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ABSTRACT

Thousands of disease-associated SNPs (daSNPs)
are located in intergenic regions (IGR), making it dif-
ficult to understand their association with disease
phenotypes. Recent analysis found that non-coding
daSNPs were frequently located in or approximate to
regulatory elements, inspiring us to try to explain the
disease phenotypes of IGR daSNPs through nearby
regulatory sequences. Hence, after locating the near-
est distal regulatory element (DRE) to a given IGR
daSNP, we applied a computational method named
INTREPID to predict the target genes regulated by the
DRE, and then investigated their functional relevance
to the IGR daSNP’s disease phenotypes. 36.8% of all
IGR daSNP-disease phenotype associations inves-
tigated were possibly explainable through the pre-
dicted target genes, which were enriched with, were
functionally relevant to, or consisted of the corre-
sponding disease genes. This proportion could be
further increased to 60.5% if the LD SNPs of daS-
NPs were also considered. Furthermore, the pre-
dicted SNP-target gene pairs were enriched with
known eQTL/mQTL SNP-gene relationships. Over-
all, it’s likely that IGR daSNPs may contribute to dis-
ease phenotypes by interfering with the regulatory
function of their nearby DREs and causing abnormal
expression of disease genes.

INTRODUCTION

Genome-wide Association Studies (GWAS) are designed to
simultaneously examine the association of millions of ge-
netic variants with target traits. To date, more than 2000
GWAS studies have contributed to the discovery of thou-
sands of disease-associated variants, including inserts, dele-
tions, copy number variations (CNV) and single nucleotide
polymorphisms (SNP) (1). Elucidation of the phenotypic-
association mechanisms for these variants is of great im-

portance for understanding the molecular details of dis-
ease onset and progression and developing novel therapeu-
tic approaches (1,2). So far, most work has been focused
on disease-associated SNPs (daSNPs) located in coding re-
gions, especially the non-synonymous SNPs which may al-
ter the biochemical function of coded proteins. Neverthe-
less, the majority of daSNPs determined so far are located
in non-coding regions (93% as reported by Maurano et al.
(3)), including introns, Long Terminal Repeats (LTRs) and
intergenic regions, presenting major challenges to the com-
munity on interpreting their involvement in diseases.

Increasing evidence has shown that non-coding daSNPs
are often located in or closely linked to regulatory regions
(3), suggesting that they may interfere with the normal func-
tioning of their host regulatory elements (HREs). Recent
methods for prioritizing daSNPs have incorporated the as-
sociation of non-coding daSNPs with regulatory sequences.
For example, Trynka et al. (4) have shown that H3KEme3
could help prioritize disease-causal SNPs. Claussnitzer et
al. (5) and Khurana et al. (6) both incorporated transcrip-
tion factor (TF) binding information to screen for disease-
driving non-coding SNPs. Huang et al. (7) used the ChIP-
Seq intensity variation of TFs and histone markers to iden-
tify functional non-coding SNPs that could disrupt en-
hancer activities. The mechanisms for daSNPs to affect the
function of their HREs could be through the interruption of
TF binding to regulatory sequences. For instance, Tokuhiro
et al. (8) found that a daSNP for rheumatic arthritis is
in the intron of SLC22A4, and may affect the binding of
RUNX1. Pomerantz et al. found that a daSNP associated
with prostate cancer and located in an enhancer of 8q24
affected the binding of Tcf-4 to this enhancer, which was
needed for the regulation of its target gene- -MYC (9,10).
Regulatory sequences may also be transcribed. Accumulat-
ing lines of evidence have suggested that enhancers could
encode RNA transcripts with regulatory roles (11). It is
therefore likely that daSNPs located in intergenic regulatory
sequences such as enhancers might result in the transcrip-
tion of abnormal RNA transcripts, which could then in-
fluence disease-related pathways and trigger disease pheno-
types. Indeed, recent studies have found that the intergenic
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trans-regulatory RNA transcripts that harbor a daSNP and
target the cell cycle progression and differentiation path-
ways could result in multiple common diseases (12,13). This
thus highlighted the functional significance of non-coding
daSNPs. Intergenic regulatory sequences may also be in-
volved in inter-chromosome interactions that may have im-
portant roles in maintaining chromosome conformations,
which could be disrupted by daSNPs, causing disease phe-
notypes. Given that the regulatory sequences mainly assist
to regulate their target genes’ expression through TF bind-
ing, the encoded RNA transcripts or other mechanisms, in
order to interpret the direct phenotypic association of non-
coding daSNPs, we have to identify the target genes that
are regulated by the host regulatory sequences potentially
affected by the daSNPs.

Regulatory elements within coding gene regions typi-
cally regulate the host coding genes, though exceptions ex-
ist. However, for those regulatory elements outside cod-
ing gene regions, i.e. distal regulatory elements (DREs),
determining the target genes they regulate is a challeng-
ing task. This is because DREs can regulate target genes
from quite a long distance (14) and their relationships with
the target genes may be beyond a one-to-one pattern (15).
Given that DREs may regulate target genes through a pro-
cess called DNA looping (16), Chromosome Conformation
Capture (3C) (17) and the further developed Hi-C (18) and
ChIA-PET (19) techniques aimed at capturing long-range
chromatin interactions are potentially useful for identify-
ing DREs-target gene relationships. However, DREs may
regulate target genes in a dynamic and tissue-specific way,
while current Hi-C or ChIA-PET data were applied to only
a few cell lines and may capture a subset of DRE-target gene
relationships. Computational predictions can help to fill in
the missing subsets. For example, based on the hypothesis
that there may be a consistency of DRE-target gene rela-
tionships in multiple species given their essentiality, Lu et al.
(20) combined the phylogenetic profile correlation with Hi-
C/ChIA-PET data to predict target genes for DREs. Cor-
radin et al. (21) also developed a method based on the as-
sociation of epigenetic markers on enhancers and the cell-
line specific expression of genes, while He et al. (22) em-
ployed a probabilistic approach named IM-PET based on
a number of genomics features. Ernst et al. (23) and Thur-
man et al. (24) also provided predictions of enhancer-target
gene pairs through multi-cell activity profile correlation and
DNaseI signal correlation, respectively. Each of the above-
mentioned methods has their own merit, and a combination
of them may provide more coverage for the DREs and their
target genes.

