to-hip
circumference ratios in both groups; however, the decrease was higher in the intervention
group. In addition, serum TC, LDL, leptin, and plasma free FA levels were significantly
decreased in the intervention group, after adjusting for energy and fiber intake.

In another RCT, 142 healthy overweight men and women were divided into two
groups: the high CGA group (369 mg CGA/serving) and the control coffee group (35 mg
CGA/serving). Coffee was consumed once daily for 12 weeks, with 4-week pre- and
post-observation periods. Body weight, BMI, VFA, total abdominal fat area (TFA), and WC
were all significantly decreased in the high CGA group when compared with the control
group. Changes in VFA (−9.0 ± 13.9 cm2 in the CGA group vs. −1.0 ± 14.3 cm2 in the
control) and TFA (−13.8 ± 22.9 cm2 in the CGA group vs. −2.0 ± 16.2 cm2 in the control)
from baseline to 12 weeks were found to be significantly higher in the high CGA group
than in the control group [57].
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An 8-week RCT was conducted in patients with NAFLD; patients were divided into
an intervention group (400 mg green GCE containing 100 mg CGA, n = 24) or a placebo
group (n = 24). The authors observed that GCE supplementation significantly reduced
BMI (mean difference (MD): −0.57, CI: −0.84, −0.29) and increased serum high-density
lipoprotein cholesterol (HDL-C) levels (MD: 7.06, CI: 0.25, 13.87) when compared with
the placebo group. Serum TC decreased significantly in the GCE group (MD: −13.33, CI:
−26.04, −0.61) [58].

However, an RCT in 18 healthy male subjects who consumed 185 mL of a test beverage
with or without CGAs (329 mg) per day for 4 weeks showed no effects on body weight,
BMI, or body fat, although a significantly higher postprandial energy expenditure was
observed in the CGA group when compared with the controls [59]. Thus, further studies
are warranted to determine the effects of coffee and CGAs on obesity.

3.3. Laboratory Studies and Mechanisms of CGA Action

Several basic studies have generated evidence to support the beneficial effects of CGA
on obesity. Cho et al. demonstrated that 0.02% (w/w) CGA supplementation can lower
body weight and TG levels in plasma, liver, and heart in a HFD-induced mouse obesity
model [60]. These authors also showed that CGA significantly inhibited liver-based FASN
when compared with the high-fat group. In accordance with these findings, Huang et al.
observed that 90 mg/kg CGA consumption suppressed HFD-induced increases in body
weight, and downregulated FASN and ACC mRNA expression in rats [61].

In a rat study, CGA supplementation (~100 mg/kg/day) reduced inflammation and fat
deposition in the liver, along with reduced plasma liver enzyme activities in diet-induced
obese rats [62]. The inhibitory effects of fat-forming enzymes by CGA may be in part due
to the regulation of upstream lipogenesis transcription factors. Wang et al. demonstrated
that mice fed a HFD with CGA (150 mg/kg) had significantly lowered body weight in
comparison to HFD-fed control mice. In epididymal adipose tissue, CGA significantly
decreased FASN expression and expression of the upstream transcription factors, C/EBP,
PPARγ, and SREBP, but it increased PPARα expression [63]. These findings agreed with
the previous HFD-induced obesity studies in murine models [61,64], suggesting CGA
improved metabolic homeostasis.

Additionally, CGA may reduce lipogenesis via AMPK activation, thereby inhibiting
fat-forming enzymes [65]. In HepG2 cells, CGA (0.5–10 mM) induced AMPK activation
in a dose- and time-dependent manner (0.5–24 h). Activated AMPK then inhibited fat
synthesis by inhibiting fat-forming enzymes and lipogenesis transcription factors [33].
Hou et al. also demonstrated that CGA-treatment (250 µM and 1000 µM) for 24 h can
induce ROS production in human colon cancer cells (HCT116 and HT26) [66]. Since AMPK
was activated by ROS [67], CGA could regulate lipid metabolism via AMPK activation
through ROS generation. Figure 2 outlines several CGA actions.

The ability of CGA to increase lipolysis may be associated with its anti-obesity effects.
Flanagan et al. examined the long-term health benefits of CGA. They observed that CGA
consumption for 192 h increased lipolysis, as measured by free FAs and glycerol [68]. In
3T3-L1 cells, 20 µM CGA increased lipolysis by upregulating HSL expression [69,70]. These
results suggested that CGA promoted lipid digestion by upregulating lipase expression.

