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Abstract

There is evidence from post-mortem and magnetic resonance imaging studies that 

hyperintensities, oligodendrioglial abnormalities and gross white matter volumetric alterations 

play a role in the pathophysiology of bipolar disorder. There is also functional imaging evidence 

for a defect in frontal cortico-subcortical pathways in bipolar disorder, but the white matter 

comprising these pathways has not been well-investigated. Few studies have investigated white 

matter integrity in patients with bipolar disorder compared to healthy volunteers and the majority 

of studies have used manual region-of-interest approaches. In this study, we compared fractional 

anisotropy (FA) values between 30 patients with bipolar disorder and 38 healthy volunteers in the 

brain white matter using a voxelwise analysis following inter-subject registration to Talairach 

space. Compared to healthy volunteers, patients demonstrated significantly (p < .001; cluster size 

≥ 50) higher FA within the right and left frontal white matter and lower FA within the left 

cerebellar white matter. Examination of individual eigenvalues indicated that group differences in 

both axial and radial diffusivity contributed to abnormal FA within these regions. Tractography 

was performed in template space on averaged diffusion tensor imaging data from all individuals. 

Extraction of bundles passing through the clusters that differed significantly between groups 

suggested that white matter abnormalities along the pontine crossing tract, corticospinal/

corticopontine tracts and thalamic radiation fibers may play a role in the pathogenesis of bipolar 

disorder. Our findings are consistent with models of bipolar disorder that implicate dysregulation 
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of cortico-subcortical and cerebellar regions in the disorder and may have relevance for 

phenomenology.
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bipolar disorder; white matter; diffusion tensor imaging; magnetic resonance imaging; 
tractography

Introduction

There is increasing evidence that white matter dysfunction may be an important 

consideration in the pathophysiology of bipolar disorder. Several studies reported white 

matter hyperintensities (WMH) in bipolar disorder (e.g. Aylward et al, 1994; Ahn et al, 

2004), which appear to be one of the most robust and consistent neuroimaging findings in 

the literature (Norris et al, 1997; Stoll et al, 2000). More severe WMH have been linked to a 

greater number of hospitalizations and poorer treatment response (Moore et al, 2001). The 

presence of WMH may be indicative of an interruption in white matter fibers (e.g. Soares 

and Mann, 1997; Taylor et al, 2001), and/or an indication of early localized demyelination 

(Hajek et al, 2005).

Post-mortem and magnetic resonance imaging (MRI) studies have provided additional 

evidence for white matter abnormalities in the pathogenesis of bipolar disorder. In 

particular, altered expression of oligodendrocyte and myelin genes (Tkachev et al, 2003) 

and a lower density of oligodendroglial (Uranova et al, 2004) and glial (Rajkowska et al, 

2001) cells have been reported in the prefrontal cortex of patients compared to healthy 

volunteers. MRI studies reported less left hemisphere (Kieseppa et al, 2003) and whole brain 

(Strakowski et al, 1993; Davis et al, 2004) white matter volume in patients compared to 

healthy volunteers. Few studies have investigated regional differences in white matter using 

MRI, although Bruno and colleagues (2004) identified lower white matter density in 

frontostriatal regions in bipolar patients compared to healthy volunteers using voxel-based 

morphometry.

A potentially more sensitive technique for the assessment of white matter integrity in bipolar 

disorder is the use of diffusion tensor imaging (DTI), which provides quantitative 

information regarding tissue water mobility. Fractional anisotropy (FA) is a measure of the 

coherence of white matter fibers derived from DTI, with higher FA potentially indicative of 

greater coherence. To date, few DTI studies have investigated the brain white matter in 

bipolar disorder. Furthermore, the majority of studies included small sample sizes and used a 

manual region-of-interest approach whose definitions may potentially be unreliable. In 

addition, findings have been inconsistent with reports of lower (Adler et al 2006; Adler et al 

2004; Frazier et al 2007; Bruno et al 2008), higher (Yurgelun-Todd et al 2007; Haznedar et 

al 2005) or no differences (Beyer et al 2005) in anisotropy between patients with bipolar 

disorder and healthy volunteers. A prior study that used tractography reported a significantly 

increased number of reconstructed fibers between the left subgenual cingulate and left 

amygdalo-hippocampal (AH) complex in patients with bipolar disorder compared to healthy 
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volunteers without associated group differences in FA in the reconstructed fiber tract 

(Houenou et al 2007).

Some studies suggest that it may be possible to examine the individual eigenvalues of the 

diffusion tensor to determine whether FA changes are associated with axial (λ1) or radial (λ2 

and λ3) white matter integrity (Song et al, 2002; Song et al, 2005). Specifically, axial 

diffusivity (λ1) is defined by how much diffusion occurs parallel to a given white matter 

tract whereas radial diffusivity ((λ2 + λ3) / 2) represents diffusion of water molecules 

perpendicular to the white matter tract. Previous work by Song and colleagues (2002) 

demonstrated that white matter radial diffusivity was increased in shiverer mice with a 

dysmyelinated CNS, suggesting increased water mobility perpendicular to axons due to the 

lack of myelin sheath. In contrast, axial diffusivity was not affected in these animals 

suggesting intact axonal integrity. These findings were confirmed using electron 

microscopy. In addition, the extent of increased radial diffusivity reflected the severity of 

demyelination and following remyelination there was a concomitant decrease in radial 

diffusivity (Song et al, 2005). The investigation of axial and radial diffusivity could have 

implications for axonal and myelin related pathologies, respectively and thus, may have 

relevance for better understanding FA alterations in the pathogenesis of bipolar disorder.

In this study we analyzed FA and axial/radial diffusivity data in a large cohort of patients 

with bipolar disorder and age- and sex-matched healthy volunteers using a voxelwise 

analysis. A potentially important advantage of a voxel-based approach is that abnormalities 

may be identified across the entire brain and with greater reliability compared to region-of-

interest approaches. Some evidence suggests that white matter pathways connecting frontal 

cortical and subcortical structures, which are involved in mood regulation, may be disrupted 

in patients with bipolar disorder (Strakowski et al, 2005b). This disturbance may involve 

compromised bundle coherence in white matter connections subserving frontal areas, and/or 

a possible alteration in the myelination of these connective tracts. Based on this prior work, 

we hypothesized that FA would differ between groups in the frontal white matter and in the 

white matter surrounding subcortical areas. We further analyzed axial and radial diffusivity 

to ascertain whether FA differences might be associated with abnormalities in either axonal 

or myelin-related integrity, respectively.