In this study, we focused on a challenging category of
non-coding daSNPs––the daSNPs located in intergenic re-
gions (IGR), by using the predicted target genes of their
HREs to explain their disease-associated mechanisms. Our
rationale was as followed: target genes regulated by the
HREs of IGR daSNPs can be predicted using computa-
tional methods; if the predicted genes are strongly func-
tionally associated with the corresponding diseases, it is
likely that the IGR daSNPs may contribute to disease phe-
notypes by causing abnormal expression of the predicted
target genes through the disruption of the HREs. In fact,
this scenario has been reported in a study on aniridia (25).

Here, we predicted the target genes regulated by the HRE
of IGR daSNPs using different source data including phylo-
genetic profile correlation and Hi-C/ChIA-PET data, and
also combined other published predictions (21–24). Our re-
sults revealed that disease phenotypes of a high percentage
of IGR daSNPs could be interpreted through the above ra-
tionale.

MATERIALS AND METHODS

Data downloading and processing

NHGRI catalog of GWAS SNPs (1), GWASdb (26), HuGE
Navigator (27) and Johnson and O’Donnell’s collection (28)
were downloaded and combined. Non-coding LD SNPs
(r2 > 0.8) to the daSNPs in IGR were identified using the
CEPH population-based HapMap data (ftp://ftp.ncbi.nlm.
nih.gov/hapmap/, release 27). Disease genes were retrieved
from the GAD (29) database (http://geneticassociationdb.
nih.gov), and were required to have the evidence of ‘exper-
iment’. ICD-10 (http://www.who.int/classifications/icd/en/)
annotations were used to make disease names from differ-
ent sources comparable. Dnase I hypersensitivity site (DHS)
annotations were downloaded from the UCSC genome
browser (30). Protein-coding gene annotations were ob-
tained from Lu et al. (20). The human eQTL/mQTL data
sets used in this study were downloaded from the GEO
database (http://www.ncbi.nlm.nih.gov/geo); these data sets
included all that became publicly available by the end of
2014 (the list of these data is shown in Supplementary Ta-
ble S1). The eQTL/mQTL data consisted of SNP IDs and
corresponding gene IDs or gene regions. The gene regions
in the eQTL/mQTL data were converted to gene IDs used
in this analysis if they overlapped with the regions of the
gene IDs for at least 1 bp. In March 2016, we searched in the
ENCODE (15) website (http://www.encodeproject.org) and
found 72 samples of human Small RNA-seq data (20–200
nt, ribominus) in bam format, corresponding to a total of 17
human tissues and 15 human cell lines. We downloaded and
processed these bam data. Read counts for HREs were cal-
culated by featureCounts (32). Only uniquely mapped reads
were used for the analysis. Super-enhancer and typical en-
hancer data for 36 tissues and 50 cell lines were downloaded
from the Supplementary Data of the paper by Hnisz et al.
(33).

The component methods in INTREPID

INtegrated TaRget gEne PredItion (INTREPID) com-
bined the predictions made by five component methods:
HIC, PPC, IM-PET, PreSTIGE and ENCODE. Below, we
briefly described the methodology of each of these methods.

The HIC method. HIC utilized Hi-C and ChIA-PET data
to predict the target genes for DREs. Hi-C data and ChIA-
PET data of human cell lines generated from 8 studies
(Supplementary Table S2) were downloaded from the GEO
database (http://www.ncbi.nlm.nih.gov/gds). For each Hi-
C/ChIA-PET data, we first identified the peak regions that
were enriched with Hi-C/ChIA-PET reads. To do it, we
recorded all chromosome positions mapped by Hi-C reads
and determined the read count for each of these positions.

ftp://ftp.ncbi.nlm.nih.gov/hapmap/
http://geneticassociationdb.nih.gov
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The read counts were converted into z-scores, and a peak re-
gion was defined as a region of continuous positions with z-
scores ≥ 1.645. Nearby peak regions between which the dis-
tance was smaller than 1 kb were further merged together.
Next, we identified the peak regions that were interacting
with each other. To do it, we first recorded all pairs of peak
regions in the same chromosome that were connected by
one or more Hi-C/ChIA-PET reads. Then, for every can-
didate pair we computed an Odds Ratio (OR) value = ob-
served number of reads (normalized)/expected number of
reads. The observed number of reads was computed as the
number of observed Hi-C/ ChIA-PET reads connecting the
two peak regions divided by the geometric average of the
length of the two peak regions. The expected number of
reads was defined as the average of the observed number
of reads for all candidate pairs of peak regions in which the
distance between the two peaks was greater than or equal
to that between the two tested peaks. A candidate pair of
peak regions was considered positive if its OR was larger
than 2. Finally, a positive pair of peak region was predicted
as a DRE-target gene pair if one peak region overlapped
with a DRE, and the other peak region overlapped with a
DHS within a protein-coding gene region (−1 kb - Tran-
scription End Site). The target genes predicted from each
of the 8 Hi-C/ChIA-PET data sets were then combined to
form the final predictions.

The PPC method. PPC predicted the target genes regu-
lated by a DRE based on the phylogenetic profile correla-
tion between a DRE and a protein-coding gene. The phy-
logenetic profiles for DREs and protein-coding genes were
constructed following the procedures described in Lu et al.
(20). For protein-coding genes, the phylogenetic profile was
constructed using the promoter sequence (−1 kb to Tran-
scription Start Site (TSS)). The Pearson correlation coef-
ficient (PCC) between the phylogenetic profiles of a DRE
and a protein-coding gene located in the same chromosome
was computed. Because the distance between a DRE and a
protein-coding gene would affect the calculated PCC, for
each chromosome we divided all pairs of DREs-protein-
coding genes into three groups: within 50 kb, 50–500 kb, or
above 500 kb and then calculated the average and standard
deviation of the PCCs for each group. Then, for each DRE
all protein-coding genes within the same chromosome were
ranked by the z-score of their PCCs with the DRE in each
distance group, and the top five ranked genes (z-score ≥ 2)
were predicted as the target gene of the DRE.