Xu et al. [71] reported that mice fed a HFD supplemented with CGA and caffeine had
significantly increased HSL and AMPK mRNA expression in the liver, when compared
with the HFD group. CGA may also upregulate enzymes involved in FA β-oxidation,
which in turn facilitates hepatic lipid degradation by activating PPARα in the liver and
adipose tissue [72]. These results indicated that CGA decreased obesity by enhancing
lipolysis via AMPK activation [71] (Figure 2).

Ma et al. [64] reported that mice fed a HFD supplemented with CGA (100 mg/kg,
twice a week) significantly suppressed the hepatic expression of CD36 when compared
to the HFD group. Given that AMPK signaling plays a key role in CD36-induced lipid
absorption [47], CGA may inhibit CD36 via AMPK activation, leading to reduced lipid
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uptake and transport. CGA may also affect lipid digestion by suppressing bile acid function,
which is deemed critical for the digestion and absorption of lipids at the small intestine.

The microRNA-122 (miR-122) is liver specific and plays a critical role in liver home-
ostasis [73]; its inhibition is associated with the gene suppression of key roles in liver lipid
metabolism, such as FASN [74]. Murase et al. demonstrated that CGA increased miR-122
levels in Hepa1–6 cells [75]. These results suggested that CGA may inhibit lipogenesis
through post-transcriptional mechanisms.

4. The Effects of Wine/RSV on Obesity
4.1. Observational Epidemiological Studies on the Anti-Obesity Effects of Wine/RSV

Epidemiological studies have suggested that light to moderate consumption of alcohol
may have protective effects against obesity [1]. A prospective cohort study which enrolled
15,920 normal-weight (BMI: 18.5 kg/m2 to <25 kg/m2) postmenopausal women observed
that the risk of becoming overweight and obese over a 7-year follow-up period was 35%
and 88% lower, respectively, for women in the upper quintile of alcohol intake, relative
to non-drinkers [76]. Of the alcoholic drinks, wine consumption showed the greatest
inverse association for the risk of being overweight (hazard ratio (HR): 0.75, CI, 0.68, 0.84),
followed by liquor (HR: 0.85, CI: 0.78, 0.93) and beer (HR: 0.90, CI: 0.82, 1.00). Vidot
et al. [77] reported that among wine drinkers, low and moderate drinkers had a lower OR
for MetS when compared with non-drinkers (OR: 0.72, CI: 0.55, 0.96 and OR: 0.43, CI: 0.21,
0.87, respectively). However, no significant associations were found for heavy wine (OR:
1.16, CI: 0.43, 3.16) and liquor drinkers.

Inan-Eroglu et al. [78] examined the associations between types of alcoholic drinks
and adiposity in a large United Kingdom cohort (n = 280,183, 48.3% female). Study data
indicated that when compared to non-wine drinkers, red wine, champagne, and fortified
wine drinkers had lower BMIs (differences were as follows: −0.75 kg/m2, CI: −0.78,
−0.72 kg/m2; −0.48 kg/m2, CI: −0.52, −0.45 kg/m2; and −0.24 kg/m2, CI: −0.29, −0.18
kg/m2, respectively). Beer and spirits drinkers were determined to have higher BMIs when
compared with non-beer and spirit drinkers (difference: 0.18 kg/m2, CI: 0.14, 0.22 kg/m2,
and difference: 0.64 kg/m2, CI: 0.61, 0.68 kg/m2, respectively). A population-based study
by Osella et al. showed that >10 g/day of wine consumption was associated with being
overweight [79].

A cross-sectional study in healthy volunteers (1481 women aged 35–60 years and 1210
men aged 45–60 years) showed a J-shaped relationship of waist-to-hip ratios and BMIs,
in terms of wine consumption [80]. When compared with non-drinkers, men consuming
<100 g/day wine had a lower BMI, and lower waist-to-hip ratio was found in both men
and women.

These findings suggest that low and moderate wine consumption may exert beneficial
effects on obesity. However, a follow-up survey of 8103 subjects with a mean age of
35.4 years during ≥6 years failed to show such beneficial effects; instead, results showed a
non-significant association between wine consumption and MetS [81].