Methods

Subjects

Thirty patients with bipolar disorder were recruited from The Zucker Hillside Hospital in 

Glen Oaks, NY. Diagnoses were based on clinical interview using the SCID for DSM-IV 

Disorders (First et al, 1994) and supplemented by medical records and information provided 

by clinicians and family members, when available. All diagnoses were confirmed through a 

consensus conference involving psychologists and psychiatrists. The majority of patients 

had a diagnosis of Bipolar I Disorder (n=25), while the remaining patients were diagnosed 

with either Bipolar II Disorder (n=2) or Bipolar Disorder Not Otherwise Specified (n=3). All 

patients were being treated with antipsychotic medications and/or mood stabilizers. Eleven 

patients had a history of drug use (sedative abuse, n=1; sedative dependence, n=2; alcohol 

abuse, n=5; alcohol dependence, n=3; cannabis abuse, n=3; cannabis dependence, n=6; 
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cocaine abuse, n=3; cocaine dependence, n=2; amphetamine abuse, n=1; amphetamine 

dependence, n=2). Thirty-eight healthy comparison subjects were recruited from the 

community through advertisements in local papers and word of mouth. Exclusion criteria for 

all study participants included any serious medical or neurological condition known to affect 

the brain. Exclusion criteria for healthy subjects also included any history of Axis I 

psychiatric illness as assessed by clinical interview (SCID-NP) (First et al, 2001) or in first-

degree relatives. This study was approved by the North Shore-Long Island Jewish Medical 

Center Institutional Review Board and written informed consent was obtained from all study 

participants.

Handedness

Handedness for all participants was assessed using a modified, 20-item version of the 

Edinburgh Inventory. A laterality quotient was computed for each participant according to 

the following formula: (Total R − Total L)/(Total R + Total L), where Total R and Total L 

refer to the total number of right and left hand items scored, respectively. Laterality 

quotients derived from this formula ranged from +1.00 (totally dextral) to −1.00 (totally 

nondextral). A laterality quotient of .70 or greater indicated a dextral classification for the 

subject, while subjects with a laterality quotient below .70 were classified as nondextral.

Magnetic Resonance Imaging (MRI) Procedures

MRI exams were conducted at the Long Island Jewish Medical Center on a GE 1.5 T 

system. A total of 26 DTI volumes were obtained from each subject that included 25 

volumes with diffusion gradients applied along 25 non-parallel directions with b = 1000 

s/mm2 and NEX = 2, and one volume without diffusion weighting (b = 0; NEX = 2). Each 

volume consisted of 23 contiguous 5-mm axial slices acquired parallel to the anterior-

posterior (AC-PC) commissural line using a ramp sampled, spin-echo, single shot echo-

planar imaging (EPI) method (TR = 10 s, TE = minimum ms, FOV = 22 cm, matrix size = 

128 × 128).

To provide a high-resolution anatomical reference, one hundred twenty four contiguous 

coronal images (slice thickness = 1.5 mm) were acquired through the whole head using a 3D 

Fast SPGR sequence with IR Prep (TR = 10.1 ms, TE = 4.3 ms, TI = 600 ms, FOV = 22 cm, 

matrix size = 256 × 256) producing nominal in-plane resolution of 0.86 × 0.86 mm2. In 

addition, an oblique axial fast spin echo scan (TR = 4s, TE = 20/100 ms, FOV = 22 cm, 

matrix size = 256 × 256) was acquired at the same slice positions as the diffusion tensor 

images and provided contiguous 5-mm thick proton density (PD) and T2-weighted (T2) 

images. The fast spin echo PD and T2 volumes were used for registration, distortion 

correction of diffusion images and for image segmentation.

Image Processing

Image processing was conducted using previously published methods (Szeszko et al, 2005a; 

Szeszko et al, 2005b; Szeszko et al, 2008). Briefly, non-brain regions were removed from 

the SPGR images using the Brain Extraction Tool (BET) (Smith, 2002). Any nonbrain tissue 

that remained following the automatic brain extraction process was removed manually using 

MEDx (Sensor Systems, Inc., MD, USA). The cropped SPGR images of all subjects were 
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spatially normalized to the Montreal Neurologic Institute’s ‘Colin27’ MRI volume (Holmes 

et al, 1998) using the nonlinear registration module of the Automatic Registration Toolbox 

(ART) (Ardekani et al, 2005). For each subject, the SPGR volume was also registered to 

their fast spin echo PD/T2 volumes using ART by a rigid-body 6-parameter linear 

transformation (Ardekani et al, 1995). To correct for the spatial distortion in the DTI EPI 

images, the b=0 DTI volume was registered to the T2 volume using ART. Finally, we 

registered the FA, axial, and radial images to the stereotactic space of the ‘Colin27’ template 

by mathematically combining and applying the operations obtained from the three 

registration steps: (1) nonlinear within-subject mapping of the b=0 DTI volume to the T2 

volume for distortion correction; (2) 6-parameter linear within-subject mapping of the T2 to 

SPGR volume; and (3) nonlinear between-subject mapping of the SPGR volume to the 

‘Colin27’ reference volume. The accuracy of the registration algorithm used in this study 

has been demonstrated empirically to be superior to several others in reducing inter-subject 

anatomical variability (Ardekani et al 2005).

For each subject, we created a white matter mask in stereotactic space as follows. Using the 

6-parameter linear transformation obtained from the registration process, we resliced the 

cropped SPGR volume to the same orientation, voxel size, and matrix size as the PD/T2 

volumes. First, the resliced cropped SPGR volumes were used as masks to delete the 

nonbrain regions from the PD and T2 volumes. Second, the resulting image sets (i.e., the 

cropped T2, PD, and resliced SPGR volumes) were used as three input channels to the 

FAST segmentation program (Zhang et al, 2001) to segment the brain into white matter, 

gray matter, and CSF. All individuals’ white matter masks were then transformed to 

standard space using the above registration approach (minus the distortion correction step), 

averaged, and conservatively thresholded at 70% to obtain a white matter mask for the entire 

group. Voxelwise statistical analyses were confined to the voxels comprising this white 

matter mask.

For each subject an FA map was computed from the 26 DTI volumes following estimation 

of the diffusion tensor matrix and its eigenvalues for each voxel using methods described 

previously (Basser 1995). The diffusion tensor and FA maps were computed in the original 

native coordinates of the acquired images before any registration operations were applied to 

the scalar values. The FA map of each subject was transformed into the standard ‘Colin27’ 

space as described above. There is evidence that the choice for a smoothing kernel size can 

influence study findings (Jones et al 2005). It is difficult, however, to unambiguously select 

the size of the smoothing kernel in the absence of a priori information about the spatial 

dimensions of the effects of interest that may vary from one region to another. In the present 

study, we prospectively selected the smoothing kernel size to be approximately twice the 

spacing between voxels and for consistency with a prior study by our group (Szeszko et al, 

2005a). Thus, both the registered FA and white matter images were smoothed with a three-

dimensional isotropic Gaussian kernel of FWHṂ = 3 mm.