PreSTIGE, IM-PET and ENCODE. PreSTIGE (21), IM-
PET (22) and ENCODE (23,24) all used epigenetic data
to predict the target genes for DREs. We collected the pre-
dicted DRE-target gene pairs from the respective publica-
tions of these three methods. Below, we briefly described
their methodologies. PreSTIGE (21) predicted the target
genes for enhancers by pairing cell-type specific H3K4me1
marker in enhancers and the cell-type specific expressed
genes in multiple cell types, and incorporating CTCF bind-
ing sites as boundaries. IM-PET (22) integrated a num-
ber of genomic features including promoter-enhancer activ-
ity correlation and transcription factor-promoter correla-
tion to build a probabilistic model for predicting regulatory

enhancer-promoter pairs. For ENCODE, we combined the
predictions made by two ENCODE publications. One EN-
CODE paper utilized the correlation between enhancer
mark intensities and gene expression profiles to train logis-
tic regression classifier for identifying potential enhancer-
target gene relationships (23). The other ENCODE paper
was based on the correlation between cross cell-type DHS
signals of enhancers and nearby promoters (24).

The combination of the predicted target genes by the five
methods. Given a DRE, we applied HIC and PPC sepa-
rately to predict the target genes. For each of PreSTIGE,
IM-PET and ENCODE, based on the predicted regula-
tory relationships downloaded from their respective publi-
cations we identified the regulatory sequence that overlaps
with the DRE (at least 1 bp overlap), and then selected
the corresponding target genes as the predictions for the
DRE by that method. The gene IDs used by that method
were converted to the IDs we used in this analysis based on
the annotations of RefSeq (http://www.ncbi.nlm.nih.gov/
refseq). In case a method predicted enhancer-promoter in-
teractions instead of regulatory sequence-target gene rela-
tionships, we converted the promoters into gene IDs by re-
quiring the predicted promoter to overlap with the anno-
tated promoter of a gene ID (at least 1 bp overlap). Finally,
we combined the predicted target genes made by each of
the five methods as the final prediction for that DRE, i.e.
the union of the predicted target genes, and named this ap-
proach as INTREPID.

Evaluation of the functional relevance between the predicted
target genes of an IGR daSNP and the corresponding disease
genes

Given an IGR daSNP-disease associations, we collected
two groups of genes: the target genes predicted by IN-
TREPID, and the disease genes annotated by the GAD
(29) database. Then, we applied three methods to evaluate
the functional relevance between the two groups of genes,
which are the occurrence analysis, the over-representation
analysis (ORA) and the relevance analysis. The occurrence
analysis simply investigated whether there were any overlaps
between the two groups. The ORA analysis was done us-
ing the fisher.test function in R, and the background genes
were defined as the genes located in the same chromosome
as that of IGR daSNP. The significance level was set at 0.05.
When multiple tests were performed, the function p.adjust
(method = ‘fdr’) in R was used to correct the P-values and
the significance level was set at 0.05.

The relevance analysis was based on a functional as-
sociation network––the STRING network (34). The func-
tional relevance between a pair of genes was defined as
their shortest path length in the STRING network using
the Dijkstra algorithm (35). For each predicted target gene,
we computed the minimum shortest path length between it
and all disease genes (termed SPgene-disease), and then trans-
formed it into a relevance score between 0 and 1: Relevance
Scoregene-disease = 1/(1+SPgene-disease). The mean relevance
score of all predicted target genes was then computed to
indicate the functional relevance between the predicted tar-
get genes and the disease genes. To assess its significance,

http://www.ncbi.nlm.nih.gov/refseq
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we randomly selected the same number of genes as that of
the predicted target genes, and computed a mean relevance
score following the above-described procedure. This process
was repeated 1000 times, and the P-value of the observed
mean relevance score was derived thereafter. The signifi-
cance level was set at 0.05. When multiple tests were per-
formed, the function p.adjust (method = ‘fdr’) in R was
used for correcting the P-values, and the significance level
was set at 0.05.

Disease-disease similarity

The similarity between two diseases was defined as the Jac-
card similarity calculated as the ratio of the number of over-
lapped disease genes to the number of the union of disease
genes.

RESULTS

A combined approach to predict the target genes for the
HREs of intergenic daSNPs

A total number of 5639 daSNPs were collected from GWAS
catalog (1), GWASdb (26), HuGE Navigator (27) and John-
son and O’Donnell’s collection (28). Among these daSNPs,
1834 were located in IGR (Figure 1A), and were associ-
ated with 128 diseases (Supplementary Table S3). A total
of 32% of the IGR daSNPs were associated with two or
more diseases. In total, there were 2774 IGR daSNP-disease
associations. We also collected all linkage dis-equilibrium
(LD) SNPs (r2 > 0.8 in the CEU population according
to HapMap (36)) to IGR daSNPs, and found that 1472
(80.3%) IGR daSNPs had LD SNPs in the intergenic re-
gions, with a median of 10.5 LD SNPs each. To determine
the relationships between IGR daSNPs and regulatory se-
quences, we downloaded annotation of Dnase I hypersen-
sitivity sites (DHSs) from UCSC Genome Browser, and de-
fined the IGR DHSs as putative DREs. A total of 85%
(1562) of IGR daSNPs were within ±1 kb distance to the
boundaries of one or more DREs, and this proportion in-
creased to 95.6% if the LD SNPs of IGR daSNPs were also
considered (Figure 1B), i.e. if any one of the LD SNPs were
within ±1 kb distance to the boundaries of one or more
DREs. Given such a strong association, it was reasonable to
hypothesize that IGR daSNPs may interfere with the nor-
mal function of their nearby regulatory sequences, a conse-
quence of which may cause abnormal expression of poten-
tial target genes, leading to disease phenotypes. For conve-
nience, we defined the nearest DRE (within ±1 kb) to an
IGR daSNP as its host regulatory element (HRE). Hnisz
et al. (33) defined super-enhancer and typical enhancer re-
gions in 86 types of human tissues and cell lines. This can be
used as additional information to see whether the HREs of
IGR daSNPs could be functional. We downloaded these de-
fined enhancer regions. Among the 1562 IGR daSNPs that
had HREs (not counting in LD information), we found that
the HREs of 1011 of them were overlapping with the en-
hancer regions defined by Hnisz et al. (33). The high level
of overlaps indicated that the IGR daSNPs used in our later
analysis were functional with a high possibility, and that
the majority of their HREs might be enhancers. The above-
proposed disease-association mechanism of IGR daSNP

would be strongly supported if the target genes regulated
by the HRE were known disease genes or were functionally
associated with known disease genes. Thus, a key step to-
ward understanding the disease-association mechanism of
an IGR daSNP was then to determine the target genes reg-
ulated by its HRE.