4.2. Human Intervention Studies Investigating the Effects of Wine/RSV on Obesity

Intervention studies have reported on the obesity-related effects of wine consumption.
In an RCT in obese subjects who habitually consumed moderate alcohol levels, 40 of
49 eligible participants (BMI, 34.2 ± 6.4 kg/m2) completed the 3-month intervention study
on a 1500 kcal dietary regimen, one with 10% of energy from white wine and one with 10%
of energy from grape juice [82]. These results showed that all subjects achieved significant
body weight reduction; percent body fat, WC, blood pressure, blood glucose, insulin, TGs,
and cholesterol were also reduced. In contrast, another RCT revealed that moderate wine
consumption in overweight women did not improve insulin sensitivity and any other
correlates of insulin sensitivity, i.e., body weight, blood lipids, and blood pressure [83].

In contrast to the studies focusing on wine consumption, the potential health bene-
fits of RSV consumption have also been examined. Following a literature search, Wang
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et al. [4] summarized five RCTs published between 2009 and 2013, of which four reported
favorable RSV effects. These included the downregulation of inflammatory markers, such
as TNF-α and plasminogen activator inhibitor-1 (three studies), TGs (one study), LDL-C
(one study), and nuclear factor-κB (NF-κB, one study), and the upregulation of adiponectin
(two studies), AMPK (one study), and SIRT1 (one study) [4].

In a comprehensive clinical study review, Wahab et al. [84] discussed the effects of RSV,
and included 17 studies in patients with chronic diseases and 21 studies in healthy subjects.
These authors reported the beneficial effects of RSV, including reduced body weight,
BMI, fat weight, LDL-C levels, and adipocyte size, in addition to the downregulation of
inflammatory cytokines such as TNF-α. The authors also recorded elevated adiponectin
levels and adipose tissue lipolysis.

In a recent review, Singh et al. [85] summarized a number of RSV clinical trials in
patients with obesity, diabetes, cancers, MetS, Alzheimer’s disease, cardiovascular disease,
and inflammatory disease. These authors observed that RSVs exerted favorable effects in
13 of the 15 studies in patients with obesity, being overweight, and MetS.

In contrast, several studies published conflicting results in this area. For example,
a study by Poulsen et al. [86] showed that the consumption of RSV (500 mg for 28 days)
by 24 obese, but otherwise healthy males, resulted in non-significant changes in terms
of obesity markers, total body mass, total body fat mass, and visceral and abdominal
subcutaneous fat volumes. Meanwhile, Gualdoni et al. [87] reported that 10 healthy
volunteers who consumed 5 g RSV showed a significant increase in TNF-α levels at
24 h after treatment when compared at baseline. Peripheral blood mononuclear cells or
isolated monocytes showed that RSV potentiated TNF-α production stimulated by different
Toll-like receptor agonists. Moreover, significant increases in NF-κB activities and p105
phosphorylation were indicative of alternative NF-κB pathway activation.

4.3. Laboratory Studies and RSV Mechanisms

Most cell-based and animal studies have described favorable effects for RSV, thereby
supporting findings from epidemiological cohort and intervention studies. Baur et al. [88]
demonstrated that RSV alleviated the negative impact of a high-calorie diet on overall
health and lifespan in middle-aged mice. RSV increased insulin sensitivity, AMPK, and
peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) activity and reduced
insulin-like growth factor-1 levels. Parametric analyses revealed that RSV gave the signifi-
cant opposed effects of the high-calorie diet in 144 out of 153 altered pathways. Although
this study showed that increased SIRT1 enzymatic activity by RSV without altering its gene
expression, a different study showed that RSV restored its decreased mRNA levels induced
by hemorrhagic shock in the rat kidney to the control levels [89].

Price et al. [90] reported different RSV dose-dependent activities toward AMPK and
SIRT1 expression. Mice treated with a moderate RSV dose were able to activate AMPK,
increasing mitochondrial biogenesis and function in skeletal muscle, whereas SIRT1 knock-
out mice displayed none of these effects. A mouse model over-expressing SIRT1 mimicked
these effects, demonstrating SIRT1 was required for AMPK activation. In contrast, a high
RSV dose activated AMPK in a SIRT1-independent manner, demonstrating RSV dosage
was a critical factor [90]. These findings indicated that RSV exerted dose-dependent effects
on AMPK and SIRT1 signaling pathways.