Statistical analyses

Group differences in demographic variables were examined using independent groups t tests 

or chi-square tests. FA values between groups were compared using voxelwise analysis of 
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covariance with white-matter density (obtained from the segmentation process described 

above) and age as statistical covariates. FA values between patients and controls were 

considered significantly different at a given voxel if the null hypothesis in a two-tailed t-test 

was rejected at p<0.001 (Szeszko et al, 2005a; Szeszko et al, 2008). As a measure of false 

alarm rate, we estimated the false discovery rate (FDR) for the applied p-value threshold of 

0.001 to be q < 0.015 using the ‘FDR’ program of the FSL package with the conservative 

option, which estimates the FDR using the method of Benjamini and Hochberg (1995). As a 

further protection against multiple comparisons, significantly different FA values 

(corresponding to a p-value of .001 or less) were required to be part of a spatially contiguous 

cluster size of 50 voxels or greater. To confirm selected significant voxelwise findings (i.e., 

those that approximated the shape of a circle) circular regions-of-interest were placed on the 

raw FA maps in areas that differed significantly between groups and compared in SPSS 

using independent groups t-tests. To investigate the potential effects of substance use and 

the inclusion of Bipolar II and Bipolar NOS patients on the observed findings we performed 

several ancillary analyses in SPSS (v 11.5) after importing average FA values that differed 

significantly between groups from the voxelwise analysis. Specifically, patients without a 

substance use diagnosis (N=19) and patients with a Bipolar I diagnosis (N=25) were 

compared to all healthy volunteers, respectively. An additional analysis compared FA data 

between Caucasian patients (N=18) and Caucasian healthy volunteers (N=15); the only 

racial subgroup large enough for analysis. In these ancillary analyses FA was compared 

between groups using independent groups t-tests.

In addition, radial, and axial diffusivity values for clusters that differed significantly 

between groups from the voxelwise analysis were imported into SPSS (v11.5) for further 

analyses. Independent groups t-tests were used to compare patients and healthy volunteers in 

axial and radial diffusivity values for these clusters. Repeated measures analysis of variance 

was used to investigate whether FA differences between groups could be attributed to 

specific abnormalities in axial or radial diffusivity. In these analyses, which were conducted 

separately for each FA cluster that differed significantly between groups, diffusivity (axial 

and radial) served as a within subjects factor and group was the between subjects factor. We 

also investigated whether FA along the length of extracted white matter tracts differed 

between groups using independent groups t-tests. In analyses investigating axial and radial 

diffusivity and FA along white matter tracts alpha was set to .01 (two-tailed) to limit the 

possibility of a Type-I error.

Tractography Procedures

We used DTIStudio to perform tractography as described previously (Ashtari et al 2007), 

which is based on the fiber-assignment-by-continuous-tracking method. A more detailed 

description regarding this program is provided elsewhere (Jiang et al 2006). We used a 

threshold of 0.25 for FA values to perform tractography and discontinued tracking if the 

tract turning angle exceeded 0.70. We imported the clusters identified as significantly 

different between groups into the DTIStudio software program to extract and identify the 

white matter fibers that passed through them. Tractography was performed in template space 

on averaged DTI data from all individuals.
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DTIStudio requires both a scalar field representing FA and a vector field representing the 

principal eigenvector of the diffusion tensor and thus, the average FA and principal 

eigenvector for all subjects was identified. Using the registration procedure described here 

and in our prior work (Szeszko et al 2005a; Szeszko et al 2005b; Szeszko et al 2008) we 

obtained a deformation field for each subject that could be used for spatial normalization of 

the individual’s DTI images to Talairach space. This deformation field is a vector-valued 

function and maps the coordinates of any given grid point in standardized space to its 

corresponding point in the individual’s original DTI image space (Ardekani et al 2005). To 

obtain the group-averaged FA image in Talairach space, we applied the deformation field of 

each subject to the FA image and computed the average of all spatially normalized FA 

images to yield the average FA in Talairach space for the group. The principal eigenvector 

field for the group was obtained by first computing the Jacobian matrix (Kaplan, 2003) of 

the deformation field at each grid point on the standardized space for all individuals. The 

eigenvector in each subject's original DTI image space that would be mapped to the 

particular grid point in the standardized space was then reoriented by premultiplying it with 

the computed Jacobian (Alexander et al 2001). Reorientation of the principal eigenvector 

was completed for all individuals at all grid points in standardized space. Thus, at each grid 

point we obtained as many (reoriented) eigenvectors as there were individuals in the study. 

Lastly, for each grid point, a principal component analysis (Kent et al 1980) was performed 

on the reoriented eigenvectors. The principal eigenvector of this analysis was then taken to 

represent the principal direction of water diffusion for the entire group of subjects at the grid 

point in question.

Results

Patients did not differ significantly from healthy volunteers in distributions of age, sex, 

parental social class, handedness, race, or years of education (see Table 1). An illustration of 

the intersubject registration of the FA maps for patients and healthy volunteers is provided 

in Figure 1 and the average SPGR images are provided in Figure 2. Voxelwise analysis of 

the white matter revealed 3 regions of higher FA in the right and left frontal white matter 

and 1 region of lower FA in the left cerebellum in bipolar patients compared to healthy 

volunteers (see Table 2 and Figure 3). Circular regions-of-interest placed on the raw FA 

maps in the left (t = 2.43, df = 66, p = .02) and right (t = 1.94, df = 66, p = .06) frontal white 

matter (corresponding approximately to clusters 2 and 3, respectively) supported the 

voxelwise results. Independent groups t-tests revealed significant group differences in radial 

diffusivity in clusters 1–3 and axial diffusivity in clusters 1 and 4 (see Table 3 and Table 4). 

Effect sizes for group differences in axial and radial diffusivity ranged from 3–18%. 

Repeated measures analysis of variance for axial and radial diffusivity measures revealed no 

significant group-by-region interaction for any of the four FA clusters that differed 

significantly between groups.

Two-dimensional images illustrating fibers passing through clusters 1–4 superimposed onto 

the color-coded average FA map are provided in Figure 4. Three-dimensional images 

illustrating fibers passing through these clusters are superimposed onto the average FA map 

in Figure 5. White matter passing through cluster 1 where FA was lower in patients 

compared to healthy volunteers appears to correspond to fibers of the pontine crossing tract. 
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The white matter passing through clusters 2 and 3, where FA was higher in patients 

compared to healthy volunteers, appears to encompass fibers of the corticopontine tract 

(CPT), corticospinal tract (CST) and superior thalamic radiation fibers. Finally, white matter 

passing through cluster 4 appears to correspond to fibers of the superior longitudinal 

fasciculus (SLF). Visual inspection of fiber tracts indicates convergence of white matter 

from clusters 1–3 in the vicinity of the pontine crossing tract.