Lu et al. previously developed a method that combined
phylogenetic profile correlation and Hi-C data to predict the
target genes of DREs (20). Recently, there were two stud-
ies that used other genome features for similar purposes
(21,22). In addition, the ENCODE project has also pro-
vided lists of DRE-target gene relationships (23,24). Thus,
we adopted an integrated approach named INtegrated TaR-
get gEne PredItion (INTREPID) for DREs that combined
the predictions made from Hi-C/ChIA-PET data (named
HIC), Phylogenetic Profile Correlation (named PPC), IM-
PET (22), PreSTIGE (21) and ENCODE (23,24) (see Ma-
terials and Methods). Note that the predictions were made
only for genes located in the same chromosome with the
DREs. Here, for 1562 IGR daSNPs whose HREs could
be identified, we applied INTREPID to predict the tar-
get genes for their corresponding HRE. The predicted tar-
get genes were considered as the target genes of the IGR
daSNP, i.e. they were likely to be affected by the IGR
daSNP. A median number of nine target genes were pre-
dicted for each IGR daSNP.

Recently, a number of studies have been conducted to
identify expression quantitative trait loci (eQTL) or methy-
lation quantitative trait loci (mQTL) at genome-scale (37).
We downloaded eight sets of eQTL/mQTL data from the
GEO database (http://www.ncbi.nlm.nih.gov/geo), which
included the eQTL/mQTL data from blood, liver, intes-
tine and brain tissues of Caucasian or European popula-
tions (Supplementary Table S1). In addition, we collected
the eQTL data from GTEx (38) produced by the BROAD
Institute. From these data, we identified a total number of
950 SNP-gene pairs where the SNP was an IGR daSNP
serving as either an eQTL or an mQTL to the paired gene.
These SNP-gene pairs corresponded to 404 IGR daSNPs
and 166 genes. Among these pairs, 349 were between an
IGR daSNP and its predicted target gene. In contrast, an
average of 9 would be obtained if we randomly selected the
same number of genes as the predicted target genes for each
IGR daSNP (P-value < 0.001, experiments were repeated
1000 times). This result strongly supported that the expres-
sion of the predicted target genes were likely affected by
IGR daSNPs, partly validating INTREPID’s predictions.

The predicted target genes of IGR daSNPs can help to ex-
plain their disease phenotypes

We obtained disease gene annotations from GAD (29)
(http://geneticassociationdb.nih.gov). For each IGR
daSNP-disease association, we prepared two groups of
genes: the predicted target genes, and the disease genes
annotated with the corresponding disease phenotype.
Then, we investigated whether the predicted target genes
(i) consisted of one or more disease genes (the occurrence
analysis), (ii) were over-represented with disease genes
(the ORA analysis), or (iii) were functionally relevant to
disease genes inferred using a network-based approach (the

http://www.ncbi.nlm.nih.gov/geo
http://geneticassociationdb.nih.gov
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Figure 1. (A) The proportions of daSNPs with respect to their relative locations to protein-coding genes in the genome. IGR refers to intergenic region.
(B) The numbers of IGR daSNPs located at different distance cutoff to their nearest DHSs. (C) The workflow for explaining the disease phenotype of IGR
daSNPs.
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relevance analysis) (see Materials and Methods and Figure
1C).

Out of 2774 IGR daSNP-disease associations being in-
vestigated, the predicted target genes produced positive re-
sults for 753 (27.1%), 524 (18.9%), 823 (29.7%) by the oc-
currence, the ORA (P-value ≤ 0.05, Fisher’s exact test) and
the relevance analysis (P-value ≤ 0.05 by permutation), re-
spectively (Figure 2A, Supplementary Table S3). Nearly all
positive results found by the ORA analysis were also found
by the relevance analysis. In contrast, with randomly se-
lected genes as the target genes we observed an average of
352 and 24 IGR daSNP-disease associations using the oc-
currence and the ORA analysis, respectively, both signifi-
cantly smaller than the observed numbers (P-value < 0.001,
experiments repeated for 1000 times, Figure 2A). The rele-
vance analysis already integrated the comparison with ran-
domly selected genes (see Materials and Methods). The cor-
responding numbers of IGR daSNPs with positive results
were 672 (36.6%), 342 (17.7%) and 549 (29.9%), respectively
(Figure 2B). Since some daSNPs may be tag SNPs whose
closely linked SNPs might be the true daSNPs (21), we also
investigated the predicted target genes of the LD SNPs, and
considered an IGR daSNP-disease association positive if
the predicted target genes of either the IGR daSNP or any
of its LD SNPs generated a positive result. The numbers
of IGR daSNP-disease associations with positive results in-
creased to 1168 (42.1%), 1004 (36.2%) and 1504 (54.2%) for
the occurrence, the ORA, and the relevance analysis, respec-
tively (Figure 2A, Supplementary Table S4), and the cor-
responding numbers of IGR daSNPs with positive results
increased to 995 (54.3%), 657 (35.8%) and 997 (54.4%), re-
spectively (Figure 2B).

Positive results obtained using different analyses rep-
resented different confidence on explaining the disease-
association mechanism for IGR daSNPs. Accordingly, we
classified an IGR daSNP-disease association as ‘highly
likely’, ‘mechanistically likely’ and ‘potentially likely’ ex-
plainable by the predicted target genes if the ORA analy-
sis, the relevance but not the ORA analysis, or only the oc-
currence analysis produced a positive result. The numbers
of IGR daSNP-disease associations falling into these three
categories are 524, 302 and 194, respectively (Figure 2C),
altogether covering 36.8% of all IGR daSNP-disease asso-
ciations. When LD SNPs included, the above three num-
bers became 1004, 502 and 173, respectively (Figure 2D),
together covering 60.5% of all IGR daSNP-disease associ-
ations. However, because LD SNPs provided indirect ev-
idence, those IGR daSNP-disease associations supported
only by LD SNPs were considered with less confidence.

To conclude, the above results strongly supported our
proposed disease-association mechanism for IGR daSNPs:
a daSNP affected the function of its HRE, causing abnor-
mal expression of target genes that were relevant to the dis-
ease, and consequently leading to the disease phenotype.

Case reports for the ‘explainable’ IGR daSNP-disease asso-
ciations

Below, we presented a couple of examples for each of
the ‘highly likely’, ‘mechanistically likely’ and ‘potentially

likely’ explainable categories of IGR daSNP-disease asso-
ciations with and without the inclusion of LD SNPs.