Wang et al. [4] reviewed 14 cell and 12 animal studies investigating the anti-obesity
effects of RSV. Their data indicated: RSV increased adiponectin levels; reduced TG levels
and lipid accumulation; upregulated AMPK, SIRT1, and SIRT3; downregulated FASN and
PPARγ; ameliorated drug-induced increases in TNF-α production; and activated NF-κB.
Animal study data indicated that the anti-obesity effects of RSV in animals were poten-
tially mediated through stimulation of fat oxidation and metabolism, together with the
suppression of adipogenic gene expression, such as PPAR, C/EBPα, SREBP-1c, FASN,
lipopolysaccharide (LPS), FA-binding protein (adipocyte Protein 2 (aP2)), and leptin. They
also indicated that RSV not only downregulated obesity-induced chronic inflammation
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expression of TNF-α, interferon (IFN)-γ, IFN-β, and IL-6, downstream signaling molecules,
and oxidative stress, but it also upregulated anti-oxidant defense capacities, such as in-
creased liver SOD, glutathione peroxidase, and catalase.

Based on clinical and preclinical data, Singh et al. [85] proposed the following RSV
molecular targets: AMPK, GST, IL-1β, matrix metalloproteinase (MMP), NF-κB, nuclear
factor erythroid like 2 (Nrf2), PGC-1α, SIRT1, and TNF-α. Possible mechanisms, involving
these targets, whereby RSV exerts anti-obesity effects are shown in Figure 2.

5. The Effects of Curry/CRC on Obesity
5.1. Human Studies on Curry/CRC

No comprehensive epidemiological studies have yet reported the effects of CRC on
obesity. Future observational human studies may reveal its beneficial effects on obesity and
other diseases, particularly in Asian populations which have high CRC consumption levels.

However, multiple clinical studies have reported on the health benefits of CRC con-
sumption. In an RCT in MetS patients with BMIs between 25.0 and 29.9, 44 participants
showed a <2% weight loss after 30 days of diet, 22 patients were treated for a further
30 days with a CRC mixture (800 mg/dose/day of Curcuma longa extract containing 95%
CRC), while the remaining 22 patients received vehicle (400 mg/dose/day of pure phos-
phatidylserine) [91]. These results indicated that CRC treatment increased weight loss
from 1.88% to 4.91%, enhanced the percentage reduction of body fat (0.70% to 8.43%),
waistline reduction (2.36% to 4.14%), hip circumference reduction (0.74% to 2.51%), and
BMI reduction (2.10% to 6.43%) [91].

Data from four clinical studies led Kunnumakkara et al. [92] to conclude that CRC
was effective in reducing anxiety and depression symptoms associated with obesity. CRC
modulated circulating IL-1β, IL-4, and vascular endothelial growth factor (VEGF) levels to
generate immunosuppressive effects and reduce oxidative stress in obese patients.

A systematic review of seven RCTs examining turmeric and CRC in patients at risk
of cardiovascular disease suggested they had beneficial effects on serum TG and LDL-C
levels, although no significant differences were found for serum HDL-C levels. When the
analysis was restricted to more homogenous studies based on underlying different disease
categories, a beneficial effect of turmeric and CRC on serum TC levels was noted in patients
with MetS [93].

A meta-analysis of eight RCT reported a significant reduction (WMD: −4.69 pg/mL,
CI: −7.10, −2.28) in circulating TNF-α levels upon CRC supplementation, suggesting a
beneficial effect of CRC on inflammation [94].

A meta-analysis of 11 studies involving 876 subjects (53% women) found a signifi-
cant effect of CRC on body weight (WMD: −1.14 kg, CI: −2.16, −0.12) and BMI (WMD:
−0.48 kg/m2, CI: −0.78, −0.17), respectively [95].

In an RCT by Saraf-Bank et al. [96], 60 overweight and obese adolescent girls were
randomly assigned to either a placebo or CRC intervention group. Supplementation with
500 mg/day CRC for 10 weeks was found to significantly lower IL-6 levels and oxidative
stress markers, suggesting beneficial effects on inflammation and oxidative stress.

However, data from a 6-month RCT in elderly subjects who consumed CRC or placebo
showed that CRC consumption (doses of either 1 g or 4 g/day) did not significantly affect
TG, TC, LDL-C, or HDL-C levels over 1 or 6 months [97]. Data from another RCT, where
30 obese individuals were randomized to receive 1 g/day CRC or placebo, showed that CRC
significantly reduced IL-1β, IL-4, and VEGF serum levels, but no significant differences
were observed for IL-2, IL-6, IL-8, IL-10, IFN-γ, epidermal growth factor, and monocyte
chemoattractant protein-1 levels [98]. Thus, different studies show that the CRC effects on
some biomarkers are variable.