Average FA along the four sets of extracted white matter bundles was computed separately 

for patients and healthy volunteers. White matter FA along fibers of the pontine crossing 

tract (extracted from cluster 1) had significantly lower mean FA in patients compared to 

healthy volunteers along its length (t = −3.32, df = 66, p = .001). In addition, FA along fibers 

of the corticospinal and corticopontine tracts and thalamic radiation fibers extracted from 

cluster 2 was significantly higher in patients compared to healthy volunteers (t = 3.21, df = 

66, p = .002), but did not differ significantly between groups for fibers extracted from 

cluster 3 (t = 1.38, df = 66, p = .172). Lastly, white matter FA (extracted from cluster 4) 

along fibers of the superior longitudinal fasciculus did not differ significantly between 

groups (t = 2.01, df = 66, p = .048) following correction for multiple comparisons.

Ancillary analyses investigated the potential effects of substance use, having a diagnosis 

other than Bipolar I and race on the observed FA findings. Patients without a substance use 

diagnosis (N=19) had significantly higher FA in the two right (t = 5.06, df = 55, p < .001 

and t = 4.17, df = 55, p < .001) and one left (t = 3.02, df = 55, p = .004) frontal white matter 

regions as well as lower FA in the left cerebellum (t = −3.30, df = 55, p = .002) compared to 

healthy volunteers. Patients with a diagnosis of Bipolar I Disorder (N=25) had significantly 

higher FA in the two right (t = 5.27, df = 61, p < .001 and t = 4.42, df = 61, p < .001) and 

one left (t = 4.38, df = 61, p < .001) frontal white matter regions as well as lower FA in the 

left cerebellum (t = −4.04 df = 61, p < .001) compared to healthy volunteers. In addition, 

restricting analyses to the subgroup of Caucasian subjects (N= 33) revealed significantly 

higher FA in the two right (t = 4.00, df = 31, p < .001 and t = 5.79, df = 31, p < .001) and 

one left (t = 3.28, df = 31, p = .003) frontal white matter regions as well as lower FA in the 

left cerebellum (t = −2.51 df = 31, p = .018) in patients compared to healthy volunteers.

Discussion

These findings suggest that compared to healthy volunteers, adult patients with bipolar 

disorder have higher FA in the bilateral frontal white matter corresponding approximately to 

fibers of the corticopontine/corticospinal tract and superior longitudinal fasciculus as well as 

superior thalamic radiation fibers. In addition, FA was lower in the left cerebellar white 

matter, corresponding approximately to the pontine crossing tract, in patients compared to 

healthy volunteers. Although we found evidence for higher axial and lower radial diffusivity 

in regions of FA that differed significantly between groups, we did not find any evidence 

that group differences were associated with a specific deficit in either measure suggesting 

that both may contribute to white matter disturbances in bipolar disorder. The use of fiber 

tractography indicated that FA was significantly different in patients compared to healthy 

volunteers along the length of extracted white matter bundles comprising corticopontine and 

corticospinal tracts, thalamic radiation fibers as well as the pontine crossing tract. Moreover, 

Mahon et al. Page 8

Neuropsychopharmacology. Author manuscript; available in PMC 2010 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



convergence of fibers from the right and left frontal white matter along with those of the 

cerebellar region occurred in the pons suggesting that an integrated network involving the 

cerebellum, striatum and frontal cortex may play a role in the pathogenesis of bipolar 

disorder.

Few studies have assessed white matter integrity in bipolar disorder, especially using a 

voxelwise approach and thus, our findings are difficult to compare with prior work. Our 

findings converge with Haznedar et al (2005) who reported greater relative anisotropy in 40 

patients with bipolar spectrum illnesses compared to 36 sex- and age-matched healthy 

volunteers in the anterior frontal white matter using a region-of-interest approach. Yurgelun-

Todd et al (2007) reported that 11 bipolar patients had significantly higher FA in the midline 

of the genu compared with 10 healthy controls. In contrast, Adler and colleagues reported 

lower FA in the superior frontal white matter using a region-of-interest approach in 11 

medication-naïve adolescent (Adler et al, 2006) and 9 previously treated adult (Adler et al, 

2004) patients with bipolar disorder compared to healthy volunteers. Beyer et al (2005) did 

not find any group differences in FA between 14 patients with bipolar disorder compared to 

21 healthy individuals in the superior frontal, middle frontal and inferior frontal white matter 

using a region-of-interest approach. In a voxelwise analysis of DTI data, Bruno et al (2008) 

found a region of lower FA near the junction of the middle temporal and inferior gyri. 

Frazier et al (2007) reported that children with and at-risk for bipolar disorder have lower 

FA along the superior longitudinal fasciculus compared to healthy controls, and that children 

with the disorder showed reduced FA in the cingulate-paracingulate white matter compared 

to both the at-risk and healthy control groups. Different findings among studies may be 

related to sample size, differences in image acquisition and post-processing as well as the 

use of region-of-interest versus voxel-based analysis approaches and diagnostic 

heterogeneity.

Although findings of higher FA in the frontal white matter among patients compared to 

healthy volunteers in our study most likely reflects an alteration in white matter 

connectivity, it is difficult to interpret the physiological significance of these findings, 

particularly in bipolar disorder because the pathophysiology is not well understood. One 

possible interpretation of the finding of higher FA in the frontal white matter is that it 

reflects greater coherence and/or directionality of white matter bundles in patients compared 

to healthy volunteers. In this regard we investigated whether group differences could be 

attributed to axonal or myelin-related properties of the white matter. Although significant 

group differences in axial and radial diffusivity were evident for some clusters of FA that 

differed between groups, we did not find support for preferential involvement of either 

diffusivity measure as a contributing factor to these white matter abnormalities. Inspection 

of the range of FA values observed in this study suggests that they may be in the vicinity of 

crossing fibers and thus, the finding of higher FA in patients could lead to the opposite 

interpretation, i.e., a loss of crossing fibers in patients. Similarly, Houenou et al (2007) 

reported a greater number of reconstructed fibers between the left amygdalo-hippocampal 

and left subgenual cingulate in bipolar patients compared to healthy volunteers. As these 

authors point out this may be related to an increase in strength and/or volume of the pathway 

between regions or, alternatively, a loss of orthogonal or crossing fibers in patients 
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compared to healthy subjects, which may have permitted their fiber tracking algorithm to 

work easier in patients to yield a concomitant greater number of fibers between regions-of-

interest.