The association of SNP rs2857161 (Chromosome 6) with
multiple sclerosis (39) was considered ‘highly likely’ ex-
plainable by the nine predicted target genes, among which
five (TAP2, HLA-DOB, MICA, MICB and TAP1) were
known associated to this disease (29) (ORA enrichment P-
value = 9.3e-4). Moreover, this SNP was an eQTL of both
TAP2 and HLA-DOB (38) (Figure 3A). In another exam-
ple, rs4779584 (chromosome 15) was associated with col-
orectal cancer based on a GWAS study (40). This associ-
ation was ‘highly likely’ explainable by the eight predicted
target genes, in which CYP19A1 and GREM1 were known
disease genes (ORA enrichment P-value = 0.026). In addi-
tion, rs4779584 was an eQTL of the gene GREM1 (41) (Fig-
ure 3B). A further example was rs10757278 in Chromosome
9. Its associations with myocardial infarction and ischaemic
heart disease (29) were ‘highly likely’ explainable by its 10
predicted target genes, among which MTAP, CDKN2A and
CDKN2B were all known to associate with both diseases
(Figure 3C). The ORA enrichment P-values were 3.61e-5
and 6.92e-5 for myocardial infarction and ischaemic heart
disease, respectively. Experimental evidence has shown that
the enhancers where rs10757278 is located interacted with
the MTAP gene and the CDKN2A/B locus (42), supporting
our prediction for the target genes affected by rs10757278.

SNP rs16940202 (Chromosome 16) was associated with
colitis disease (43). None of the six predicted target genes
was a known colitis gene. But they were significantly func-
tionally associated with known colitis genes in the STRING
network (P-value = 0.05), making this SNP-disease as-
sociation ‘mechanistically likely’ explainable. In addition,
this SNP was an eQTL of one of the predicted target
genes––IRF8 (38) (Figure 3D). Asthma associated SNP
rs12950743 (44) (Chromosome 17) could also be ‘mechanis-
tically likely’ explainable by the predicted target genes. This
SNP was predicted to affect seven genes among which only
PRKCA was a known gene for asthma (29), which failed to
yield a positive result by the ORA analysis. Yet, the rele-
vance analysis produced a positive result (P-value = 0.03)
due to the functional association of the other predicted tar-
get genes with known asthma genes (Figure 3E).

An example for ‘potentially likely’ explainable IGR
daSNP was rs6983267 (Chromosome 8). This SNP was as-
sociated with nasopharyngeal cancer, UADT cancer, col-
orectal cancer and prostate cancer (26). Of the 10 predicted
target genes for this SNP, NSMCE2 was associated with
prostate cancer (29) and MYC was associated with both col-
orectal cancer and prostate cancer (29), making this SNP
‘potentially likely’ explainable for the two phenotypes. This
SNP was located in an enhancer that was shown by in vitro
experiment to physically interact with the promoter region
of MYC (9,10), supporting our prediction that MYC was a
target gene of rs6983267. Moreover, experiments with trans-
genic mice showed that the activity of the enhancer and the
expression of MYC were both significantly increased with
the presence of the risk allele of rs6983267 (45), suggest-
ing that this SNP was functional. Therefore, it is likely that
this SNP affects the function of its host enhancer, causing
enhanced expression of MYC in prostate and then increas-
ing the chance of having prostate cancer. Another exam-
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Figure 2. (A) The numbers of IGR daSNP-disease associations found positive by different methods (the occurrence, the ORA and the relevance analysis)
without or with considering LD SNPs. Random refers to the results using the same number of randomly selected genes as the predicted target genes (LD
SNPs were not considered for Random). (B) Similar to (A) except that the numbers of positive IGR daSNPs were reported. (C and D) show the proportions
of different categories of explainable IGR daSNP-disease associations without or with considering LD SNPs, respectively.

ple for ‘potentially likely’ explainable SNPs was the SNP
rs11257655 in Chromosome 10. This SNP was associated
with type II diabetes (46), and two of its 17 predicted target
genes, CDC123 and CAMK1D, were associtaed with type
II diabetes (29). In addition, rs11257655 was an eQTL site
of the gene CAMK1D (38).

The association of SNP rs2292627 (Chromosome 10)
with macular degeneration (MD) (26) could be ex-
plained by the predicted target genes of one of its LD
SNPs––rs11200583, among the seven predicted target genes
of which PLEKHA1 and HTRA1 were known MD genes
(P-value = 4.3e-3). This LD SNP was also an eQTL of
PLEKHA1 (38) (Figure 3F). SNP rs6537296 (Chromo-
some 4) was associated with ‘pulmonary heart disease and
diseases of pulmonary circulation’ (47). The ORA anal-
ysis found the predicted target genes of two LD SNPs
(rs7697189 and rs1489762) of this daSNP were enriched
with the corresponding disease genes, while the relevance
analysis identified another four LD SNPs (rs6842889,
rs11100860, rs995758 and rs1489759) with positive results.
Thus, the disease phenotype of rs6537296 could be indi-
rectly explained by the predicted target genes of its LD
SNPs.

Prediction of candidate disease-contributing IGR daSNPs

In the above analysis, we have predicted a number of
‘explainable’ IGR daSNPs whose predicted target genes
are associated with the corresponding disease phenotypes.
However, these predictions only indicated associations. We
hope to identify among these IGR daSNPs the disease-
contributing ones. However, this is not an easy task. First of
all, we need to know which tissues or cell types develop the
disease. Secondly, we need to determine whether the HRE
of the IGR daSNP is functional in the tissues or cell types.
Thirdly, we need to verify that the predicted target genes
are regulated by the HRE in that tissue or cell type, and
demonstrate that the expression of one or more of them,
particularly those related to the disease, could be altered by
the daSNP. Finally, we need to prove that the altered ex-
pression of the target genes could indeed contribute to the
disease. Unfortunately, there are no experimental data read-
ily available for us to perform these analyses. Therefore, here
we employed a simple strategy to approximate the process
of finding the disease-contributing IGR daSNPs.