5.2. Laboratory Studies and CRC Mechanisms

Several cell and animal studies have demonstrated the beneficial effects of CRC
on obesity [4]. In a mouse model study, CRC administration for 28 weeks significantly
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attenuated the effects of HFD on body weight gain, glucose disposal, and insulin resistance.
CRC also inhibited the expression of lipogenic genes, including NF-κB, SREBP-1c, and
carbohydrate-responsive element-binding protein in the liver, and blocked the effects of
HFD on inflammatory pathways in adipose tissue [99]. Similarly, dietary CRC ameliorated
diabetes in HFD-induced obese and ob/ob male C57BL/6J mice and further reduced body
weight gain. CRC also decreased macrophage infiltration in white adipose tissue, adipose
tissue adiponectin production, hepatic NF-κB activity, and hepatic inflammation [100].

In 3T3-L1 cells, Ahn et al. [101] showed that CRC decreased aP2 (a mature adipocyte
marker) mRNA expression, increased c-Myc and cyclin D1 expression (well-known Wnt
targets), and inhibited mitogen-activated protein kinase (MAPK) phosphorylation, which
has been associated with 3T3-L1 differentiation into adipocytes. These findings suggest
that the Wnt signaling pathway participated in CRC-induced suppression of adipogenesis
in 3T3-L1 cells.

Wnt signaling activation represses adipogenic differentiation. The transcription factor
7-like 2 (Tcf7l2) gene encodes a key Wnt signaling pathway effector, and its human homo-
logue, TCF7L2, may be a high-risk gene for diabetes. Tian et al. [102] showed that CRC
attenuated miR-17-5p expression and stimulated Tcf7l2 expression in 3T3-L1 cells. Since
miR-17-5p expression in mouse epididymal fat tissues increased in response to HFD, these
finding suggested that miR-17-5p could be a central switch in adipogenic differentiation.

Ejaz et al. [103] demonstrated that in mice fed HFD, CRC reduced body weight gain,
adiposity, and micro-vessel density in adipose tissue, which coincided with the reduced
expression of VEGF and its receptor, VEGFR-2. CRC has also been noted to activate AMPK,
reduce glycerol-3-phosphate acyl transferase-1, and increase carnitine palmitoyltransferase-
1 expression, leading to increased lipid oxidation and decreased fatty acid esterification.

Kunnumakkara et al. [92] characterized CRC molecular targets, including transcription
factors, protein kinases, inflammatory mediators, apoptotic regulators, protein reductases
and histone acetyl transferase, growth factors, receptors, and adhesion molecules. CRC
may exert its multiple effects via epigenetic regulation, of which the major targets include
Nrf2, β-catenin, NF-κB, p38 MAPK, cyclooxygenase-2, forkhead box O3, inducible nitric
oxide synthase, ROS, cyclin D1, VEGF, glutathione, TNF-α, and extracellular-regulated
protein kinase.

Wang et al. [4] reviewed 11 cell-based, 16 animal, and 3 human studies investigating
the anti-obesity effects induced by CRC and concluded CRC could down- or upregulate
various transcription factors, enzymes, cytokines, and other signaling pathway components.
More specifically, downregulated or inactivated molecules included C/EBP-α, PPARγ,
SREBP-1c, FASN, ACC, HSL, SREBP-1c, NF-κB, IL-6, and TNF-α. Those upregulated or
activated included AMPK, Nrf2, and SIRT1. How these molecules are involved in CRC
anti-obesity effects is highlighted in Figure 2.