White matter bundles extracted from the clusters that differed significantly between groups 

corresponded approximately to the corticopontine tract, corticospinal tract, pontine crossing 

tract and superior thalamic radiation fibers, and thus, are broadly supportive of models of 

altered cerebellar-striatal-prefontal connectivity in bipolar disorder (Green et al 2007; 

Strakowski et al, 2005b). For example, mood dysregulation in bipolar disorder may result 

from deficits in frontal cortical modulation of cortical and subcortical structures involved in 

emotion generation (Green et al 2007; Strakowski et al, 2005b). Recent evidence indicating 

that bipolar mania is characterized by reduced frontal inhibition of amygdala activity 

supports this hypothesis (Foland et al, 2008). Other evidence from fMRI studies reported 

overactivation in fronto-subcortical regions in patients with bipolar disorder (Blumberg et 

al, 2003; Chang et al, 2004; Strakowski et al, 2005a; Chen et al, 2006; Marchand et al, 

2007; Wessa et al, 2007). Alterations in the white matter comprising cortical-subcortical 

pathways could thus conceivably be one mechanism of deficient modulation, although the 

relationship between FA and the BOLD response remains to be elucidated. Nevertheless, 

our data support the hypothesis for dysregulation in white matter comprising cortical and 

subcortical pathways, which may have relevance for the phenomenology of the disorder. For 

example, higher FA in the vicinity of the right SLF in patients with bipolar disorder may 

involve a large association pathway interconnecting right hemispheric brain regions (Makris 

et al, 2005) and the cognitive functions that they subserve, which may have relevance for the 

neuropsychology of bipolar disorder.

Higher FA in corticopontine and corticospinal tracts as well as superior thalamic radiation 

fibers in bipolar patients could have implications for serotonin synthesis, transport, and 

regulation throughout the brain (Alenina et al, 2006). Haddjeri et al (2000) describe a 

serotonergic feedback loop wherein stimulation of frontal cortical 5-HT1A receptors inhibit 

the firing of serotonergic neurons in the pontine raphe nuclei. Abnormalities in the raphe 

nuclei have been documented in bipolar disorder (Baumann et al, 2002), as have 

abnormalities in the serotonin-transporter (5-HTT) system (e.g. Sun et al, 2001; Cannon et 

al, 2006) in both medicated and unmedicated patients. In addition to possible serotonergic 

implications, abnormalities along the fiber tracts extracted in our analysis may also have 

implications for abnormalities in noradrenergic transport. Some investigators reported 

abnormalities involving the locus coeruleus in bipolar patients (e.g., Baumann et al 1999), a 

region of the pons that serves as a main source of noradrenergic transmission throughout the 

brain. Abnormalities in fiber pathways relevant to serotonergic and noradrenergic 

transmission, which may include the regions of higher FA observed in the present study, 

could have implications for the pathophysiology and pharmacotherapy of bipolar disorder.

The finding of abnormal FA in the left cerebellar white matter, which appears to be part of 

the pontine crossing tract, is consistent with the hypothesis that the cerebellum plays an 

important role in psychiatric illness and mood regulation (Schmahmann, 2000; Strakowski 

et al, 2000; Konarski et al, 2005). In particular, a disruption in cerebellar and 

corticocerebellar connectivity has been proposed as a major neurobiological mechanism of 
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emotional dysregulation (Schmahmann, 2000). Our findings converge with prior work 

implicating cerebellar abnormalities in first-episode bipolar patients compared to healthy 

volunteers (Adler et al 2007). In addition, lower volume in the cerebellar vermis has been 

reported in bipolar patients who have undergone multiple affective episodes compared to 

first episode patients and healthy volunteers (Mills et al, 2005), suggesting that the 

cerebellum undergoes structural changes concomitant with illness progression. Consistent 

with this finding, Monkul et al (2008) reported that young male bipolar patients demonstrate 

a significant negative correlation between cerebellar vermal volume and number of previous 

affective episodes. Moorhead et al (2007) conducted a longitudinal tensor-based 

morphometry study and reported progressive cerebellar tissue loss over a 4 year period in 

bipolar patients relative to controls. This tissue loss correlated inversely with the number of 

affective episodes that occurred during the 4 year study period. Interestingly, the region of 

significant loss in that study was a large cluster of gray and white matter in close proximity 

to the region of lower FA identified among patients in the present study.

There were several limitations to this study that should be acknowledged. The range of FA 

values reported here may suggest that clusters identified as abnormal may lie in regions of 

crossing fibers, and there is evidence that the single tensor model may not perform optimally 

in estimating FA in regions of fiber crossing and/or bending (Basser et al, 2000; Behrens et 

al, 2007; Kabasawa et al, 2008). In addition, it should be acknowledged that the anisotropic 

shape of the voxels and slice thickness may have biased FA and subsequent tractography 

analyses (e.g., Oouchi et al, 2007), especially for the cerebellar region. As with any 

voxelwise analysis there is the increased risk for a Type-I error, although we limited this 

possibility by restricting the analysis to the white matter and by using a conservative mask. 

Our patient sample was somewhat heterogeneous in terms of diagnosis, and included 

participants with a history of substance abuse, although ancillary analyses suggested neither 

of these were mediating factors. All patients were receiving psychotropic medications, 

however, and the potential effect of these medications on the brain white matter is largely 

unknown. In addition, we could not assess other possible factors that could influence white 

matter, including hydration and nutrition, and the potential clinical and cognitive correlates 

of these white matter abnormalities were largely unexplored. While misregistration of 

images may be an issue with all VBM-style analyses, including the present study, we 

provided empirical data that our algorithm, in particular, minimizes this issue. Moreover, 

group effects were observed using manual region-of-interest placements, which were 

comparable to voxelwise analyses, suggesting that any misregistration of images did not 

appreciably affect study findings. It is also conceivable that the use of multiple NEX in our 

DTI sequence may have led to underestimation of motion artifacts (Smith et al 2007) and the 

lack of cardiac gating may have led to additional artifacts (Skare and Andersson 2001). 

Lastly, future studies could incorporate newly developed approaches to examining white 

matter tracts including the use of tract-based spatial statistics (TBSS; Smith et al, 2006).

In sum, we report evidence for white matter abnormalities as assessed using diffusion tensor 

imaging in a large cohort of patients with bipolar disorder compared to healthy volunteers. 

The use of tractography indicates that thalamic radiation fibers, and fibers of the 

corticospinal, corticopontine and pontine crossing tracts may play a role in the pathogenesis 
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of the disorder. Future studies could examine the relationship between white matter 

abnormalities in bipolar disorder and functional brain activity, as well as the cognitive and 

clinical correlates of these abnormalities.