Recent studies have shown that intergenic regulatory se-
quences could encode small RNA transcripts of regulatory
roles (14). Therefore, a regulatory sequence with transcribed
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Figure 3. Examples of explainable IGR daSNP-disease pairs. (A–C) were three ‘highly likely’ explainable IGR daSNP-disease associations. (D and E) were
two ‘mechanistically likely’ explainable IGR daSNP-disease associations. (F) was an IGR daSNP-disease association explained through the LD SNPs. In
(A–F), predicted target genes were presented schematically according to their relative distances to the corresponding daSNP. Blue color referred to known
disease genes, and orange color referred to eQTL/mQTL-validated genes. Grey color represented other target genes. The arrows upon a rectangle illustrated
the transcription directions of the gene. In (D and E), rectangles in different concentration of purple represented genes with different ranks of functional
relevance scores with the corresponding disease.
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small RNA in a cell line or tissue could be considered func-
tional in that cell line or tissue. Here, we downloaded the
small RNA-seq data from the ENCODE project, which
were generated from a total number of 17 human tissues
and 15 cell lines (14). By mapping the small RNA-seq reads
to the HREs of IGR daSNPs, we then identified the func-
tional HREs in specific tissues or cell lines (at least two reads
were mapped to the HRE in at least one sample of the tis-
sue or cell line). Besides the small RNA information, we also
used the previously defined enhancer regions in multiple cell
lines and tissues (13) to determine the functional HREs in
specific tissues or cell lines by checking whether they over-
lapped with the defined enhancer regions in that tissue or
cell line. If the HRE of an IGR daSNP were functional in a
tissue or a cell line where the disease develops, then the IGR
daSNP would more likely be disease contributing. However,
there were only a limited number of tissues or cell lines with
small RNA or enhancer information. Therefore, we selected
only three types of diseases––immunological diseases, can-
cers and neurological diseases whose corresponding tissues
or cell lines had available small RNA-seq data or enhancer
annotations (refer to Supplementary Table S5 for our defini-
tion of the tissues or cell lines corresponding to these three
types of diseases). Since no large scale experimental data
were available to verify the predicted target genes for the
HREs of IGR daSNPs, here we assumed our predictions
were reliable and also assumed the eQTL/mQTL data could
support the regulatory relationship between an IGR daSNP
and its target genes in the disease tissues or cell lines. Fi-
nally, we predicted an ‘explainable’ IGR daSNP as a candi-
date disease-contributing daSNP if it satisfied the following
criteria: (i) its association with the disease was either highly
likely explainable or mechanistically likely explainable; (ii)
its HRE was functional in one or more disease tissues or
cell lines; (iii) its regulatory relationship with at least one
target gene was supported by eQTL/mQTL data. Based on
these criteria, we identified 64, 5 and 2 candidate disease-
contributing IGR daSNPs for immunological disease, can-
cers and neurological diseases, respectively (for details, re-
fer to Supplementary Table S5). Since there were not much
eQTL/mQTL data available, many of the ‘explainable’ IGR
daSNPs were excluded from the candidate lists. Without re-
quiring the support of eQTL/mQTL data, we obtained 139,
31 and 8 potentially disease-contributing IGR daSNPs for
immunological disease, cancers and neurological diseases,
respectively (Supplementary Table S5).

Below, we give an example of candidate disease-
contributing IGR daSNP for each of the three types of
diseases, respectively. SNP rs2284178 in Chromosome 6
was associated with three autoimmune-related diseases (di-
abetes, Bechet’s disease and type I diabetes, respectively)
(6) and all of them could be explained by the ORA anal-
ysis. The HRE of this SNP could transcribe small RNAs in
five cell lines/tissues (15), in which two were lymphocytes–
GM12878 (normal) and Karpas-422 (tumor). The HRE of
this SNP also overlapped with the enhancer regions that
were only active in immune cells (13). rs2284178 was also
an eQTL to two predicted target genes––HLA-B and HLA-
C (16). Therefore, it is very likely that rs2284178 may be
contributing to immunological diseases by interrupting the
corresponding enhancer function and resulting in the ab-

normal expression of HLA-B and HLA-C. rs4779584 in
Chromosome 15 was associated with colorectal cancer (6),
and was predicted to be disease-contributing. Its HRE over-
lapped with the defined enhancer regions in three cancer cell
lines (VACO 400 (a colorectal cancer cell line), VACO 9M
(a colon cancer cell line) and u87 (a primary glioblastoma
cell line)). In addition, this SNP was an eQTL of one of its
predicted target genes–GREM1 (16). As a result, rs4779584
might contribute to cancers by interrupting the expression
of its target genes. rs3101942 in Chromosome 6 was asso-
ciated with narcolepsy (6), and was considered a disease-
contributing SNP for neurological diseases. Its HRE could
transcribe small RNAs in three types of nervous system re-
lated tissues/cell lines––bipolar spindle neuron, frontal cor-
tex and SK-N-DZ. This SNP was an eQTL of the target
gene PSMB9 (38). Thus, it is likely that this SNP may be
contributing to neurological diseases.

As we mentioned earlier, the identified candidate disease-
contributing variants were obtained in a simplified and ap-
proximate way, and may not represent the real cases. Never-
theless, the variants and the information obtained through
the process, particularly the predicted target genes, made it
possible for experimentalists to focus on only a small num-
ber of genes to start with, and would be worthy of further
exploitation.

The ‘one-SNP-multiple-diseases’ phenomena

When attempting to explain the disease phenotype of IGR
daSNPs earlier, we analyzed the functional relevance be-
tween the predicted target genes of an IGR daSNP and the
genes known to be associated with the corresponding dis-
ease phenotype. As the methods for functional relevance
analyses were general, here we also applied both the ORA
and the relevance analyses to inspect the functional rele-
vance between the predicted target genes of an IGR daSNP
and the disease genes from each of the 200 diseases in the
GAD database. The ORA and the relevance analyses identi-
fied 270 and 548 IGR daSNPs whose predicted target genes
were functionally relevant to one or more diseases (multiple
test correction, FDR ≤ 0.05, Supplementary Table S6 and
S7), respectively. In comparison, with randomly selected
genes as the target genes the ORA analysis only found an
average of 3.6 IGR daSNPs with one or more relevance dis-
eases, which were significantly lower than the number ob-
tained by using the predicted target genes (experiments were
repeated 1000 times, P-value < 0.001). Note that the rel-
evance analysis already incorporated the comparison with
randomly selected genes. Among the IGR daSNPs with rel-
evant diseases found by the ORA or the relevance analysis,
158 and 295 were relevant to their annotated diseases, re-
spectively. Both numbers were less than what we obtained
in the previous section because of multiple test correction.