6. Discussion

This review summarized the favorable anti-obesity effects of consuming green tea,
coffee, wine, and curry and their principal associated polyphenols. While considerable
human observational and intervention studies have expounded this hypothesis, several
studies have failed to show any beneficial effects. Such differences may have been due to
confounding factors, e.g., differences in study design, quantifying consumption methods,
beverage temperatures, cigarette smoking, alcohol consumption, and differences in genetic
and environmental factors, such as race, sex, age, lifestyle, intestinal microbiota, and
genetic polymorphisms [2,104,105]. Further complicating these issues is the fact that
polyphenols have limited bioavailability as their absorption from the human digestive
system is restricted; thus, they are predominantly metabolized in the gut and liver [106].
In the future, more comprehensive and definitive human studies should be performed to
assess the bioavailability of polyphenols and prove the anti-obesity effects of consuming
these foods.
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Most animal and cell-based studies supported the beneficial findings of human studies.
These studies also proposed possible mechanisms underlying the anti-obesity actions of these
polyphenols. Figure 2, which has been generated from previous data [1,3,6,33,85,105,107–109]
illustrates putative mechanism showing how EGCG, CGA, RSV, and CRC may exert their
anti-obesity effects. These mechanisms are underpinned by the downregulation/inhibition
of adipogenesis, lipogenesis, oxidative stress, and inflammation and the upregulation/stim-
ulation of lipolysis and mitochondrial biogenesis.

Polyphenols are frequently documented with dual pro- and anti-oxidant roles (Table 1).
This table shows that EGCG, CGA, RSV, and CRC upregulate AMPK by stimulating ROS
generation, but downregulates NF-κB by scavenging ROS. A caveat to this table is that not
all studies are necessarily related to obesity. Currently, it remains unclear what factor(s)
direct these polyphenols to act as pro- or antioxidants; however, differences in cellular
polyphenol and metal ion concentrations, cell types, and the co-existence of other anti-
oxidants may be important factors. Thus, further studies will be required to clarify these
issues. It should be noted that AMPK activation via TNF-α downregulation (Figure 2) is
based on Steinberg et al. [107]; however, more evidence is required for this observation.

Epigenetic modifications, including post-translational changes caused by miRNA dys-
regulation (miRNAs are small single-stranded molecules comprising 20 to 25 nucleotides),
are implicated in various cellular processes via gene expression regulation [110,111]. Sev-
eral miRNAs are associated with obesity [112], e.g., miR-17-5p, miR-122, and miR-221.

Table 1. Studies showing EGCG, CGA, RSV, and CRC modulatory effects on ROS, AMPK, and NF-κB. Studies showing
ROS and AMPK stimulation or upregulation are in red boxes, whereas studies showing ROS and NF-κB suppression or
downregulation are in blue boxes.

Polyphenols ROS AMPK ROS NF-κB

Stimulation/
Upregulation

Stimulation/
Upregulation

Suppression/
Downregulation

Suppression/
Downregulation

EGCG
Tsai et al. [113]

Hsieh et al. [114]
Liu et al. [115]

Tan et al. [116]
Bae et al. [117]

Ueda et al. [118]

Wada et al. [119]
Qin et al. [120]
Yi et al. [121]

Zhong et al. [122]
Wang et al. [123]
Reddy et al. [124]

CGA
Rakshit et al. [125]

Yang et al. [126]
Hou et al. [66]

Zhou et al. [127]
Jang et al. [128]
Tsai et al. [129]

Han et al. [130]
Gong et al. [131]
Kong et al. [132]

Bao et al. [133]
Tian et al. [134]
Fu et al. [135]

RSV
Posadino et al. [136]

Chen et al. [137]
Li et al. [138]

Vlavcheski et al. [139]
Guo et al. [140]

Wang et al. [141]

Giordo et al. [142]
Ramdani et al. [143]

Zhang et al. [144]

André et al. [145]
Subedi et al. [146]
Xian et al. [147]

CRC
Liang et al. [148]

Yu et al. [149]
Nakamae et al. [150]

Soltani et al. [151]
Lu et al. [152]
Yu et al. [153]

Sadeghi et al. [154]
Ran et al. [155]
Lin et al. [156]

Li et al. [157]
Khan et al. [158]
Zhou et al. [159]

As described earlier, miR-122 and miR-17-5p were implicated as CRC and CGA targets,
respectively [75,102]. The effects of EGCG, CGA, RSV, and CRC on miRNAs were then
compared (Table 2), although it remains unclear how these miRNAs, other than miR-122
and miR-17-5p, are associated with anti-obesity effects mediated by these polyphenols.
Table 2 indicates the polyphenols reviewed here downregulated miR-17 and miR-21, but
differences exist among them in modulation of miR-33, miR-122, miR-155, and miR-221,
suggesting different mechanisms may function in their anti-obesity effects.