Acknowledgments

This work was supported in part by grants from NARSAD, the Stanley Foundation and the NSLIJ Research 
Institute General Clinical Research Center (M01 RR018535).

References

Adler CA, Adams J, DelBello MP, Holland SK, Schmithorst V, Levine A, et al. Evidence of white 
matter pathology in bipolar disorder adolescents experiencing their first episode of mania: a 
diffusion tensor imaging study. Am J Psychiatry. 2006; 163:322–324. [PubMed: 16449490] 

Adler CM, DelBello MP, Jarvis K, Levine A, Adams J, Strakowski SM. Voxel-based study of 
structural changes in first-episode patients with bipolar disorder. Biol Psychiatry. 2007; 61:776–
781. [PubMed: 17027928] 

Adler CA, Holland SK, Schmithorst V, Wilke M, Weiss KL, Pan H, et al. Abnormal frontal white 
matter tracts in bipolar disorder: a diffusion tensor imaging study. Bipolar Disord. 2004; 6:197–203. 
[PubMed: 15117398] 

Ahn KH, Lyoo IK, Lee HK, Song IC, Oh JS, Hwang J, et al. White matter hyperintensities in subjects 
with bipolar disorder. Psychiatry Clin Neurosci. 2004; 58:516–521. [PubMed: 15482583] 

Alenina N, Bashammakh S, Bader M. Specification and differentiation of serotonergic neurons. Stem 
Cell Rev. 2006; 2:5–10. [PubMed: 17142880] 

Alexander DC, Pierpaoli C, Basser PJ, Gee JC. Spatial transformations of diffusion tensor magnetic 
resonance images. IEEE Trans Med Imaging. 2001; 20:1131–1139. [PubMed: 11700739] 

Ardekani BA, Braun M, Hutton BF, Kanno I, Iida H. A fully automatic multimodality image 
registration algorithm. J Comput Assist Tomogr. 1995; 19:615–623. [PubMed: 7622696] 

Ardekani BA, Guckemus S, Bachman A, Hoptman MJ, Wojtaszek M, Nierenberg J. Quantitative 
comparison of algorithms for inter-subject registration of 3D volumetric brain MRI scans. J 
Neurosci Methods. 2005; 142:67–76. [PubMed: 15652618] 

Ashtari M, Cottone J, Ardekani BA, Cervellione K, Szeszko PR, Wu J, et al. Disruption of white 
matter integrity in the inferior longitudinal fasciculus in adolescents with schizophrenia as revealed 
by fiber tractography. Arch Gen Psychiatry. 2007; 64(11):1270–1280. [PubMed: 17984396] 

Aylward EH, Roberts-Twillie JV, Barta PE, Kumar AJ, Harris GJ, Geer M, et al. Basal ganglia 
volumes and white matter hyperintensities in patients with bipolar disorder. Am J Psychiatry. 
1994; 151:687–693. [PubMed: 8166310] 

Basser PJ. Inferring microstructural features and the physiological state of tissue from diffusion-
weighted images. NMR Biomed. 1995; 8:333–344. [PubMed: 8739270] 

Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A. In vivo fiber-tractography in human brain using 
diffusion tensor MRI (DT-MRI) data. Magn Reson Med. 2000; 44:625–632. [PubMed: 11025519] 

Baumann B, Bielau H, Krell D, Agelink MW, Diekmann S, Wurthmann C, et al. Circumscribed 
numerical deficit of dorsal raphe neurons in mood disorders. Psychol Med. 2002; 32:93–103. 
[PubMed: 11883733] 

Baumann B, Danos P, Krell D, Diekmann S, Wurthmann C, Bielau H, et al. Unipolar-bipolar 
dichotomy of mood disorders is supported by noradrenergic brainstem morphology. J Affective 
Disord. 1999; 54:217–224.

Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW. Probabilistic diffusion tractography 
with multiple fiber orientations: what can we gain? Neuroimage. 2007; 34:144–155. [PubMed: 
17070705] 

Benjamini Y, Hochberg Y. Controlling the false discovery rate—a practical and powerful approach to 
multiple testing. J R Stat Soc Ser B. 1995; 57:289–300.

Mahon et al. Page 12

Neuropsychopharmacology. Author manuscript; available in PMC 2010 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Beyer JL, Taylor WD, MacFall JR, Kuchibhatla M, Payne ME, Provenzale JM, et al. Cortical white 
matter microstructural abnormalities in bipolar disorder. Neuropsychopharmacology. 2005; 
30:2225–2229. [PubMed: 15988474] 

Blumberg HP, Martin A, Kaufman J, Leung H-C, Skudlarski P, Lacadie C, et al. Frontostriatal 
abnormalities in adolescents with bipolar disorder: Preliminary observations from functional MRI. 
Am J Psychiatry. 2003; 160:1345–1347. [PubMed: 12832254] 

Bruno SD, Barker GJ, Cercignani M, Symms M, Ron MA. A study of bipolar disorder using 
magnetization transfer imaging and voxel-based morphometry. Brain. 2004; 127:2433–2440. 
[PubMed: 15469950] 

Bruno SD, Cercignani M, Ron MA. White matter abnormalities in bipolar disorder: a voxel-based 
diffusion tensor imaging study. Bipolar Disord. 2008; 10:460–468. [PubMed: 18452442] 

Cannon D, Ichise M, Fromm S, Nugent A, Rollis D, Gandhi S, et al. Serotonin transporter binding in 
bipolar disorder assessed using [11C]DASB and positron emission tomography. Biol Psychiatry. 
2006; 60:207–217. [PubMed: 16875929] 

Chang K, Adleman NE, Dienes K, Simeonova DI, Menon V, Reiss A. Anomalous prefrontal-
subcortical activation in familial pediatric bipolar disorder: a functional magnetic resonance 
imaging investigation. Arch Gen Psychiatry. 2004; 61:781–792. [PubMed: 15289277] 

Chen C-H, Lennox B, Jacob R, Calder A, Lupson V, Bisbrown-Chippendale R, et al. Explicit and 
implicit facial affect recognition in manic and depressed states of bipolar disorder: A functional 
magnetic resonance imaging study. Biol Psychiatry. 2006; 59:31–39. [PubMed: 16112653] 

Davis KA, Kwon A, Cardenas VA, Deicken RF. Decreased cortical gray and cerebral white matter in 
male patients with familial bipolar I disorder. J Affect Disorders. 2004; 82:475–485. [PubMed: 
15555701] 

First, MB.; Spitzer, RL.; Gibbon, M.; Williams, JBW. Biometrics Research Department. New York: 
New York State Psychiatric Institute; 1994. Structured Clinical Interview for DSM IV TR Axis I 
Disorders- Patient Edition (SCID-I/P). 