Most IGR daSNPs with positive results were found rele-
vant to multiple diseases, with a median number of 13 and
24.5 diseases each by the ORA and the relevance analy-
ses, respectively (Figure 4A). A major reason for the ‘one-
SNP-multiple-diseases’ phenomena was the frequent occur-
rence of ‘one-gene-multiple-diseases’ association. For ex-
ample, in GAD more than 50% of disease genes were an-
notated to more than one disease, with 18% annotated to
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Figure 4. (A) The distributions of the numbers of IGR daSNPs in terms of the number of relevant diseases (e.g. > 10 relevant diseases) determined by
the ORA or the relevance approaches. (B) The distribution of the numbers of disease genes in terms of the number of associated diseases. (C) Boxplots for
the relative similarity among the relevant diseases found by the ORA or the relevance analysis for each IGR daSNP. The relative similarity was defined
as the average Jaccard similarity among the relevant diseases divided by the average Jaccard similarity between all pairs of diseases. (D) Boxplots for the
relative similarity between the relevant disease and the annotated diseases of an IGR daSNPs. Here, only those IGR daSNPs whose relevant diseases did
not include the annotated diseases were considered, and the relative similarity was defined as the average Jaccard similarity between the relevant diseases
and the annotated disease divided by the average Jaccard similarity between the annotated disease and all other diseases.

five or more diseases (Figure 4B). For this reason, the dis-
eases found relevant to a given IGR daSNP by the ORA or
the relevance analysis were highly related with each other:
the average Jaccard similarity (computed using annotated
disease genes) between the relevant diseases found by ei-
ther the ORA or the relevance analysis were significantly
higher than background Jaccard similarity (see Materials
and Methods) (Figure 4C). There were 112 and 253 IGR
daSNPs whose relevant diseases did not include the anno-
tated diseases based on the ORA and the relevance analysis,
respectively. For these IGR daSNPs, we found that for both
ORA and the relevance analysis the average Jaccard simi-
larity between the relevant diseases and the annotated dis-
eases were significantly higher than background similarity
(Figure 4D). The above evidence showed that the multiple
relevant diseases to IGR daSNPs found by using the pre-
dicted target genes were not random, but were related with
each other and with the annotated diseases. On the other

hand, based on current GWAS annotations about 32% of
IGR daSNPs already had more than one disease phenotype.
Thus, the ‘one-SNP-multiple-diseases’ phenomena may be
more common than expected.

While investigating the ‘one-SNP-multiple-diseases’ phe-
nomena, we discovered a special 4 Mb region (29–33 Mb)
in Chromosome 6. About 24% (439) of all IGR daSNPs
were located in this region, and they tended to have signif-
icantly more numbers of disease phenotypes than the rest
of the daSNPs did (T test, P-value = 7.6e-10). For exam-
ple, 12 out of the 16 IGR daSNPs with more than five
annotated disease phenotypes were located in this region;
19 and 8 out of the top 20 IGR daSNPs ranked by the
numbers of relevant diseases according to the ORA and
the relevance analysis, respectively, were located in this re-
gion. The diseases annotated or found to be relevant to
IGR daSNPs in this region were often autoimmune dis-
eases, such as rheumatoid arthritis, multiple sclerosis, lu-
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pus erythematosus, etc. The predicted target genes for IGR
daSNPs in this region also tended to be located in this re-
gion, and be enriched in immune-related functions. For ex-
ample, 10 out of the top 20 most frequently predicted target
genes for IGR daSNPs in this region were located in this
region, including HLA-B, HLA-DQA1 and HLA-DRB1.
Interestingly, these HLA genes were annotated with more
than 50 disease phenotypes. Further inspection of this re-
gion revealed that it was in fact a super hot spot of regu-
latory sequences and immune-related genes in the genome:
it consisted of 5622 DHSs and 186 genes that were func-
tionally enriched in immune-related processes. Thus, ge-
netic variations in this region were very likely to contribute
to multiple immune-related diseases. Here we presented one
example––SNP rs9268832. This SNP was annotated to be
associated with both lupus erythematosus and rheumatoid
arthritis (26,48). The relevance analysis associated it with
109 diseases, including the two annotated diseases. This was
because two of the predicted target genes––HLA-DRB1 and
HLA-DQB1 were annotated not only to the two target dis-
eases (49,50), but also to very high numbers of other dis-
eases (90 and 83 for HLA-DRB1 and HLA-DQB1, respec-
tively). Note that rs9268832 was an eQTL to both genes
(38,51–52).

The ‘one-SNP-multiple-disease’ phenomena also made it
possible for us to predict the potential phenotypes of IGR
daSNPs, which might be of use for prioritizing SNPs identi-
fied by GWAS studies. For instance, SNP rs9469220 was not
considered to be associated with Crohn’s disease because its
P-value found by GWAS was 2e-6 (53), which was below the
widely-used significance cutoff of 5e-8. The relevance anal-
ysis now provided evidence that it might be associated with
the Crohn’s disease. As such, the prediction of novel dis-
ease phenotypes for IGR daSNPs was of value for helping
retrieve weak disease associations that would otherwise be
discarded due to low statistical significance.

The contribution of different target gene prediction methods
to explain the disease phenotypes of IGR daSNPs and the
necessity of combining five methods

In this study, we used INTREPID to predict the target
genes for IGR daSNPs. INTREPID combined the predic-
tions from five component methods: HIC, PPC, IM-PET,
PreSTIGE and ENCODE, by simply taking the union of
their predictions. The reasons why we combined the pre-
dictions made by these five methods instead of using one
best method were listed as follows. Firstly, the predictions
made by each component method were useful for explain-
ing the disease phenotypes of IGR daSNPs. For all five
methods, the proportions of daSNP-predicted target gene
pairs among the collected daSNP-gene eQTL/mQTL pairs
were all significantly higher than random (all P-values <
0.001, experiments were done similar to that on INTREPID
predictions), partly validating the quality of their predic-
tions. Secondly, although different component methods
predicted different numbers of predictions: HIC predicted
the largest number of target genes for IGR daSNPs, fol-
lowed by PPC, ENCODE, PreSTIGE and IM-PET (Fig-
ure 5A), each made unique predictions (Figure 5B). Most
of the predictions made by HIC and PPC were unique. This