Future studies will clarify whether these polyphenols have similar or different modu-
latory effects on these miRNAs.
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Table 2. MiRNA modulation by EGCG, CGA, RSV, and CRC polyphenols. Arrows in red boxes (↑) and blue boxes (↓) represent upregulation and downregulation, respectively.

miRNA Polyphenols Modulation Cell/Animal Model Dose References

miR-17 EGCG ↓ Human umbilical vein endothelial cells 50 mg/mL [160]

CGA ↓ Human hepatocellular carcinoma Huh7 cells and human
small cell lung cancer NCI-H446 cells 25, 50 mM [161]

RSV ↓ Human breast cancer cell lines (Bcap37, MDA-MB-231) 6.25, 25 mM [162]
CRC ↓ Mouse embryonic fibroblast 3T3-L1 cells 2, 10 mM [102]

miR-21 EGCG ↓ Rat model of chronic renal injury 200 mg/kg [163]
CGA ↓ CCl4-induced liver fibrosis rat model 15, 30, 60 mg/kg [164]
RSV ↓ Human pancreatic stellate cells 50 µM [165]
CRC ↓ Rat model of liver fibrosis 100 mg/kg [166]

miR-33 EGCG ↓ Human hepatoma HepG2 cells 50 mM [74]

CGA ↓ Hypercholesterolemic rats model 75, 150, 300 mg/kg of Lonicera caeruleaberry
extract containing CGA [167]

RSV ↑ Human hepatoma HepG2 cells 50 mM [74]
CRC ↓ Human THP-1 macrophages 40 mM [168]

miR-122 EGCG ↓ Human hepatoma HepG2 cells 50 mM [74]

CGA ↓ Hypercholesterolemic rats model 75, 150, 300 mg/kg ofL. caerulea berry
extract containing CGA [167]

RSV ↑ Human hepatoma HepG2 cells 50 mM [74]
CRC ↑ Bile duct ligation-induced fibrotic rats 100 mg/kg [169]

mir-155 EGCG ↑ Human colon cancer cell lines (HCT-116, DLD-1) 50 mM [170]
CRC ↓ LPS-treated murine monocyte/macrophage RAW264.7 cells 31.25, 62.5 mM [171]
RSV ↑ Mouse embryonic fibroblast 3T3-L1 cells 25 mM [172]
CRC ↓ LPS-induced mouse model of inflammation 20 mg/kg [173]

miR-221 EGCG ↑ Rat pheochromocytoma PC12 cells 50 mM [163]
RSV ↑ Human umbilical vein endothelial cells 50 mM [174]
CRC ↓ Human hepatoma HepG2 cells xenograft mouse model 100 mg/kg [169]
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Abbreviations

ACC Acetyl-CoA carboxylase
AMD Adjusted mean difference
AMPK 5′-AMP-activated protein kinase
aP2 Adipocyte Protein 2
BMI Body mass index
C/EBP CCAAT/enhancer-binding proteins
CGA Chlorogenic acid
CD36 Cluster of differentiation 36
CI Confidence interval
CRC Curcumin
EGCG Epigallocatechin-3-O-gallate
FAs Fatty acids
FAS/FASN Fatty acid synthase
GST Glutathione S-transferase
GCE Green coffee extract
GTE Green tea extract
HR Hazard ratio
HFD High-fat diet
HSL Hormone-sensitive lipase
IC50 Half-maximal inhibitory concentration
IFN Interferon
IL Interleukin
LPS Lipopolysaccharide
LXR Liver X receptor
LDL Low-density lipoprotein
MMP Matrix metalloproteinase
MD Mean difference
MetS Metabolic syndrome
MAPK Mitogen-activated protein kinase
MS Multiple sclerosis
NAFLD Non-alcoholic fatty liver disease
Nrf2 Nuclear factor erythroid 2-like 2
NF-κB Nuclear factor-κB
ORs Odds ratios
PGC-1α Peroxisome proliferator-activated receptor-γ coactivator-1α
PPAR Peroxisome proliferation-activated receptor
RCT Randomized controlled trial
ROS Reactive oxygen species
RSV Resveratrol



Molecules 2021, 26, 453 15 of 22

SIRT Sirtuin
SCD Stearoyl-CoA desaturase
SOD Superoxide dismutase
SREBP Sterol regulatory element-binding proteins
TFA Total abdominal fat area
TC Total cholesterol
Tcf7l2 Transcription factor 7-like 2
TGs Triglycerides
TNF Tumor necrosis factor
VEGF Vascular endothelial growth factor
VFA Visceral fat area
WC Waist circumference
WMD Weighted mean difference
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