First, MB.; Spitzer, RL.; Gibbon, M.; Williams, JBW. Biometrics Research Department. New York: 
New York State Psychiatric Institute; 2001. Structured Clinical Interview for DSM IV TR Axis I 
Disorders- Non-patient Edition (SCID-I/NP). 

Foland LC, Altshuler LL, Bookheimer SY, Eisenberger N, Townsend J, Thompson PM. Evidence for 
deficient modulation of amygdala response by prefrontal cortex in bipolar mania. Psychiatr Res-
Neuroim. 2008; 162:27–37.

Frazier JA, Breeze JL, Papadimitriou G, Kennedy DN, Hodge SM, Moore CM, et al. Howard JD, 
Rohan MP, Caviness VS, Makris N. White matter abnormalities in children with and at risk for 
bipolar disorder. Bipolar Disord. 2007; 9:799–809. [PubMed: 18076529] 

Green MJ, Cahill CM, Malhi GS. The cognitive and neurophysiological basis of emotion dysregulation 
in bipolar disorder. J Affect Disorders. 2007; 103:29–42. [PubMed: 17328959] 

Haddjeri N, Szabo ST, de Montigny C, Blier P. Increased tonic activation of rat forebrain 5-HT(1A) 
receptors by lithium addition to antidepressant treatments. Neuropsychopharmacology. 2000; 
22:346–356. [PubMed: 10700654] 

Hajek T, Carrey N, Alda M. Neuroanatomical abnormalities as risk factors for bipolar disorder. 
Bipolar Disord. 2005; 7:393–403. [PubMed: 16176432] 

Haznedar MM, Roversi F, Pallanti S, Baldini-Rossi N, Schnur DB, LiCalzi EM, et al. Fronto-thalamo-
striatal gray and white matter volumes and anisotropy of their connections in bipolar spectrum 
illnesses. Biol Psychiatry. 2005; 57:733–742. [PubMed: 15820230] 

Holmes CJ, Hoge R, Collins L, Woods R, Toga AW, Evans AC. Enhancement of MR images using 
registration for signal averaging. J Comput Assist Tomogr. 1998; 22:324–333. [PubMed: 
9530404] 

Houenou J, Wessa M, Douaud G, Leboyer M, Chanraud S, Perrin M, et al. Increased white matter 
connectivity in euthymic bipolar patients: diffusion tensor tractography between the subgenual 
cingulate and the amygdalo-hippocampal complex. Mol Psychiatry. 2007; 12:1001–1010. 
[PubMed: 17471288] 

Mahon et al. Page 13

Neuropsychopharmacology. Author manuscript; available in PMC 2010 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Jiang H, van Zijl PCM, Kim J, Pearlson GD, Mori S. DtiStudio: Resource program for diffusion tensor 
computation and fiber bundle tracking. Comput Methods Programs Biomed. 2006; 81:106–116. 
[PubMed: 16413083] 

Jones DK, Symms MR, Cercignani M, Howard RJ. The effect of filter size on VBM analyses of DT-
MRI data. Neuroimage. 2005; 26:546–554. [PubMed: 15907311] 

Kabasawa H, Masutani Y, Abe O, Aoki S, Ohtomo K. Quantitative diffusion tensor analysis using 
multiple tensor ellipsoids model and tensor field interpolation at fiber crossing. Acad Radiol. 
2008; 15:84–92. [PubMed: 18078911] 

Kaplan, W. Advanced Calculus. 5th ed.. Boston: Addison Wesley; 2003. 

Kent, JT.; Bibby, JM.; Marida, KV. Multivariate Analysis: Probability and Mathematical Statistics. 
San Diego: Academic Press; 1980. 

Kieseppa T, van Erp TG, Haukka J, Partonen D, Cannon TD, Poutanen VP, et al. Reduced left 
hemispheric white matter volume in twins with bipolar I disorder. Biol Psychiatry. 2003; 54:896–
905. [PubMed: 14573317] 

Konarski JZ, McIntyre RS, Grupp LA, Kennedy SH. Is the cerebellum relevant in the circuitry of 
neurosychiatric disorders? J Psychiatry Neurosci. 2005; 30:178–186. [PubMed: 15944742] 

Makris N, Kennedy DN, McInerney S, Sorenson AG, Wang R, Caviness VS Jr. et al. Segmentation of 
subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-
MRI study. Cereb Cortex. 2005; 15:854–869. [PubMed: 15590909] 

Marchand WR, Lee JN, Thatcher GW, Jensen C, Stewart D, Dilda V, et al. A functional MRI study of 
a paced motor activation task to evaluate frontal-subcortical circuit function in bipolar depression. 
Psychiatr Res Neuroim. 2007; 155:221–230.

Mills NP, DelBello MP, Adler CM, Strakowski SM. MRI analysis of cerebellar vermal abnormalities 
in bipolar disorder. Am J Psychiatry. 2005; 162:1530–1532. [PubMed: 16055777] 

Moorhead TW, McKirdy J, Sussmann JE, Hall J, Lawrie SM, Johnstone EC, et al. Progressive gray 
matter loss in patients with bipolar disorder. Biol Psychiatry. 2007; 62:894–900. [PubMed: 
17617385] 

Moore PB, Shepherd DJ, Eccleston D, MacMillan IC, Goswami U, McAllister VL, et al. Cerebral 
white matter lesions in bipolar affective disorder: relationship to outcome. Br J Psychiatry. 2001; 
178:172–176. [PubMed: 11157432] 

Monkul ES, Hatch JP, Sassi RB, Axelson D, Brambilla P, Nicoletti MA, et al. MRI study of the 
cerebellum in young bipolar patients. Prog Neuropsychopharm Biol Psychiatry. 2008; 32:613–
619.

Norris SD, Krishnan KRR, Ahearn E. Structural changes in the brain of patients with bipolar affective 
disorder by MRI: a review of the literature. Prog Neuropsychopharmacol Biol Psychiatry. 1997; 
21:1323–1337. [PubMed: 9460095] 

Oouchi H, Yamada K, Sakai K, Kizu O, Kubota T, Ito H, et al. Diffusion anisotropy measurement of 
brain white matter is affected by voxel size: underestimation occurs in areas of crossing fibers. 
AJNR. 2007; 28:1102–1106. [PubMed: 17569968] 

Rajkowska G, Halaris A, Selemon LD. Reductions in neuronal and glial density characterize the 
dorsolateral prefrontal cortex in bipolar disorder. Biol Psychiatry. 2001; 49:741–752. [PubMed: 
11331082] 

Schmahmann JD. The role of the cerebellum in affect and psychosis. J Neuroling. 2000; 13:189–214.