is especially true for PPC, because it could predict the tar-
get genes located far from the daSNPs (the median dis-
tance was 19 Mb) while the other methods usually predicted
the target genes within relatively shorter distances to the
daSNPs (the median distances were generally within 400
kb) (Supplementary Figure S1). Although about 40–70% of
the predictions made by ENCODE, PreSTIGE or IM-PET
could be confirmed by at least one other method, these three
methods each also made a significant number of unique
predictions. Thirdly, the combination of the predictions re-
sulted in a larger number of explainable daSNP-disease as-
sociations than any individual method did alone. Here, we
started from HIC’s predicted target genes and then added
the target genes predicted by PPC, ENCODE, PreSTIGE
and IM-PET in succession. We observed that each addition
increased the numbers of explainable IGR daSNP-disease
associations based on either the occurrence, the ORA or
the relevance analysis (Figure 5C). The same trends were
also observed for the numbers of highly likely, mechanisti-
cally likely and potentially likely explainable SNP-disease
associations (Figure 5D). For instance, the association of
rs9273363 with narcolepsy (54) was not ‘highly likely’ ex-
plainable until the predicted target genes of ENCODE were
added. In conclusion, each of the five methods has its own
merit, and by combining their predictions we could better
explain the daSNP-disease asscoiations. This also suggested
that the addition of more predicted target genes in high-
quality might help explain more IGR daSNP-disease asso-
ciations.

DISCUSSION

In this study, we presented a novel approach to explain the
disease phenotypes of IGR daSNPs. Given an IGR daSNP,
we first identified its HRE whose function might be af-
fected by the daSNP. Then, we applied a combined method
named INTREPID to predict the target genes regulated by
the HRE. Evidence from eQTL/mQTL data showed that
the expression of the predicted target genes was likely af-
fected by the corresponding IGR daSNPs. Next, we applied
three levels of functional analysis to investigate whether the
predicted target genes were functionally related to known
disease genes. Results showed that about 36.8% of IGR
daSNP-disease associations were ‘highly-likely’, ‘mechanis-
tically likely’ or ‘potentially likely’ explainable by the pre-
dicted target genes. When LD SNPs were considered, this
proportion increased to about 60.5%. These lines of evi-
dence thus strongly supported the following scenario for the
disease-association mechanism of IGR daSNPs: an IGR
daSNP may disrupt the normal regulatory role of its HRE,
causing abnormal expression changes to disease genes or
genes functionally relevant to disease genes, and conse-
quently leading to disease phenotypes.

For those IGR daSNPs that could not be explained us-
ing the predicted target genes, there were several reasons.
Firstly, the target genes predicted for these IGR daSNPs
by INTREPID might be incomplete. For example, distal
regulation may be dynamic and cell-type specific, while the
Hi-C and ChIA-PET data used by HIC and the epigenetic
data used by ENCODE (23,24), PreSTIGE (21) and IM-
PET (22) were generated from a limited number of cell lines.
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Figure 5. (A) The proportions of the predicted IGR daSNP-target gene pairs by each of the five component methods among the predicted pairs by
INTREPID. (B) The relative proportions of IGR daSNP-target gene pairs that were predicted by only the investigated method (unique predictions) or by
the investigated method and also the other methods (cross-confirmed predictions) among the predicted pairs by the investigated method. (C) The numbers
of IGR daSNP-disease associations identified by the occurrence, the ORA, or the relevance analysis using the predicted target genes from only HIC, or
by successively adding the predicted target genes from each of PPC, ENCODE, PreSTIGE and IM-PET. (D) Similar to (C) except that the numbers of
different categories of ‘explainable’ IGR daSNP-disease associations were reported.

On the other hand, in this study the predicted target genes
were limited to genes located in the same chromosome as
the daSNPs, while inter-chromosome distal regulation may
be more common than expected. Secondly, we defined the
nearest DRE to an IGR daSNP as its HRE, and assumed
that the DRE may be functionally affected by the daSNP,
which may not always be a real case. Thirdly, the annota-
tion of disease genes was not complete. Finally, there may
be disease-association mechanisms for IGR daSNPs other
than the one proposed in this study.

When using the predicted target genes to explain the dis-
ease phenotypes of IGR daSNP, we implicitly suggested
that there might be a causative chain of relationships: the
IGR daSNP affected the normal function of its HRE, which
then altered the expression of the target genes regulated by
the HRE, and eventually contributed to the disease phe-

notype. However, in reality we did not have experimental
data to support the above causal relationships, and the so-
called ‘explainable’ should be interpreted as the proof of
association between an IGR daSNP and its correspond-
ing disease phenotype. A step toward inferring whether an
IGR daSNP might be disease-contributing was to put the
above relationships into cell line or tissue-specific context.
In this study, we used small RNA data and annotated en-
hancer information to first determine whether the HRE of
an IGR daSNP was functional in the corresponding dis-
ease cell lines or tissues, and then used eQTL/mQTL data to
verify the daSNP-target gene relationships. Based on these
lines of evidence, we then determined a number of candidate
disease-contributing IGR daSNPs for three types of com-
plex diseases––immunological disease, cancer and neuro-
logical diseases. Though this is still far from demonstrating
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that an IGR daSNP is disease-contributing, the list of can-
didate disease-contributing IGR daSNPs provided in this
study was of value for designing specific experiments to in-
vestigate the disease-contributing mechanism of these daS-
NPs.

Besides explaining the disease phenotypes of IGR daS-
NPs, we also used the predicted target genes to investigate
the association of IGR daSNPs with other diseases, and dis-
covered the ‘one-SNP-multiple-diseases’ phenomena. The
phenomena were mainly caused by the frequent occurrence
of ‘one-gene-multiple-disease’ associations and the high re-
latedness between complex diseases. However, the ‘one-
SNP-multiple-diseases’ phenomena only represented a pos-
sibility, and did not necessarily indicate that the multiple
diseases would occur at the same time for one genotype of
daSNP. In reality, an IGR daSNP may only affect one or a
few of the predicted target genes under a specific biological
circumstance, during which the daSNP would only be as-
sociated with one or a subset of diseases found by using all
predicted target genes. To reduce the number of associated
diseases for an IGR daSNP and to identify circumstance-
specific target genes affected by an IGR daSNP, more in-
formation will be needed. Nevertheless, the predicted target
genes by INTREPID have provided a useful pool of candi-
date target genes and disease phenotypes for future explo-
ration.
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