Skare S, Andersson JL. On the effects of gating in diffusion imaging of the brain using single shot EPI. 
Magn Reson Imaging. 2001; 19:1125–1128. [PubMed: 11711237] 

Smith SM. Fast robust automated brain extraction. Hum Brain Mapp. 2002; 17:143–155. [PubMed: 
12391568] 

Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay C, et al. Tract-based 
spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage. 2006; 31:1487–
1505. [PubMed: 16624579] 

Smith SM, Johansen-Berg H, Jenkinson M, Rueckert D, Nichols TE, Miller KL, et al. Acquisition and 
voxelwise analysis of multi-subject diffusion data with tract-based spatial statistics. Nat Protoc. 
2007; 2:499–503. [PubMed: 17406613] 

Mahon et al. Page 14

Neuropsychopharmacology. Author manuscript; available in PMC 2010 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Soares JC, Mann JJ. The functional neuroanatomy of affective disorders. J Psychiatr Res. 1997; 
31:393–432. [PubMed: 9352470] 

Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH. Dysmyelination revealed through 
MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage. 2002; 17:1429–
1436. [PubMed: 12414282] 

Song SK, Yoshino J, Le TQ, Lin SJ, Sun SW, Cross AH, et al. Demyelination increases radial 
diffusivity in corpus callosum of mouse brain. Neuroimage. 2005; 26:132–140. [PubMed: 
15862213] 

Stoll AL, Renshaw PF, Yurgelun-Todd DA, Cohen BM. Neuroimaging in bipolar disorder: what have 
we learned? Biol Psychiatry. 2000; 48:505–517. [PubMed: 11018223] 

Strakowski SM, Wilson DR, Tohen M, Woods BT, Douglass AW, Stoll AL. Structural brain 
abnormalities in first-episode mania. Biol Psychiatry. 1993; 33:602–609. [PubMed: 8329491] 

Strakowski SM, DelBello MP, Adler C, Cecil DM, Sax KW. Neuroimaging in bipolar disorder. 
Bipolar Disord. 2000; 2:148–164. [PubMed: 11256682] 

Strakowski SM, Adler CM, Holland SK, Mills NP, DelBello MP, Eliassen JC. Abnormal fMRI brain 
activation in euthymic bipolar patients during a counting Stroop interference task. Am J 
Psychiatry. 2005a; 162:1697–1705. [PubMed: 16135630] 

Strakowski SM, DelBello MP, Adler CM. The functional neuroanatomy of bipolar disorder: a review 
of neuroimaging findings. Mol Psychiatry. 2005b; 10:105–116. [PubMed: 15340357] 

Sun Y, Zhang L, Johnston NL, Torrey EF, Yolken RH. Serial analysis of gene expression in the frontal 
cortex of patients with bipolar disorder. Br J Psychiatry Suppl. 2001; 41:s137–s141. [PubMed: 
11450174] 

Szeszko PR, Ardekani BA, Ashtari M, Kumra M, Robinson DG, Sevy S, et al. White matter 
abnormalities in first-episode schizophrenia or schizoaffective disorder: a diffusion tensor imaging 
study. Am J Psychiatry. 2005a; 162:602–605. [PubMed: 15741480] 

Szeszko PR, Ardekani BA, Ashtarix M, Malhotra AK, Robinson DG, Bilder RM, et al. White matter 
abnormalities in obsessive-compulsive disorder: a diffusion tensor imaging study. Arch Gen 
Psychiatry. 2005b; 62:782–790. [PubMed: 15997020] 

Szeszko PR, Robinson DG, Ashtari M, Vogel J, Betensky J, Sevy S, et al. Clinical and 
Neuropsychological Correlates of White Matter Abnormalities in Recent Onset Schizophrenia. 
Neuropsychopharmacology. 2008; 33:976–984. [PubMed: 17581532] 

Taylor WD, Payne ME, Krishnan KRR, Wagner HR, Provenzale JM, Steffens DC, et al. Evidence of 
white matter tract disruption in MRI hyperintensities. Biol Psychiatry. 2001; 50:179–183. 
[PubMed: 11513816] 

Tkachev D, Mimmack L, Ryan MM, Wayland M, Freeman T, Jones PB, et al. Oligodendrocyte 
dysfunction in schizophrenia and bipolar disorder. Lancet. 2003; 362:798–805. [PubMed: 
13678875] 

Uranova NA, Vostrikov VM, Orolovskaya DD, Rachmanova VI. Oligodendroglial density in the 
prefrontal cortex in schizophrenia and mood disorders: a study from the Stanley Neuropathology 
Consortium. Schizophr Res. 2004; 67:269–275. [PubMed: 14984887] 

Wessa M, Houenou J, Paillére-Martinot ML, Berthoz S, Artiges E, Leboyer M, et al. Fronto-striatal 
overactivation in euthymic bipolar patients during an emotional go/nogo task. Am J Psychiatry. 
2007; 164:638–646. [PubMed: 17403978] 

Yurgelun-Todd DA, Silveri MM, Gruber SA, Rohan ML, Pimentel PJ. White matter abnormalities 
observed in bipolar disorder: a diffusion tensor imaging study. Bipolar Disord. 2007; 9:504–512. 
[PubMed: 17680921] 

Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random 
field model and the expectation maximization algorithm. IEEE Trans on Medical Imaging. 2001; 
20:45–57. [PubMed: 11293691] 

Mahon et al. Page 15

Neuropsychopharmacology. Author manuscript; available in PMC 2010 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Average FA Maps for patients (top row) and healthy controls (bottom row). Images from 

left to right correspond to −5 mm below the AC-PC plane and 5, 15, 25, 35 and 45 mm 

above the AC-PC.
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Figure 2. 
Average SPGR images corresponding to −5 mm below the AC-PC plane and 5, 15, 25, 35 

and 45 mm above the AC-PC plane.
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Figure 3. 
White matter regions where FA was significantly (p < 001; 50 voxels) different in patients 

compared to healthy volunteers. A description of these regions can be found in the text and 

Table 2.

Note: Images are in radiologic convention.
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Figure 4. 
2D images illustrating fibers passing through clusters 1–4, respectively, superimposed onto 

the color-coded average FA map of all subjects.

Note: Images are in radiologic convention. Fibers passing through clusters 1–4 are 

illustrated in red, orange, blue and yellow, respectively.
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Figure 5. 
3D images illustrating fibers passing through clusters 1–4, respectively, superimposed onto 

the average FA map of all subjects.

Note: Fibers passing through clusters 1–4 are illustrated in red, orange, blue and yellow, 

respectively.
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